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Abstract

To avoid the extremely high profit levels found in recent experience of
public utilities’ regulation, some regulators have introduced a profit-sharing
(PS) rule that revises prices to the benefit of consumers. However, in order
to be successful, a PS rule should satisfy appropriate incentive conditions.
In this paper, we study the incentive properties of a second best PS

mechanism designed by the regulator to induce a regulated monopolist to
divert its "excessive" profits to the customers. In a real option model where
a regulated monopolist manages a long-term franchise contract and the
regulator has the option to revoke the contract if there is serious welfare
loss, we first endogenously derive the welfare maximising PS rule under
the verifiability of profits. We then explore the dynamic efficiency of this
PS rule under non-verifiability of profits and study the firm’s incentive to
comply with it in an infinite-horizon game. Finally, we derive the price
adjustment path which follows the adoption of a PS rule in a price cap
regulation.
We show that the riskiness of the distribution of the firm’s future profits

and the regulator’s cost in revoking the franchise contract are key factors
in determining the equilibrium properties of a dynamic PS rule.
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1 Introduction

Recent European liberalization and US experience in the regulation of public
utilities shows that price-cap regulation (PCR) allows prices to diverge greatly
from actual costs and often generate “abnormal” profits for firms. This drawback
of PCR as an incentive mechanism stems from its inability to set a contingent
price that incorporates all uncertainties faced by the regulated firm in each period
of the regulatory contract1. Regulators dislike high corporate profits under PCR
because they reduce consumers’ welfare and - favouring the firm - downgrade the
regulator’s own reputation to set the “right” price of the service. This is why
over the last decade, regulators have modified PCRs with “profit-sharing” (PS)
schemes in order to induce the regulated firms to rebate part of their profits to
customers.

In the European experience of regulation, the textbook example for PS refers
to price cuts implemented by the British electricity regulator between 1994 and
1995, well before the official price review due in 1999. Since the initial price
control for the electricity companies turned out to be over-generous, the regulator
intervened to reduce prices, thus directly returning some of the “excess” profits
to consumers.2 Sappington (2002), among others, shows that these PS practices
are usually set in the US telecommunication industry by the regulator in the
form of direct payment to customers or reduction in prices of key user services.3

A fundamental feature of these real-world PS mechanisms is therefore the
discretion left to the regulator which entitles him to adjust the PCR adopted
ex-ante, calling for a unilateral “renewal” of the regulatory contract. Thus, the
implementation of PS scheme leaves room for dispute between the regulator and
the regulated firm about both the profit (and price) level - i.e. the threshold
value - that should trigger the PS rule, and the dynamic path that the regulated
price should follow. This is because PS prescriptions would require audited cost
information to calculate allowable profit levels, information which is often very
difficult for the regulator to collect. It has been often informally argued that

1Actual regulation of public utility adopts mechanisms ranging between price-cap and cost
of service. As underlined by regulation research, on the one hand, a price-cap rule provides
effective incentives for managerial efficiency and cost minimization, but often cannot extract the
benefits of the lower costs for consumers. On the other hand, cost of service contracts correctly
align prices and costs, but the firm’s cost could be excessive due to suboptimal managerial
effort. Joskow (2006), considering the electric distribution and transmission, pointed out that
"in presence of imperfect and asymmetric information the optimal regulatory mechanism will lie
somewhere between these two extreme and will have a form similar to a profit sharing contract
where the price that the regulated firm can charge is partially responsive or contingent on
changes in realized costs and partially fixed ex ante".

2Similar often quoted examples of PS have since been made by other UK regulators such as
British Gas Transco (gas transmission and distribution), National Grid Company (electricity
transmission), Oftel (tlc sector) and Ofwat (water industry). See about Green, (1997), Arm-
strong et al.(1994), Ofwat (1997), among others.

3Specifically, it is there observed that PS in the form of reduction in prices has been widely
used to regulate intrastate accounting rates affecting earnings of telecommunication providers.
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this may make the adoption and enforcement of PS rules substantially more
difficult.4

The aim of this paper is twofold: first of all, to derive the profit level which
triggers the PS rule in a PCR setting; then, to show that under non-verifiability
of profits, the PS rule can be an equilibrium strategy. Specifically, we analyzed
a dynamic game in continuous time with two players: a regulated monopolist
who manages a long-term franchise contract to provide a public utility service
(such as water supply, waste management, gas or electricity distribution, highway
tolls, etc.) and a welfare-maximising regulator who has the right, throughout
the contractual relationship, to ask the regulated firm to reduce profits if he
perceives they are “excessively” high, and to revoke the franchise contract if the
firm does not comply with the PS rule. We modelled the regulator’s “outside”
option to revoke the contract as a perpetual Call option where the regulator -
considering the firm’s profit as an underlying asset - has to determine when to
pay an exercise price to get the management of the utility back and re-determine
its provision5.

The game lasts a possibly infinite number of periods, and ends once the
regulator exercises the option to revoke the franchise contract. Each period
of this game is divided into four stages: in the first stage, nature chooses the
realization of a random variable, determining the firm’s profit; in the second
stage, after having observed the firm’s profit, the regulator decides whether or
not to ask for profit reductions; in the third stage, the firm decides whether
or not to comply with the regulator’s prescription; finally, in the fourth stage -
conditional on the firm’s choice - the regulator may revoke the contract.

It turns out that the assumption on profit verifiability affects the game from
the second stage: indeed, when the profit and the other regulatory variables
are observable but non-verifiable, the regulator cannot force the firm to cut
“excessive” profits as “no court or other third party will accept to arbitrate a
claim based on the value taken by these variables”.6 This implies that - under
the non-verifiability of profit - the firm can effectively choose whether to comply
or not with the PS rule, retaining all the profits above the profit threshold that
triggers the PS until the regulator revokes the contract. In contrast, when the
verifiability of profit is assumed, the regulator’s PS prescription reduces the game
to a take-it-or-leave-it offer to the firm.

For the sake of clarity, our analysis is split into two parts. As a benchmark,
we first investigated the simpler, though less realistic, case where the firm’s
profit is verifiable and - consequently - the PS scheme imposes contractual oblig-
ations contingent on realized profits. There, after having formally defined the
PS scheme, we identified the profit threshold value that determines the regula-

4See, among others: Green (1997) and Joskow (2006).
5 It is easy to observe here the parallel with a financial Call option which “gives the holder

the right to pay, for some specified amount of time, an exercise price and in return receive an
asset (a share of stock) that has some value” (Dixit and Pindyck, 1995, p.9).

6Salanié (1997, p. 177).
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tor’s introduction of the welfare-maximizing PS rule: at such a profit level, the
regulator is indifferent between contract closure and imposing the PS.

We then moved to the more realistic case of profit non-verifiability. Here, the
main difference compared to the previous case is that the regulated monopolist,
who decides not to comply with the PS rule, can now retain all profits above
the threshold, triggering PS until the regulator calls for contract closure. The
regulator will now revoke the contract, say at period t, only if revocation at that
period is effectively his best response. In other words, with no profit verifiability,
an incentive constraint imposing dynamic optimality of the revocation policy
must be satisfied in order to make the regulator’s revocation threat credible. So,
we formally show that for all the profits higher than the indifference threshold
between PS and contract closure it is optimal for the regulator to revoke the
contract, while revoking the contract for lower profit levels will never be optimal.
Hence, the perfect equilibrium of the game is such that the firm complies with
the PS rule chosen by the regulator in each period, as long as the revocation has
not been carried out.7 In equilibrium, the expectation of being able to induce
profit sharing makes it rational for the regulator not to exercise its option to
revoke, and this fact also makes it rational for the firm to continue to comply
with the PS prescription. On the one hand, given that for the monopolist the
loss from revocation of the contract is greater than the expected stream of profit
cuts (prescribed by the PS rule), it will be efficient for the firm to continuously
maintain profits at a level lower than the threshold that triggers the PS. On the
other hand, the regulator will revoke the contract for any profit level higher than
the this profit threshold.

This paper is related to two different strands of literature.
Concerning economic literature on the regulation of firms, our paper took

stock of studies on drastic regulatory changes such as stochastic regulatory re-
view (Bawa and Sibley, 1984) and expropriation by the regulator (Salant and
Woroch,1992; Gilbert and Newbery, 1994). Bawa and Sibley (1984) showed that
the firm’s incentive to indulge in over-capitalization can be tempered by the fact
that this raises profits and - consequently - makes it more likely that the regula-
tor will cut prices. In contrast to their approach, which emphasizes the strategic
firm behavior under both the regulator’s probability of review function and price
adjustment, we focussed on the regulator’s decision to impose a regulatory re-
view in the form of a PS rule and on the informational conditions which make it
enforceable. Salant and Woroch (1992) and Gilbert and Newbery (1994) present
models on expropriation by the regulator where the price regulation occurs en-
dogenously as a self-enforcing and mutually beneficial cooperative equilibrium.
In both these discrete-time repeated game frameworks, the regulatory lag does
not affect the players’ behavior. In contrast, in our continuous-time repeated
game model, the explicit unilateral approach to contract renewal - i.e. the regu-
lator sets the PS rule or calls for contract closure - allows us either to determine

7Efficient sub-game perfect equilibria in infinite-horizon threat-games are investigated in
Klein and O’Flaherty, 1993; Shavell and Spier, 2002.
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the regulatory lags endogenously or to study its determinants. Specifically, the
endogeneity of the regulatory lag - which is in the essence of the most real-life
adopted regulation mechanism - consistently belongs to both the level of the
firm’s profit and the regulator’s revocation cost.8

On a formal level, our paper builds upon the real option techniques which
have been widely used in the literature of irreversible investment and emphasize
the option value of delaying investment decision, i.e. the value of waiting for
better - although never complete - information on the stochastic evolution of
a basic asset.9 This paper adopts these techniques to investigate a regulatory
problem. As far as we know, there have rarely been any relevant applications
and, those that exist, mainly refer to a firm’s investment decision in different
regulated sectors (Hausman and Myers, 2002; Pindyck, 2004; Saphores et al.,
2004), or under different compulsory regulatory mechanisms (Dobbs, 2004; Teis-
berg, 1993; Moretto et al., 2003). Unlike these contributions, our paper focuses
on the endogenous determination of the profit level which triggers PS and on its
dynamic sustainability. To investigate these issues, we have modelled the regula-
tor’s decision to introduce PS into the regulatory contract along with an option
to revoke the contract. As far as we know, both these elements - the regulator’s
option and non-verifiability of the firm’s profit - are absent from research on PS
and regulator expropriation, as well as from option theory applications. Our
approach allows us, first, to investigate the PS rule in an intertemporal regu-
latory setting and, second, to recognize that in presence of market uncertainty
and non-verifiability of the firm’s profit, the regulator’s revocation cost (i.e. the
regulator’s credible threat) of contract closure is a crucial issue in dynamic PS
enforcement.

Finally, we ought to mention a limit of this analysis. We do not consider the
well-known trade-off generated by the introduction of a PS rule between lowering
extreme profits and dulling the firm’s incentive for cost reduction and invest-
ments.10 In this respect, note that if our model’s assumption of non-investment
by the regulated firm - on the one hand - opens room for further extensions of
the analysis - on the other hand - it results consistent with situations where the
regulated firm’s high profits are realized independent of the firm’s strategic de-
cision on investment as, for instance, when exogenous and unpredictable shocks
affect positively market demand for the service supplied.

The paper is organized as follows. Section 2 presents the basic model of PCR
in which a PS rule is introduced. Section 3 derives the regulator’s value of
the option to revoke the contract as well as the optimal profit threshold that

8As discussed in Laffont and Tirole (1994, p.15), endogeneity of the regulatory lag is espe-
cially important when the incentive properties of regulation are investigated.

9Dixit and Pindyck (1994) is the seminal text in this area.
10The literature on firm’s regulation has mainly stressed that compulsory sharing of profit

may: a) reduce the firm’s incentive to minimize operating costs and increase revenue (Lyon,
1996; Crew and Kleindorfer, 1996); b) provide an incentive to undertake projects that are
unduly risky (Blackmon, 1994); c) lead the utility to delay investment (Moretto et al., 2006).
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triggers it (Proposition 1): when the firm’s profits are verifiable, this threshold
is the optimal level to introduce the PS rule (Proposition 2). Section 4 explores
PS sustainability when the firm’s profit is non-verifiable (Proposition 3). In
these four sections, we have considered the PS rule as a general reduction of
the firm’s profit; in Section 5 - expressing explicitly the firm’s profit function
- we specifically investigated the adoption of a PS prescription in the form of
price-cut: this allow us to study the price adjustment which follows in a PCR .
Finally, Section 6 concludes with policy implications and extension of the model.

2 The basic set-up

We consider a risk-neutral profit-maximizing monopolist that manages a one-
time sunk indivisible project for the provision of a public utility under a long-
term franchise contract. For the sake of simplicity, we assume that the franchise
term is sufficiently long to be approximated by infinity.

The firm’s project produces a flow of profits πt which develops over time
according to a geometric Brownian motion, with instantaneous growth rate α > 0
and instantaneous volatility σ ≥ 0 :

dπt = απtdt+ σπtdWt, π0 = π (1)

where dWt is the standard increase of a Wiener process, uncorrelated over time
and satisfying the conditions that E(dWt) = 0 and E(dW 2

t ) = dt. Although
equation (1) is an abstraction from real projects, we can think of πt as the
“reduced form” of a more complex model where the instantaneous cash flow
πt = π(zt) depends on a vector of variables zt, which may include the market
price, the quality of the service, the firm’s investments and market shocks that
account for some uncertainty in consumer demand and/or technological choice.

Furthermore, to emphasize the fact that our analysis is designed to cope with
high profits and not with conduct that aims to conceal high profits, we assume
that no new investments are undertaken during the contract period.11 There-
fore, under these assumptions, the value of an infinite project, V (π), becomes
(Harrison, 1985, p.44):

V (π) = E0

½Z ∞

0
πte

−ρtdt | π0 = π

¾
=

π

ρ− α
(2)

11A few contributions have investigated the relation between the adoption of a PS rule and
the regulated firm’s incentive to invest. Specifically, in a static setting and referring to technical
efficiency, Lyon (1996) claims that a pure RPI-x regulation is preferable to a price-cap with PS.
Moreover, Weisman (1993) shows that incorporating a PS rule in a price-cap regulation may be
worsening relative to a pure cost regulation. Considering a dynamic setting with uncertainty
on investment timing, Moretto et al. (2007) find that the inclusion of a PS rule in a PCR is
less welfare detrimental than in a static framework, stressing that PS should be less stringent
in sectors where there are bigger investment opportunities.
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where ρ > α is the constant risk-free rate of interest,12 and V is also driven by
a geometric Brownian motion with the same parameters α and σ:

dVt = αVtdt+ σVtdWt, with V0 = V (3)

When the monopolist makes “huge” profits, the regulator introduces a PS
rule to divert these “excess” profits to consumers, or revokes the firm’s contract
to re-obtain responsibility to manage the utility and re-address the project’s
profitability. In what follows, we firstly model the PS rule and, in the next
section, the contract closure.

Of the many ways of introducing PS, the simplest one is to set of an upper
bound π̄ on profits by the regulator, i.e. at π̄ a ”profit cut” stops πt from going
above π̄.13 As from (2) choosing π̄ is equivalent to choosing an upper limit to
the value of the project V̄ , hereafter we take Vt as the primitive exogenous state
variable for the regulatory process. Thus, if the monopolist starts with the initial
project’s value V0 < V̄ , the PS rule works as follows:14

• for Vt < V̄ , the PS rule does not applies; Vt develops on its own and follows
the geometric Brownian motion (3);

• for Vt ≥ V̄ , the PS rule drt is introduced to stop Vt from going above
V̄ . The new “regulated” process Vt− rt can be described by the following
stochastic differential equation15:

dVt = αVtdt+ σVtdWt − drt, V0 = V, for Vt ∈ (0, V̄ ] (4)

where the increment drt represents the firm’s profit reduction between time
t and t+ dt.

To set up an appropriate mathematical model representing this PS rule we
were guided by the theory of optimal barrier regulations (Harrison and Taksar,
1983; Harrison, 1985). The PS rule can be modelled by a process proportional to
Vt, conditional to V̄ , right-continuous, non-decreasing and non-negative, defined
as:

rt = a(V̄ )Vt if Vt ≥ V̄ , (5)

12Alternatively, we could use a discount rate that includes an appropriate adjustment for risk
and take the expectation with respect to a distribution for π that is adjusted for risk neutrality
(see Cox and Ross, 1976; Harrison and Kreps, 1979).
13For qualitatively analogous rules and their discussion, see Sappington and Weisman (1996)

and Sappington (2002).
14Really this is a “value-sharing” rule: we call it PS as there is a one-to-one relationship

between the firm’s value and profits. See Moretto and Valbonesi (2000) for the explicit model
of a firm’s production decision.
15Stochastic differential equations such as (4) are a notational convenience, since only their

integral counterparts are well defined. The ”impulse” dr must be interpreted as potentially
taking finite values when a discrete jump occurs (Harrison and Taksar, 1983; Harrison, 1985).
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where a(V̄ ) ≡ [1− infT∗≤v≤t
³
V̄
Vv

´
], T ∗ = inf(t ≥ T ∗ | Vt − V̄ = 0+) and rt = 0

for all t ≤ T ∗(see Appendix 7.1).
As shown in Figure 1 below, the PS defined in (5) increases to keep Vt lower

than V̄ and is given by the cumulative amount of profit control exerted on the
sample path of V up to t.

It is worth noting that this setting allows us to deal with PS mechanisms
differently defined. Suppose, for example, that at V̄ the regulator introduces a
PS rule in the form of percentage-cut of the firm’s profits: we can model this
new PS rule adding to the above (5) a new stochastic differential equation for
the profit cut.16 Finally, note that this modelled PS rule can be easily related to
the one-side sliding scale formula proposed by Joskow and Schmalensee (1986)
to adjust prices under rate-of-return regulation.17

Figure 1: The value- (i.e., profit-) sharing dynamic

16Formally, this is:
dVt = αVtdt+ σVtdWt − drt,

and

dMt = sdrt

where M is defined by giving up 1/s unit of V for each unit of M. Therefore, above V̄ , the
PS rule can now be reformulated in terms of the new variable Yt = Vt/Mt. When the existing
combination of (Vt,Mt) places Yt above s, the regulator intervenes immediately by cutting back
on profits (drt > 0). The amount of profits cut is very small and is such as to push the firm’s
value along a sloped line 1/s.
17Formally, defining V r

t = Vt − rt as the actual “regulated” process, simple algebra allow us
to write it as (Moretto and Valbonesi, 2000):

V r
t = Vt + ht

�
V̄ − Vt

�
,

with ht =

⎧⎨⎩ 0 , for V0 ≤ Vt < V̄
1− inf

T∗≤v≤t
(V̄ /Vv)

1−(V̄ /Vt)
, for Vt ≥ V̄
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3 The optimal PS rule

In the previous section we modelled the PS rule (5) for a given exogenous upper
bound value V̄ . In this section we define what firm’s profit value triggers both the
regulator’s introduction of the PS and the regulator’s adoption of the alternative
strategy, i.e. the revocation of the contract. We develop the analysis under
the simpler assumption of verifiability of the firm’s profit. This assumption
specifically implies that the regulator’s threat of contract closure is binding when
the firm’s profit level is higher than the optimal trigger. Moreover, if the firm’s
profits are verifiable, the optimal value V̄ that makes the regulator introduce the
PS rule is the one, say V ∗, that leads the regulator to revoke the contract.

We assume that the regulator decides whether or not to revoke the firm’s
contract solving the minimization of an intertemporal loss function; this loss
function is an increasing function of the firm’s profit. Indeed, an increase in the
monopolist’s profits reduces the monetary value of consumers’ welfare. If the
firm’s profits become “too” high, i.e., when the social loss is “too” large, the
regulator adopts one of the following alternative and equivalent strategies:

1. introduces a PS rule - defined as (5) - to divert profits from the firm to
consumers;

2. revokes the contract to get the utility back and re-determine its provision,
thus re-addressing the project’s profitability.

Contract closure is then an “outside” option the regulator can always exercise.
We model this option as a perpetual Call option, with the project’s value V as
the underlying asset.

3.1 Social loss and the option to revoke

The regulator minimizes an intertemporal loss function. Avoiding discounting
for the sake of simplicity, we define this loss function as the difference in value of
the social welfare between time 0 and the revocation time T, plus the revocation
cost net of the firm’s value. Hence if, according to the utilitarian criterion, we
write the social welfare function18 at time T as the sum of the net consumers
surplusKT−(1+λ)VT , and the firm’s value VT , the loss function at T becomes:

∆KT + λ(VT − V ) + (I − VT ) (6)

where ∆KT is the expected change in the consumers’ willingness to pay
for the service from time zero to T, λ ∈ (0, 1) is the opportunity cost of public
18As stressed by Laffont and Tirole (1994, p.55-56) in adopting a similar social welfare func-

tion, "the crucial feature of this kind of social welfare function is that the regulator dislikes
leaving a rent to the firm". This could be justified by the fact that rent extraction is part of
the regulator’s goal.
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funds to run the service by the regulator, λ(VT − V ) is the expected rise in
consumers’ expenditure up to the revocation time T and the term (I − VT )
is the regulator’s net cost of revocation. Indeed, revocation is costly as contract
closure determines that the management of the project returns to the regulator’s
hands and this - in turn - implies that the regulator should implement the new
utility provision (i.e., through direct management, privatization or contracting
out to another firm). Specifically, I is the regulator’s cost in finding a new
franchisee or - in the case of direct provision of the service - in training and
hiring new personnel and/or adopting new technologies. The regulator’s cost of
revocation also includes legal expenditure if the firm decides to sue the regulator
or, more generally, any cost from regulatory capture by the firm.19

Furthermore, we assumed ∆KT = 0. This is justified by the observation
that short-run demand functions for necessary utilities such as water, electricity
etc., are characterized by very low price and income elasticities and there is no
close substitute for them. In other words, the consumers’ reservation price for
these utilities tends to be so high that the consumer surplus is not affected by
small changes in the corresponding market price.20

Since minimizing (6) is equivalent to maximizing VT − I − λ(VT − V ), it is
evident that rent extraction can be part of the regulator’s objective in revoking
the contract.21 Thus, exercising the option to revoke requires payment of the
sunk cost I plus the social cost λ(VT − V ). Due to the level of the sunk cost I,
it is never optimal for the regulator to revoke when VT − I −λ(VT −V ) is equal
to zero: it is better to wait until its value reaches a higher level.

Defining F (V ) as the value of the option at t = 0, we get:

F (V ) = max
T

E0

h
((1− λ)VT − Î)e−ρT | V0 = V

i
(7)

where T (V̄ ) = inf
¡
t ≥ 0 | Vt − V̄ = 0+

¢
is the unknown future time when

the option is exercised, VT is the threshold value that triggers that action and
Î ≡ I − λV is the exercise price. The optimization is subject to (3) and V 22.

Note that F (V ) is a perpetual Call option. By using standard results in the
(Real) option valuation (Dixit and Pindyck, 1994), the solution of (7) is given
by:

19For a discussion on the different sources of regulatory capture from the firm, see Laffont
and Tirole (1994, chapter 11).
20 It is worth noting that our results hold even if ∆KT 6= 0. Specifically, if ∆KT > 0 is

assumed, the effect of revocation results exacerbated.
21See Crew and Kleindorfer (1996, p. 218), for a discussion on rent extraction as included in

the regulator’s objective function.
22Moreover, we must also assume that Î > 0 and VT − Î > 0.
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Proposition 1 The value of the regulator’s option to revoke at time t ≥ 0 is
given by:

F (V ) =

⎧⎨⎩
A(V ∗)V β for all V < V ∗

(1− λ)V − Î for all V ≥ V ∗
(8)

where:

VT ≡ V ∗ =
β

β − 1
1

1− λ
Î, with

β

β − 1 > 123 (9)

and:

A(V ∗) =
1− λ

β
(V ∗)1−β > 0 (10)

Proof. see Appendix 7.2.

Hence, the regulator’s optimal revocation rule can be expressed as: “Revoke
the contract as soon as the value of the project exceeds the adjusted break-even
value V ∗”.

To interpret (8), let us rewrite it in the following form:

F (V ) =
h
(1− λ)V ∗ − Î

iµ V

V ∗

¶β

(11)

=
h
(1− λ)V ∗ − Î

i
E0
£
e−ρT

¤
Maximizing (7) means maximizing the expected discounted value of the

net benefit (1 − λ)V ∗ − Î when the utility is expropriated at time T , where

E0
£
e−ρT

¤
=
¡
V
V ∗
¢β

< 1 is the expected discount factor. Then, maximizing (11)
with respect to V ∗ gives the optimal revocation trigger as in (9).

Inspection of the opportunity cost λ in (9) reveals that:

• as λ → 0, i.e., the regulator becomes socially “indifferent” between direct
management of the utility and the franchising contract to a firm, V ∗ drops
to β

β−1I and the probability of revocation increases.

• as λ→ 1, i.e., the opportunity cost of direct management by the regulator
rises, V ∗ →∞ and the regulator never revokes.

In other words, the regulator’s direct cost of revocation V ∗− Î is weighed by
the regulator’s opportunity cost λ which, in turn, increases as fiscal distortion in
raising public funds to run the service becomes larger. In real-world regulation
this implies that the regulator’s direct cost of revocation can be enhanced or
reduced by the efficiency of the fiscal tools adopted in collecting funds.

23β > 1 is the positive root of the quadratic equation: Φ(β) = 1
2
σ2β(β − 1) + αβ − ρ = 0
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3.2 Revocation vs Profit Sharing

Since for Vt > V ∗ it is optimal for the regulator to revoke the contract, in this
section we prove that, by setting V̄ = V ∗, the regulator is indifferent to applying
the PS rule and revoking the contract. Denoted by (1−λ)R(VT ; V̄ ) the expected
value of future cumulative profit reduction net of tax distortion due to (5)24, the
regulator’s loss function at T results:

λ(VT − V ) + (I − VT ) + (1− λ)R(VT ; V̄ ) (12)

where V̄ is a generic reflecting barrier. Using (12) as payoff, the value of the
regulator’s option to revoke becomes:

F r(V ) = max
T

Er
0

h
(1− λ)VT − Î − (1− λ)R(VT ; V̄ ))e

−ρT | V0 = V
i

(13)

where the superscripts indicate that the PS rule (5) is adopted. The solution of
(13) shows that:

Proposition 2 i) If V̄ > V ∗, the regulator’s optimal revocation trigger (once
the PS is adopted) is still equal to (9), that is:

VT ≡ V ∗ =
β

β − 1
1

1− λ
Î

ii) If V̄ = V ∗, the PS rule (5) keeps the regulator indifferent to revocation,
i.e.:

F r(Vt) = 0 for t ≥ 0 (14)

Proof. see Appendix 7.3.

Proposition 2 states the optimality of the sharing rule (5) compared to the
regulator’s alternative equivalent strategy, that is, the regulator’s optimal con-
tract closure. This implies that if the monopolist keeps profits below V ∗, revo-
cation is never optimal.

Proposition 2 - in both parts - provides further considerations. First, if
V̄ > V ∗, the optimal revocation trigger under PS is equal to the optimal re-
vocation trigger without PS as in (9). This is just an application of the dynamic
programming principle of optimality: if at t = 0 the regulator sets V ∗ as the
optimal revocation trigger, this should be optimal for any t > 0, independent of
any future policy after V ∗.

Second, if the regulator sets V̄ = V ∗ as a reflecting barrier, the value of its
option to revoke is always equal to zero. The line of thought behind this result
is a straightforward implication of the barrier control rt applied to the process
Vt. Indeed, the true cost of exercising the option for the regulator is not just

24See about Appendix C.
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equal to the strike price Î, but also includes the future profit cuts R(Vt;V ∗) and
the value of the forgone option F r(Vt). Thus, the net expected present value of
optimal exercise at time t ≥ 0 is:

Er
t

n
[(1− λ)V ∗ − Î − F r(V ∗)]e−ρ(t−T )

o
− (1− λ)R(Vt;V

∗) = −F r(V ∗)

µ
Vt
V ∗

¶β

(15)

where the last equality follows from R(Vt;V
∗) = [V ∗− Î

1−λ ]
¡
Vt
V ∗
¢β
(see Appendix

C). Maximizing (15) with respect to V ∗ gives:

β
F r(V ∗)

V ∗
− F r0(V ∗) = 0 (16)

Since avoiding arbitrage at V ∗ the second term of (16) must be equal to
zero, we get (14).25 That is, from (15), the regulator is indifferent between
introducing the PS rule and revoking the contract when the expected benefits
from profit regulation exactly offset the expected social welfare loss due to the
monopolist’s excess profits.

Finally, although the PS rule (5) is simply proportional to the project’s value,
several new implications follow:

• rt is dynamic and parametrized by the initial condition V ∗ which, in turn,
depends on the revocation cost I and on the opportunity cost parameter
λ.

• rt is non-decreasing and is given by the cumulative amount of profit cuts
exerted on the sample path of Vt up to t. Thus, rt relates to past realizations
of Vt, which makes the PS time-dependent.

Summing up, the PS rule rt arises as the optimal response from the con-
tinuous interaction between the monopolist and the regulator: specifically, it is
smaller as the regulator’s revocation and opportunity costs, I and λ respectively,
become larger; moreover, it determines a "regulated" process Vt − rt which is
function solely of the starting state Vt.

25The function F r(Vt) is defined as the expected value of the regulator’s net benefit when the
utility is expropriated at time T. As the net benefit is a continuous function of the primitive
process Vt, also F r is a continuous function except perhaps when Vt = V ∗ and the profit-sharing
rule rt is applied. The behavior around Vt = V ∗ is given by expanding F r(Vt) as:

F r(V ∗) = F r(V ∗ − dr) = F r(V ∗)− F r0(V ∗)dr

which gives F r0(V ∗) = 0. This condition holds at any reflecting barrier without any optimization
being involved (Dixit, 1993).
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4 Efficiency of the PS rule

An important and controversial fact of the PS rule implementation in the real
world is its dynamic sustainability when the monopolist’s profits are observable
but non-verifiable. In this case, the regulator cannot force the firm to cut “ex-
cessive” profits as “no court or other third party will accept to arbitrate a claim
based on the value taken by these variables”.26 Therefore, under profit non-
verifiability, is the regulator’s threat of contract closure still sufficient to induce
the firm to comply with (5) as Vt intersects V ∗?

In this section we formally demonstrate that the proposed PS rule sustains a
perfect equilibrium for the repeated continuous time regulatory relationship that
starts at T ∗ = T (V ∗). We have done this by showing that any firm’s deviation
from (5) makes contract closure worthwhile for the regulator. In addition, since
Vt is a Markov process, it is easy to state that the equilibrium is also sub-game
perfect.

The regulatory game we consider here lasts a possibly infinite number of
periods, and ends once the regulator exercises the option to revoke the franchise
contract. Each period is divided into four stages: in the first stage, nature
chooses a parameter determining the profit of the regulated monopolist. In
the second stage, after observing the firm’s profit, the regulator decides whether
or not to ask for PS: if the regulator perceives that the monopolist is making
“excessively” high profits, he sets a profit ceiling, say V ∗, according to (9), above
which the PS rule (5) applies. The regulator accompanies its announcement with
a threat to revoke the contract if the firm does not comply.27 In the third stage,
the monopolist decides whether or not to comply with the regulator’s prescription
(i.e., whether or not to share profits, that is, to start with stream of payment
rt ≥ 0).28 In the fourth stage, the regulator, conditional on Vt, decides whether
or not to revoke the contract. If the regulator does revoke, the monopolist suffers
the loss Vt and the regulator obtains Vt − I (i.e., the net gain from revocation).
If the regulator does not revoke, the game goes ahead to the next period and it
is repeated.

However, without a binding commitment by the regulator, any finite num-
ber of firm profit reductions will be inefficient. Indeed, the regulator’s problem
is that for any t ≥ T ∗ he has an incentive to carry out his threat, even if the
monopolist reduces its profits. Since this means that the monopolist will not
ward off the threat by reducing its profits, the monopolist will not reduce them.
Thus, the unique sub-game perfect equilibrium is inefficient: revocation is car-
ried out regardless of the monopolist’s positive net present value. To avoid this
inefficiency the monopolist must continuously "control" its profits; that is, for

26Salanié, 1997, p.177.
27By the Markov Property of (21), in our model it is not important when the regulator

announces V ∗ as long as it is between zero and T ∗.
28 In our infinite-lived project without investment, the firm’s dominant strategy is not to make

the payment rt ≥ 0, that is not to comply.
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t ≥ T ∗, the monopolist should consider V ∗ as the ceiling not to be crossed,
and reduce its expected profits just enough to keep Vt < V ∗ to prevent contract
closure.29 To summarize:

Proposition 3 i) Starting form the initial date t < T ∗, the following strategy
is a sub-game perfect equilibrium:

• As long as Vt < V ∗ nothing is done

• As soon as Vt crosses V ∗ from below, the regulated firm reduces its profits
by (5) and the regulator does not revoke.

ii) There always exists a time T 0∗ > T ∗, defined as T 0∗ = inf(t ≥ T ∗ |
Vt − V ∗ = 0−), where regulation stops.

Proof. see Appendix 7.4.
As both players - the regulator and the monopolist - expect an infinite repe-

tition of their relation, their choices in each period will depend on the previous
moves. The players’ strategy for each period t ≥ T ∗ can be described as fol-
lows: the regulated monopolist observes Vt and chooses to share - or not to
share - its profit according to the rule rt; the regulator “does not revoke” if the
monopolist has adopted the rule rt to keep Vt < V ∗ for all t0 < t.30 On the
contrary, the regulator “revokes” if the firm has deviated from rt at any t0 < t.
Our stochastic-continuous time framework calls for an instantaneous reply by
the regulator when the monopolist departs from the PS rule (5). That is, the
regulator adopts the most severe punishment, i.e., revocation of the contract.31

The regulator believes that this mechanism, from the initial date and state
(T ∗, V ∗), will be retained for the whole planning horizon and since the project is
infinitely-lived, the present value of forgone profits if the contract is revoked will
always ensure participation by the firm. On the other hand, the expectation of
future profit regulations keeps the regulator from carrying out this threat.

Finally, although the project is infinite, profit regulation takes place within a
finite (stochastic) time span. Intuitively, although the monopolist prefers to cut
profits rather than terminate the contract (i.e., the loss from closure is greater
than the expected profit cuts), it always prefers to stop payment if the revocation
threat is not carried out. Then, since this threat relies on the fact that the

29There are many efficient sub-game perfect equilibria where the threat of revocation induces
an infinite flow of payments by the firm to prevent contract closure (see Shavell and Spier, 1996,
Proposition 2).
30 In our continuous time setting we assume, without any loss of generality, that when the

regulator is indifferent between revoking the contract and not revoking, he does not exercise
the option.
31 In continuous repeated games there is no notion of last time before t, so induction cannot

be applied. For examples on how to represent continuous time as a sequence of discrete-time
grids that becomes infinitely negligible, we can refer to Simon and Stinchcombe (1989) and
Bergin and MacLeod (1993).
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regulator’s option to revoke is always worth exercising at Vt > V ∗, i.e. F (Vt) >
F (V ∗), when Vt reaches, for the first time after T ∗, the trigger V ∗ from above,
if the firm sets rT∗0 = 0, the regulator will face a jump of his revocation option
from zero to F (V ∗) but revocation is not carried out (See Figure 1).

In other words, owing to uncertainty, neither player - regulator or monopolist
- can perfectly predict Vt each time. As Vt follows a continuous time random
walk there is, for each time interval dt, a constant probability of moving up or
down, i.e., of the game continuing one more period. The game ends in finite
(stochastic) time with probability one, but everything is as if the horizon were
infinite (Fudenberg and Tirole, 1991, p. 148).

5 PS and dynamic price adjustment in a PCR

Let us conclude by showing how the PS rule we have investigated in the previous
sections can be implemented in a PCR setting. According to what seems the
most adopted form of PS in the real world - i.e., price cutting - in this section we
explicitly deal with a PS prescription by which the regulated monopolist should
decrease the price once its profits are "too high". Thus, we have introduced here
a reduced form of the firm’s profit function (1) that depends only on the price
of the service and a demand shock, i.e., zt = (pt, θt). That is, we assume that:

1. The market demand at time t is a constant-elasticity function of the price
pt:

D(pt) = θtp
−ε
t (17)

with ε ∈ (0, 1).

2. The random parameter θt follows a trendless, geometric Brownian motion,
with instantaneous volatility σ > 0, i.e.:

dθt = σθtdWt, with θ0 = θ (18)

where dWt is the standard increment of a Wiener process32.

3. No operating costs are present but there is a fixed cost c per period33.
Then, the monopolist’s project gives a profit flow at each time t equal to34:

π(pt, θt) = v(pt, θt)− c ≡ p1−εt θt − c. (19)

32By the Markov Property of (18), the quality of all subsequent results does not change if we
assume an increasing demand trend.
33The fixed costs we considered here are, as standard in the literature, flow fixed costs of

production: that is, we assume that the firm begins the first period endowed with technology
whose operation entails a flow cost c per unit of time.
34For the sake of simplicity, we avoided considering operating options such as reducing output

or even shutting down which increase the value of the firm (MacDonald and Siegel, 1986; Dixit
and Pindyck,1994, chs. 6 and 7).
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4. The monopolist is subject to price regulation. The price p is allowed
to increase by the difference between expected inflation (the Retail Price
Index, RPI) and an exogenously given expected increase in productivity
over time (x):

dpt = (RPI − x)ptdt, with p0 = p (20)

These assumptions enabled us to reduce the model to one dimension. Ex-
panding dπ(pt, θt) and applying Itô’s lemma, it is easy to show that v(pt, θt) is
driven by the following geometric Brownian motion:

dvt = αvtdt+ σvtdWt with v0 = v, (21)

with:
α ≡ (1− ε)(RPI − x)

The drift parameter of the process vt is a linear combination of the corre-
sponding parameters of the primitive process θt and of the price-cap rule (20).
Finally, since the monopolist is risk-neutral, using the simplified expression for
the profit function (21), the market value of the project becomes:

V =
v

ρ− α
− c

ρ
(22)

As far as the price-cap revision is concerned, in the event of the monopolist’s
profits going beyond a “pre-determined” level, the PS rule requires the x factor to
be automatically adjusted upward, making the price-cap adjustment rateRPI−x
more stringent (Sappington, 2002). According to this practice we can rewrite
(4) as:

dVt = (1− ε)(RPI − x0)Vtdt+ σVtdWt, V0 = V, for V ∈ (0, V ∗] (23)

where x0 = x −
d inf
0≤v≤t

(V ∗/Vv)/dt

(1−ε) inf
0≤v≤t

(V ∗/Vv)
> x is the new price decrease factor which

stops the process Vt from going any higher than V ∗. How the x0 factor works
seems intuitively appealing. As the numerical value for V ∗ is known, by (22) the
optimal revocation trigger (9) can be written as p1−εt θt =

β
β−1

1
1−λ

ρ−α
ρ (c + ρÎ),

from which the boundary value for θ∗ is determined by:

θ∗(pt) =
β

β − 1
1

1− λ

ρ− α

ρ

c+ ρÎ

p1−εt

(24)

For any given value of the price pt, random fluctuations of θt move the point
(θt, pt) horizontally left or right. If the point goes to the right of the boundary,
then a price reduction is made immediately by shifting the point down to the
boundary. If θt stays to the left of the boundary, no new price reduction is
applied. Thus, price reduction proceeds gradually to maintain (24) equality. To
illustrate this, suppose RPI−x = 0 so that pt = p0 for all t; by inverting (24) we
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obtain the optimal boundary function p(θt) which determines the optimal price
regulation as a function of the sole state variable θt:

pt = p0

µ
θ∗

θt

¶1/1−ε
with

dpt
dθt

< 0 (25)

Furthermore, higher costs shift the boundary (24) to the right, θ0∗ > θ∗ and
determine a smaller price reduction by the firm to comply with the PS rule.35

The boundary function for this case is shown in Figure 2 below.

Figure 2: Price regulation

Thus, in our analysis of PS in a PCR setting, the ability to ratchet the
expected increase in monopolist’s productivity - that is, the x -factor - is directly
related to the regulator’s threat of revocation. The credibility of this threat
determines the difference between contractual and real duration of a regulatory
arrangement and, hence, the success of introducing a PS rule in the original
PCR setting. The difference between contractual and real contract duration is
another way of looking at the well-known "commitment problem" in regulation.
Crew and Kleindorfer (1996) argue that a major issue in incentive regulation is
commitment: ".. if a company is concerned that the regulator will penalize it at
the end of or even during the price-cap period if it is successful, it may not pursue
efficiency as strongly as implied by the apparent incentives in PCR. Thus, the
notion that the regulator will not renege on the terms of PCR is very important
for the efficiency to be achieves.. (p.218)". However, they subsequently admit
that as the regulators’ goal is rent extraction, it is easy to see that they have
limited incentives to commit themselves, and that this problem is at the root of
the emergence of regulatory contracts that incorporate sharing rules.

35 Indeed, cost padding by the franchisee is another strategy that might be used to avoid the
appearance of excess profit. It would be possible to model the franchisee as reporting costs and
the regulator as employing auditors to determine the accuracy of cost reports, but this is not
our aim here.
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6 Final Remarks

When a welfare maximizing regulator delegates a monopolist to manage a long-
run franchise contract for a public utility, we have employed a real options ap-
proach to determine: a) the threshold value that triggers profit-sharing (PS) and
b) under what informational conditions a dynamic PS rule provides incentives
to the firm to divert profits to customers. Specifically, we have assumed that if
the monopolist’s profits become “excessively” high - that is, if the social welfare
loss is too large - the regulator can always adopt one of the following alternatives
and equivalent strategies:

• introduce a PS rule to divert profits from the firm to consumers;

• revoke the contract to get the utility back and re-determine its provision,
thus re-addressing the project’s profitability.

We have modelled the regulator’s option to revoke as a perpetual Call option
which is a function of the firm’s profits, the social welfare and the regulator’s
cost of revocation. The option value approach results particularly useful to the
analysis of the PS at least for two reason.

First, option theory techniques are natural tools to analyze the intertemporal
problem faced by a regulator who: (i) wishes to impose bounds on the profits of
a public utility firm for welfare reasons; and (ii) cannot sign at the initial time
a binding contract specifying the public utility market behaviour and profits in
all possible contingencies (because of the non-verifiability of future states).

Second, the option value approach allowed us to consider uncertainty - from
exogenous shocks, that typically affect the demand and cost function faced by
the firm. This is relevant to fully understand the regulatory issue on PS, as
sharing between the regulator and the firm is often called to face unpredictable
events affecting the firm’s demand or costs.

For the sake of clarity, our analysis is organized in two part. In the first
one, we have shown under the assumption of verifiability of profits that the
profit threshold that triggers revocation is the same as the one that triggers the
PS (Proposition 1 ). That is, such a threshold keeps the regulator indifferent
between revoking the contract and applying the PS rule (Proposition 2 ). Hence,
as the regulator’s contract closure can be very costly - i.e., it could include
the revocation cost of finding a new franchisee, or legal expenditure if the firm
sues the regulator - a considerable regulatory lag can occur before a PS rule
is introduced. Moreover, if the regulatory process has been taken over by the
monopolist, the PS - as unilaterally advocated by the regulator - is further
delayed.

Then, under the assumption of profit non-verifiability, we investigated whether
the PS rule is sustainable, that is, if it is dynamically efficient. We therefore
showed that the regulator’s credible threat to revoke the contract endogenously
determines the rule by which the monopolist is induced to “control” its profits,
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and that this is a sub-game perfect equilibrium (Proposition 3 ). Given this result,
the price adjustment which follows is endogenously and dynamically determined
as the best response for the monopolist to the regulator’s choice. Specifically, as
shown in the last section of the paper, for a price-cap setting where a reduced
form of the firm’s profit function is adopted, we have provided how the price
adjustment - via the firm’s productivity adjustment ( the so called X -factor ) -
is affected by PS enforcement.

These conclusions provide, on the one hand a reason for the firm’s "volun-
tary" price cuts below the formally allowed price as, for example, was observed
in the end of the 1990s for several water companies in England and Wales. Fol-
lowing the announced UK water regulator’s prescription to rebate water prices
in order to transfer savings to customers made by companies in reducing their
managing costs’ in the previous period, those firms agreed to comply with this
PS rule. Furthermore, expecting substantial falls in their profit, offseted looking
for new ventures and restructuring their budget sheet36. On the other hand,
this conclusion also suggests a theoretical reason why the PS rule in its dy-
namic application tends to be unsuccessful in the real world. More specifically,
as long as the regulator’s threat to revoke the contract becomes non-credible,
the regulated firm is no longer incentivized to comply with the adopted PS rule.
These conjectures both stress the relationship between regulatory commitment
and regulatory costs in a repeated relation such as the regulatory practice of
public utility sectors. The sustainability of the PS mechanism crucially depends
upon the magnitude of the regulator’s revocation cost which, in turn, affect the
credibility of the regulator’s threat to revoke the contract. The revocation cost
thus represents a form of capture of the regulator by the firm: the higher the
revocation cost, the lower the profit shared and the less frequent the regulator’s
PS prescription.

Moreover, the regulator’s revocation cost determines - via the profit threshold
that triggers the PS rule - the (expected) time interval between each pair of
regulatory reviews (i.e., the regulatory lags). So, revocation cost measures the
inefficiencies that the regulator incurs in the direct provision of the service or
in finding a new franchisee, costs which can vary greatly in different regulatory
contexts. In the regulation of local utilities, for instance, the inexperience of the
municipal authority as regulator may determine proportionally higher revocation
costs than for a nationally supplied utility (Clark and Mondello, 2000).

Note that the PS rule we have investigated here — as PS rules observed in
the real world — is a relatively simple and inflexible long-term contract. As
observed by Bolton and Dewatripoint (2005, p.483) - "enforcement costs are
likely to escalate significantly with contractual complexity" as disagreement and
litigation are more likely for more complex contracts. The advantage of our

36See: Andrew Taylor, Financial Times (London, England), April 17, 2000, “Water companies
struggle in wake of regulator’s price cuts”; Chris Godsmark, The Independent, (London), May
20, 1997, "Byatt questions regulation plans".
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simple PS rule is that it relies on self-enforcement which is often more efficient
than legal enforcement. This strengthens in the case of non-verifiability of profit.
Moreover, the self-enforcement of the PS rule is based on the credibility of the
threat of contract revocation by the regulator. As such a threat is triggered by
the regulator maximizing of an intertemporal social welfare function, it is never
optimal for the regulator to ex-post renegotiate the PS rule.

To close, we would like to briefly suggest an extension of our model which
looks at the main simplifying assumption we adopted and which warrants further
investigation. The economic literature on firm’s regulation generally holds that
PS rules reduce a firm’s incentive to invest (Lyon, 1996; Crew and Kleindorfer,
1996; Sappington, 2002). However, our analysis - which specifically addresses the
definition of threshold value triggering the PS rule and on its self—enforcement -
is carried out under the assumption of no investment. Specifically, our analysis
realistically applies to cases where the regulated firm realizes high profits inde-
pendent of its strategic decision on investment. This frequently occurs in utility
markets, for instance, when exogenous and unpredictable shocks positively affect
the firm’s demand (or decreases the firm’s costs). Thus, a natural extension of
our model would include the firm’s intertemporal investment choice to reduce
costs and increase demand as well as assess the effects of the threat of contract
closure and/or the PS rule by the regulator on this strategic firm’s decision.

7 Appendix

7.1 The regulation process
We define the regulation which follows the introduction of the PS rule as the reduction dVt
needed to keep Vt at V̄ . This is a one-sided non-decreasing adapted control process (as in Har-
rison, 1985) on the state variable V which is right-continuous and non-negative. So, the control

policy consists of a process Z = {Zt, t ≥ 0} and a regulated process V r = {V r
t , t ≥ 0}

such that:

V r
t ≡ VtZt, for V r

t ∈ (0, V̄ ], (26)

where:

• i) Vt is a geometric Brownian motion, with stochastic differential as in (3);

• ii) Zt is a decreasing and continuous process with respect to Vt ;

• iii) Z0 = 1 if V0 ≤ V̄ , and Z0 = V̄ /V0 if V0 > V̄ so that V r
0 = V̄ ;

• iv) Zt decreases only when V r
t = V̄ .

Applying Ito’s lemma to (26), we get:
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dV r
t = αV r

t dt+ σV r
t dWt + V r

t

dZt

Zt
, V r

0 ∈ (0, V̄ ]

where V r
t
dZt
Zt
≡ VtdZt = −drt is the infinitesimal level of value forgone by the firm. In

terms of the regulated process V r
t , we can write:

rt ≡ r(Vt) = Vt − V r
t ≡ (1− Zt)Vt, (27)

Although the process Zt may have a jump at time t = 0, it is continuous and keeps Vt below
the barrier V̄ exercising the minimum amount of control: in fact, control is exercised only when

Vt crosses V̄ from below with a probability one in the absence of regulation. Therefore, in the

case of V0 < V̄ , we get V r
t ≡ Vt, with the initial condition V r

0 ≡ V0 = V, and Zt = 1.
At T ∗ ≡ T (V̄ ) = inf(t ≥ 0 | Vt− V̄ = 0+) control starts so as to maintain V r

t = V̄ .
The firm’s values are adjusted downward by the amount rt = Vt − V r

t ≥ 0 every time
V̄ is hit. The same conditions (i)− (iv) uniquely determine Zt with the representation form

(Harrison,1985; Proposition 3, p. 19-20):37

Zt ≡
(
min(1, V̄ /V0) for t = 0
inf
0≤v≤t

(V̄ /Vv) for t ≥ 0 (28)

7.2 Proof of Proposition 1
The function F (Vt) is defined as the expected value at time t of the regulator’s net benefit
when the utility is expropriated at time T. As the net benefit is a continuous function of the
primitive process Vt , also F is a continuous function of Vt. Then, by a short arbitrage argument
(Cox and Ross, 1976; Harrison and Kreps, 1979), applying Ito’s lemma to F , the value of the
regulator’s option to revoke becomes the solution of the following differential equation (Dixit

and Pindyck, 1994, p. 147-152):

1

2
σ2V 2t F

00(Vt) + αVtF
0(Vt)− ρF (Vt) = 0, for Vt ∈ (0, V ∗], (29)

where F (Vt) must satisfy the following boundary conditions:

lim
Vt→0

F (V t) = 0 (30)

F (V ∗) = (1− λ)V ∗−Î (31)

F 0(V ∗) = 1− λ (32)

37This is an application of a well-known result of Levy (1948), for which the process:

lnV r
t ≡ lnVt + lnZt ≡ lnVt − inf

0≤v≤t
(lnVv − ln V̄ )

has the same distribution as the “reflected Brownian process” | lnVt − ln V̄ | .
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If the value of the utility tends to zero, so does the option. Conditions (31) and (32) imply

respectively that, at the trigger level V ∗, the value of the option is equal to its liabilities where
Î indicates the sunk cost of revocation (matching value condition) and the sub-optimal exercise
of the option is ruled out (smooth pasting condition). By the linearity of (29) and using (30),

the general solution is of the form:

F (Vt) = AV β
t , (33)

where A is a constant to be determined and β > 1 is the positive root of the quadratic
equation:

Φ(β) =
1

2
σ2β(β − 1) + αβ − ρ = 0 (34)

As (33) is the option value of optimally revoking the contract, the constant A must be positive

and the solution is valid over the range of Vt for which it is optimal for the regulator to keep
the option alive (0, V ∗]. By substituting (33) for (31) and (32) we get:

V ∗ =
β

β − 1
1

1− λ
Î , (35)

and:

A(V ∗) ≡
h
(1− λ)V ∗ − Î

i
(V ∗)−β ≡ 1− λ

β
(V ∗)1−β > 0. (36)

This concludes the proof.

7.3 Proof of Proposition 2
We prove that when the regulator uses (27), its option to revoke is always equal to zero. We

organize the proof in two parts as follows.

7.3.1 Cost of regulation

Let us denote with R(V r
t ; V̄ ) the expected value of future cumulative profit cuts. At t = 0

this is given by:

R(V0; V̄ ) ≡ Er
0

½Z ∞

0
e−ρtdr(Vt) | V r

0 ≡ V0 ∈ (0, V̄ ]
¾

(37)

= −Er
0

½Z ∞

0
e−ρtVtdZt] | V r

0 ≡ V0 ∈ (0, V̄ ]
¾

where V̄ is the (generic) upper reflecting barrier defined in (26). Since V r
t is a Markov process

in levels (Harrison, 1985, Proposition 7, p. 80-81), we know that the foregoing conditional
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expectation is in fact a function of the starting state alone.38 Keeping the dependence of R
on V r

t active and assuming that it is twice continuously differentiable, by Itô’s lemma we get:

dR = R0dV r
t +

1

2
R00(dV r

t )
2 (38)

= R0(ZtdVt + VtdZt) +
1

2
R00Z2t (dVt)

2

= R0(αV r
t dt+ σV r

t dWt + V r
t

dZt

Zt
) +

1

2
R00Z2t σ

2dt

=
1

2
R00σ2V r2

t dt+R0αV r
t dt+R0σV r

t dWt +R0V r
t

dZt

Zt

where it has been taken into account that for a finite-variation process like Zt, (dZt)
2 = 0.

As dZt = 0 except when V
r
t = V̄ we can rewrite (38) as:

dR(V r
t ; V̄ ) = [

1

2
σ2V r2

t R00(V r
t ; V̄ ) + αV r

t R
0(V r

t ; V̄ )]dt (39)

+σV r
t R

0(V r
t ; V̄ ) dWt −R0(V̄ ; V̄ )dr(Vt)

This is a stochastic differential equation in R. Integrating by part the process Re−rt we get
(Harrison, 1985, p. 73):

e−ρtR(V r
t ;V̄ ) = R(V 0;V̄ )+ (40)

+

Z t

0
e−ρs

∙
1

2
σ2V r2

s R00(V r
s ; V̄ ) + αV r

s R
0(V r

s ; V̄ )− ρR(V r
s ; V̄ )

¸
ds

+σ

Z t

0
e−ρsV r

s R
0(V r

s ; V̄ ) dWs −R0(V̄ ; V̄ )

Z t

0
e−ρsdr(Vs)

Taking the expectation of (40) and letting t→∞, if the following conditions apply:

(a) lim
l→0

Pr[T (l) < T (V̄ ) | V0 ∈ (0, V̄ ]] = 0 for l ≤ V r
t < V̄ < ∞, where T (l) =

inf(t ≥ 0 | V r
t = l) and T (V̄ ) = inf(t ≥ 0 | V r

t = V̄ );

(b) R(V r
t ; V̄ )) is bounded within (0, V̄ ];

38For V0 = V > V̄ optimal control would require Z to have a jump at zero so as to ensure
V r
0 = V̄ . In this case the integral on the right of (37) is defined to include the control cost r0
incurred at t = 0, that is (see Harrison 1985, p. 102-103):] ∞

0

e−ρtdrt ≡ r0 +

]
(0,∞)

e−ρtdrt

where r0 = V − V r
0 .
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(c) e−ρtV r
t R

0(V r
t ; V̄ ) is bounded within (0, V̄ ];

(d) R0(V̄ ; V̄ ) = 1;

(e) 1
2σ
2V r2

t R00(V r
t ; V̄ ) + αV r

t R
0(V r

t ; V̄ )− ρR(V r
t ; V̄ ) = 0,

we obtain R(V r; V̄ ) as indicated in (37). Condition (a) says that the probability of the
regulated process V r

t reaching zero before reaching another point within the set (0, V̄ ] is zero.
As V r

t is a geometric type of process this condition is, in general, always satisfied (Karlin and

Taylor, 1981, p. 228-230). Furthermore, if condition (a) holds and R(V r; V̄ ) is bounded, then
conditions (b) and (c) also hold. According to the linearity of (e) and using (d), the general

solution has the form:

R(V0; V̄ ) = B(V̄ )(V0)
β, (41)

with:

B(V̄ ) =
1

β
(V̄ )1−β > 0 (42)

As for V0 ≤ V̄ , Z0 = 1 and V r
0 ≡ V0 = V, then R(V0; V̄ ) = R(V ; V̄ ). On the other

hand, if V0 > V̄ , we get Z0 = V̄ /V0, so that V
r
0 = V̄ and R(V r

0 ; V̄ ) = R(V̄ ; V̄ ).

7.3.2 The value of revocation under profit control

Indicating by F r(V ) the regulator’s value of the option under profits control, this can be
expressed, at time zero, by:

F r(V ) =max
T

Er
0

h
((1− λ)VT − Î − (1− λ)B(V̄ )VT

β)e−ρT | V0 = V
i

(43)

As in (33) this takes the form:

F r(V ) = AV β

If the regulator decides for revocation, the optimal threshold, say V ∗, must satisfy the two
familiar conditions:

A(V ∗)β= (1− λ)V ∗−Î − (1− λ)B(V̄ )(V
∗
)β (44)

βA(V ∗)β−1= (1− λ)− (1− λ)βB(V̄ )(V
∗∗
)β−1 (45)

These two equations can be solved for the trigger V ∗ and for the constant A. Simple algebra
shows that V ∗ is independent of B, (i.e. of the barrier V̄ ), and it is equal to (35):

V ∗=
β

β − 1
1

1− λ
Î
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Yet, the constant A is equal to:

A = −(1− λ)B(V̄ )+
(1− λ)

β
(V ∗)1−β= (1− λ)

∙
1

β
(V̄ )1−β − 1

β
(V ∗)1−β

¸
Therefore setting V̄ = V ∗ the constant A drops to zero as well as the value of the option

to revoke. Finally, as rt depends only on the primitive exogenous process Vt, the “regulated”
process Vt − rt is also a Markov process in levels (Harrison, 1985, Proposition 7, p. 80-81).
Thus, any option value beginning at a point t at which revocation has not taken place has the
same solution. This concludes the proof of Proposition 2.

7.4 Proof of Proposition 3
We prove that the regulatory scheme proposed in Proposition 2 is also optimal when the regu-

lator cannot force the firm to adopt it. We proceed in the following way. First, since by Propo-

sition 2 the sharing rule rt makes the regulator’s option to revoke the contract always equal to
zero, it is also a good candidate for supporting a long-run equilibrium of the threat-game. Next,

we prove that this is indeed the case by applying a sort of one-stage-deviation principle and

showing that any deviation from rt makes revocation worthwhile (the non-decreasing property
of rt is crucial to this result). Finally, the Markov property of the "regulated" process Vt− rr
makes the equilibrium sub-game perfect.

7.4.1 Revocation strategy and perfect equilibrium

It is well known that infinitely repeated games may be equivalent to repeated games that

terminate in finite time. At each period there is a probability that the game continues one more

period. The key is that the conditional probability of continuing must be positive (Fudenberg

and Tirole, 1991, p. 148). This is indeed our case, neither player can perfectly predict Vt at
any date and the sharing rule (27) with form (28) is viewed by both agents as a stationary

strategy for evaluating all future profit reductions.39 In the strategy space of the regulator it

39 Integrating the differential form (3), the geometric Brownian motion can be expressed as:

Vt+dt = Vte
dYt

where dYt = μdt + σdWt and μ = α − 1
2
σ2.The differential dYt is derived as the continuous

limit of a discrete-time random walk, where in each small time interval of length ∆t the variable
y either moves up or down by ∆h with probabilities (Cox and Miller, 1965, p. 205-206):

Pr(∆Y = +∆h) =
1

2

�
1 +

μ
√
∆t

σ

�
, Pr(∆Y = −∆h) =

1

2

�
1− μ

√
∆t

σ

�
or defining ∆h = σ

√
∆t:

Pr(∆Y = +∆h) =
1

2

�
1 +

μ∆h

σ2

�
, Pr(∆Y = +∆h) =

1

2

�
1− μ∆h

σ2

�
That is, for small ∆t, ∆h is of order of magnitude O(

√
∆t) and both probabilities become

1
2 + O(

√
∆t), i.e. not very different from 1

2 . Furthermore, considering again the discrete-time

26



appears as:

φ(Vt, rt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Do not revoke at t = T ∗ if the firm
plays the rule rt = (1− Zt)Vt for t0 < t

Revoke if the firm deviates from
rt = (1− Zt)Vt at any t0 < t

where φ(Vt, rt) is the strategy at t with history (Vt, Zt). The regulator’s “threat” strategy is
chosen if the firm deviates by adjusting Vt less than rt or by abandoning rt = (1−Zt)Vt as
a rule to evaluate future adjustments. The regulator must believe that the regulation, from the

initial date and state (T ∗, V ∗), will be kept in use for the whole (stochastic) planning horizon.
If the firm deviates, the regulator believes that the firm intends to switch to a different rule

in the future and knows for sure that the regulator will revoke immediately thereafter. The

regulator does not revoke at t if rt0 ≥ Vt0− V r
t0 for all t

0 ≤ t, because profit cuts are expected
to continue with the same rule and F r(V ) = 0 for all t ≥ T ∗. If rt0 < Vt0 − V r

t0 for

some t0 < t the regulator expects a different rule and carries out the threat, switching from
F r(Vt) = 0 to F (Vt) ≥ V ∗− I. The game is over. To prove this, we first need to prove the
following Lemma:

Lemma 4 For each t0 > T ∗ we get:

R(Vt0 ;V
∗) = (ρ− α)Er

t0

Z ∞

t0
e−ρ(s−t

0)rsds (46)

Proof. Let’s consider R as in (37). For each t0 > T ∗, integration by parts gives:Z t

t0
e−ρ(s−t

0)VsdZs = (47)

e−ρ(t−t
0)VtZt − Vt0Zt0 + ρ

Z t

t0
e−ρ(s−t

0)VsZsds−
Z t

t0
e−ρ(s−t

0)ZsdVs

Taking the expectations of both sides and using the zero-expectation property of the Brownian

motion (Harrison, 1985, p. 62-63), we have:

Er
t0

Z t

t0
e−ρ(s−t

0)VsdZs = Er
t0 [VtZte

−ρ(t−t0)]−Vt0Zt0+(ρ−α)Er
t0

Z t

t0
e−ρ(s−t

0)VsZsds

(48)

approximation of the process Yt, starting at V ∗e+∆h, the conditional probability of reaching
V ∗ is given by (Cox and Miller, 1965, ch.2):

Pr(Yt = 0 | Yt = 0 +∆h) =

�
1 if μ ≤ 0
e−2μ∆h/σ

2

if μ > 0

which converges to one as ∆h tends to zero.
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By the Strong Markov property of V r
t
40 , it follows thatEr

t0 [VtZte
−ρ(t−t0)] =Er

t0 [VtZt]E
r
t0 [e

−ρ(t−t0)] =
V ∗Er

t0 [e
−ρ(t−t0)]→ 0 almost as surely as t→∞, so that:

Er
t0

Z ∞

t0
e−ρ(s−t

0)VsdZs = −Vt0Zt0 + (ρ− α)Er
t0

Z ∞

t0
e−ρ(s−t

0)(Vs − rs)ds

Since −Vt0Zt0 + (ρ− α)Er
t0
R∞
t0 e−ρ(s−t

0)Vsds = 0, substituting (37) and rearranging we
get:

R(Vt0 ;V
∗) = (ρ− α)Er

t0

Z ∞

t0
e−ρ(s−t

0)rsds

We now prove that rt is sub-game perfect by showing that the firm cannot gain by deviating
from rt in an arbitrarily short interval and conforming to rt thereafter. In particular, let’s
assume (t0, t) an interval in which rs is kept flat at rt0 so that V

r
s ≤ V ∗, and t is the first

time that dZt > 0. Considering the decomposition (48) we can write (46) as:

R(Vt0 ;V
∗) = (ρ− α)

½
Er
t0

Z t

t0
e−ρ(s−t

0)rsds+Er
t0

½Z ∞

t
e−ρ(s−t

0)rsds

¾¾
= (ρ− α)

½
Er
t0

Z t

t0
e−ρ(s−t

0)rsds+Er
t0

½
e−ρ(t−t

0)
Z ∞

t0
e−ρ(s−t

0)r∗sds

¾¾
where we have defined V r∗

s = V r
t+s and r

∗
s = rt+s − rt for t

0 ≤ t. Applying, again, the
Strong Markov Property of V r

t we get:

R(Vt0 ;V
∗) = Er

t0

Z t

t0
e−ρ(s−t

0)rsds+Er
t0

½
e−ρ(t−t

0)Er
t0

Z ∞

t0
e−ρ(s−t

0)r∗sds

¾
= (ρ− α)Er

t0

Z t

t0
e−ρ(s−t

0)rsds+Er
t0

n
e−ρ(t−t

0)R(Vt0 ;V
∗)
o

= (ρ− α)Er
t0

Z t

t0
e−ρ(s−t

0)rsds+R(Vt0 ;V
∗)Er

t0

n
e−ρ(t−t

0)
o

where the second equality follows from the assumption that rs = rt0 ≡ Vt0 − V r
t0 for all

s ∈ (t0, t). Finally, noting that e−ρ(t−t0) ' 1 − ρ(t − t0) and
R t
t0 e
−ρ(s−t0)ds ' (t − t0)

we can simplify the above expression as:

R(V t0 ;V
∗) '(ρ− α)

ρ
rt0≡

(ρ− α)

ρ
(V t0−V r

t0) (49)

From (49), any application of controls rt0 < Vt0 − V r
t0 leads to a reduction of (46) for all

t ≥ t0 and, then, by Proposition 2, to F r(Vt;V
∗) > 0 which triggers revocation by the

regulator.

40The Strong Markov Property of regulated Brownian motion processes stresses the fact that
the stochastic first passage time t and the stochastic process V r

t are independent (Harrison,
1985, Proposition 7, p. 80-81).

28



Furthermore, the firm does not adjust by more than rt since doing so would not increase
the probability of delaying revocation. It does not pay less, since rt < Vt− V r

t induces closure

making it worse off, i.e. 0 < Vt.
Finally, as V r

t ≡ Vt − rr is a Markov process in levels, it is clear from (46) that any

sub-game that begins at a point at which revocation has not taken place is equivalent to the

whole game. The strategy φ is efficient for any sub-game starting at an intermediate date and
state (t, Vt). This concludes the first part of the Proposition.

7.4.2 Non-decreasing path of rt within [T ∗, T 0∗).

So far we have implicitly assumed that, once started at T ∗, the profit sharing goes on forever.
Earlier interruptions are not feasible as long as the threat of revocation is credible. Credibility

relies on the fact that the agency’s option to revoke if the firm deviates from rt is always worth
exercising at Vt > V ∗. However, in a Brownian path there is a positive probability of the
primitive process Vt crossing V

∗ again starting at an interior point of the range (V ∗,∞). In
this case, the firm may be willing to stop cutting profits. That is, the firm ”regulates” profits

until Vt ≥ V ∗according to rt, but when Vt reaches, for the first time after T ∗, a predetermined
level, say V 0 ≤ V ∗, it ceases regulation. The regulator will then face a jump from zero to

F (V 0) ≤ F (V ∗) making the threat of revocation no longer credible.
To see how this happens let’s assume that the firm stops adjusting profits at time T 0 with

T ∗ < T
0
< ∞, and T 0 = inf(t ≥ T ∗ | Vt ≥ V 0 and V 0 ≤ V ∗), i.e. T 0 is the first time

that the primitive process Vt reaches V
0 ≤ V ∗ with profit regulation under way. Then the

value of the revocation option starting at any t ∈ [T ∗,∞) with t < T
0
can be expressed as:

F̃ (V t, V
r
t ;V

0) = P (V 0;V t)E
r
t [F (V T 0)e

−r(t−T 0)] + (50)

(1− P (V 0;Vt))E
r
t [F

r(VT 0)e
−r(t−T )]

where P (V 0;Vt) is the probability of the primitive process Vt reaching V 0 ≤ V ∗ starting at
an interior point of the range (V ∗,∞), which is equal to (Cox and Miller, 1965, p. 232-234):

Pr(T 0 <∞ | Vt) ≡ P (V 0;Vt) =

µ
Vt
V 0

¶−2μ/σ2
with μ = (α − 1

2σ
2)41 . As the starting point is now any t ∈ [T ∗,∞),we can immediately

see in (50) the dependence on both V r
t and Vt.

Since the option value under profit regulation is zero, if V 0 is never reached we get
F r(VT 0) = 0. On the contrary, if V 0 is reached and the contract is revoked, it is simply
F (VT 0) = F (V 0), and:

F̃ (Vt;V
0) = P (V 0;Vt)Et[F (V

0)e−r(T
0−t)]

According to the Strong Markov Property of Vt equation (50) becomes:

41This probability is P (V 0;Vt) = 1 for μ ≤ 0.
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F̃ (Vt;V
0) = P (V 0;Vt)F (V

0)

µ
Vt
V 0

¶γ

(51)

where γ < 0 is the negative root of (34). Since at t the primitive process Vt is greater than

V 0 and P (V 0;Vt)
¡
Vt
V 0
¢γ
=
¡
Vt
V 0
¢γ−2μ/σ2 ≤ 1, we obtain F̃ (Vt;V

0) ≤ F (V 0) for all
t ∈ [T ∗, T 0), which implies that the following inequality holds:

F̃ (Vt;V
0) = F (V ∗)

µ
V 0

V ∗

¶β µ Vt
V 0

¶γ−2μ/σ2

≤ F (V ∗) (52)

Since F̃ (Vt;V
0) ≤ F (V ∗) for all t ∈ [T ∗, T 0), the regulator’s optimal strategy is to revoke

immediately at T ∗. To prevent revocation the profit adjustment must continue until time

T 0∗ ≡ T 0(V ∗) = inf(t ≥ T ∗ | Vt− V ∗ = 0−) when the trigger value V 0 = V ∗ is reached
for the first time after T ∗. The game ends and can then be started afresh. This concludes the
second part of the Proposition.
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