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Abstract 

  

International tourism is a major source of export receipts for many countries worldwide. Although it 

is not yet one of the most important industries in Taiwan (or the Republic of China), an island in 

East Asia off the coast of mainland China (or the People’s Republic of China), the leading tourism 

source countries for Taiwan are Japan, followed by USA, Republic of Korea, Malaysia, Singapore, 

UK, Germany and Australia. These countries reflect short, medium and long haul tourist 

destinations. Although the People’s Republic of China and Hong Kong are large sources of tourism 

to Taiwan, the political situation is such that tourists from these two sources to Taiwan are reported 

as domestic tourists. Daily data from 1 January 1990 to 30 June 2007 are obtained from the 

National Immigration Agency of Taiwan. The Heterogeneous Autoregressive (HAR) model is used 

to capture long memory properties in the data. In comparison with the HAR(1) model, the estimated 

asymmetry coefficients for GJR(1,1) are not statistically significant for the HAR(1,7) and 

HAR(1,7,28) models, so that their respective GARCH(1,1) counterparts are to be preferred. These 

empirical results show that the conditional volatility estimates are sensitive to the long memory 

nature of the conditional mean specifications. Although asymmetry is observed for the HAR(1) 

model, there is no evidence of leverage. The QMLE for the GARCH(1,1), GJR(1,1) and 

EGARCH(1,1) models for international tourist arrivals to Taiwan are statistically adequate and have 

sensible interpretations. However, asymmetry (though not leverage) was found only for the HAR(1) 

model, and not for the HAR(1,7) and HAR(1,7,28) models. 
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1.  Introduction 

 

Taiwan (or the Republic of China) is an island in East Asia off the coast of mainland China 

(or the People’s Republic of China), southwest of the main islands of Japan, directly west of Japan's 

Ryukyu Islands, and north to northwest of the Philippines. It is bound to the east by the Pacific 

Ocean, to the south by the South China Sea and the Luzon Strait, to the west by the Taiwan Strait, 

and to the north by the East China Sea. The island is 394 kilometers long and 144 kilometers wide, 

and consists of steep mountains covered by tropical and subtropical vegetation. The main island of 

Taiwan is also known as Formosa (from the Portuguese Ilha Formosa, meaning “beautiful island”). 

The population is 23 million inhabitants (in 2005), consisting of 98% Han Chinese and 2% 

Aboriginal Taiwanese. 

 

Taiwan’s climate is marine tropical. The northern part of the island has a rainy season from 

January to late March during the southwest monsoon. The entire island succumbs to hot and humid 

weather from June until September, while October to December is arguably the most pleasant time 

of the year. Natural hazards, such as typhoons and earthquakes, are common in the region. 

 

International tourism is a major source of export receipts for many countries worldwide, and 

Taiwan is no exception. The most well known tourist attractions in Taiwan include the National 

Palace Museum (Taipei), Night Markets (especially in Taipei), Taipei 101, formerly the world’s 

tallest building, Sun Moon Lake (central highlands), and Taroko National Park (east coast).  

 

The most important tourism source countries to Taiwan are Japan, followed by USA, 

Republic of Korea, Malaysia, Singapore, UK, Germany and Australia, which reflect short, medium 

and long haul destinations. The three most important countries during the sample period have been 

Japan, USA and Republic of Korea. Although the People’s Republic of China and Hong Kong are 

large sources of tourism to Taiwan, the political situation is such that tourists from these two 

sources to Taiwan are reported as domestic tourists.  

 

The purpose of the paper is to model international tourist arrivals and volatility in 

international tourist arrivals to Taiwan. Daily data from 1 January 1990 to 30 June 2007 are 

obtained from the National Immigration Agency of Taiwan. By using daily data, we can 

approximate the modelling strategy and analysis to those applied to financial time series data. From 

a time series perspective, there are several reasons for using daily data (see, for example, McAleer 
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(2009)). Just to mention some, daily data allow investigating whether the time series properties have 

changed, the time series behaviour at other frequencies can be obtained by aggregation of daily 

data, and the sample size is considerably increased.  

    

The empirical results show that the time series of international tourist arrivals to Taiwan are 

stationary. In addition, the estimated symmetric and asymmetric conditional volatility models, 

specifically the widely used GARCH, GJR and EGARCH models all fit the data very well. In 

particular, the estimated models are able to account for the higher volatility persistence that is 

observed at the end of the sample period. The empirical second moment and log-moment conditions 

also support the statistical adequacy of the models, so that statistical inference is valid. Moreover, 

the estimates resemble those arising from financial time series data, with both short and long run 

persistence of shocks to international tourist arrivals, although no leverage effects are found in the 

data. Therefore, volatility can be interpreted as risk associated with the growth rate in international 

tourist arrivals. 

  

The remainder of the paper is organized as follows. Section 2 presents the daily international 

tourist arrivals time series data set. Section 3 performs unit root tests on daily international tourist 

arrivals for Taiwan. Section 4 discusses alternative long memory conditional mean and conditional 

volatility models for daily international tourist arrivals. The estimated models and empirical results 

for the heterogeneous autoregressive model are discussed in Section 5. Finally, some concluding 

remarks are given in Section 6.  

 

2. Data 

 

The data set comprises daily international tourist arrivals from 1 January 1990 to 30 June 2007, 

giving 6,390 observations, and are obtained from the National Immigration Agency of Taiwan 

 

Figures 1 and 2 plot the daily international tourist arrivals, as well as its volatility, where 

volatility is defined as the squared deviation from the sample mean. There is higher volatility 

persistence at the end of the period, and there are dominant observations in the series toward the end 

of the sample. A slightly increasing deterministic trend is present throughout the sample.  

 

From Figures 3 and 4, it can be seen that, on an annual basis, the number of international 

tourist arrivals to Taiwan has shown an average growth rate of around 4% per annum from 1990 to 
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2007. The lowest growth rate was observed in 2003, with a decrease of 23.19% over the previous 

year (due to the outbreak of SARS), while the highest growth rate occurred in 2004, when there was 

a significant increase of 36.58% over 2003. In the sample period as a whole, there was an increase 

of around 75% in international tourist arrivals to Taiwan, which would seem to indicate a 

reasonably good performance in the tourism sector over the decade. Nevertheless, the annual 

average international tourist arrivals growth rate reveals that there is scope for a significant increase 

in international tourism to Taiwan. In order to manage tourism growth and volatility, it is necessary 

to model adequately international tourist arrivals and their associated volatility. 

 

In the next section we analyze the presence of a stochastic trend by applying unit root tests 

before modelling the time-varying volatility that is present in the international tourist arrivals series. 

 

3. Unit Root Tests 

 

Standard unit root tests based on the classic methods of Dickey and Fuller (1979, 1981) and Phillips 

and Perron (1988) are obtained from the econometric software package EViews 6.0, and are 

reported in Table 1. There is no evidence of a unit root in daily international tourist arrivals to 

Taiwan in the model with a constant and trend as the deterministic terms, or with just a constant.  

 

These empirical results allow the use of international tourist arrivals data to Taiwan to 

estimate alternative univariate long memory conditional mean and conditional volatility models 

given in the next section.  

 

4. Conditional Mean and Conditional Volatility Models 

 

The alternative time series models to be estimated for the conditional means of the daily 

international tourist arrivals, as well as their conditional volatilities, are discussed below. As Figure 

1 illustrates, daily international tourist arrivals to Taiwan show periods of high volatility followed 

by others of relatively low volatility. One implication of this persistent volatility behaviour is that 

the assumption of (conditionally) homoskedastic residuals is inappropriate.  

 

As discussed in McAleer and Divino (2008), for a wide range of financial and tourism data 

series, time-varying conditional variances can be explained empirically through the autoregressive 

conditional heteroskedasticity (ARCH) model, which was proposed by Engle (1982). When the 
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time-varying conditional variance has both autoregressive and moving average components, this 

leads to the generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). The lag structure 

of the appropriate GARCH model can be chosen by information criteria, such as those of Akaike 

and Schwarz, although it is very common to impose the widely estimated GARCH(1,1) 

specification in advance.  

 

In the selected conditional volatility model, the residual series should follow a white noise 

process. Li et al. (2002) provide an extensive review of recent theoretical results for univariate and 

multivariate time series models with conditional volatility errors, and McAleer (2005) reviews a 

wide range of univariate and multivariate, conditional and stochastic, models of financial volatility. 

When international tourist arrivals data display persistence in volatility, as shown in Figure 1, it is 

natural to estimate alternative conditional volatility models.  

 

The GARCH(1,1) and GJR(1,1) conditional volatility models have been estimated using 

monthly international tourism arrivals data in several papers, including Chan, Lim and McAleer 

(2005), Hoti, McAleer and Shareef (2005, 2007), Shareef and McAleer (2005, 2007, 2008), Divino 

and McAleer (2008), and McAleer and Divino (2008). 

 

The conditional volatility literature  has been discussed extensively in recent years (see, for 

example, Li, Ling and McAleer (2002), McAleer (2005), and McAleer, Chan and Marinova (2007). 

Consider the stationary AR(1)-GARCH(1,1) model for daily international tourist arrivals to Peru (or 

their growth rates, as appropriate), ty :   

 

1, 2121 <++= − φεφφ ttt yy                  (1) 

 

for nt ,...,1= , where the shocks (or movements in daily international tourist arrivals) are given by:  
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and 0,0,0 ≥≥> βαω  are sufficient conditions to ensure that the conditional variance 0>th . The 

AR(1) model in equation (1) can easily be extended to univariate or multivariate ARMA(p,q) 

processes (for further details, see Ling and McAleer (2003a). In equation (2), the ARCH (or α ) 
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effect indicates the short run persistence of shocks, while the GARCH (or β ) effect indicates the 

contribution of shocks to long run persistence (namely, α  + β ). The stationary AR(1)-

GARCH(1,1) model can be modified to incorporate a non-stationary ARMA(p,q) conditional mean 

and a stationary GARCH(r,s) conditional variance, as in Ling and McAleer (2003b).  

 

In equations (1) and (2), the parameters are typically estimated by the maximum likelihood 

method to obtain Quasi-Maximum Likelihood Estimators (QMLE) in the absence of normality of 

tη , the conditional shocks (or standardized residuals). The conditional log-likelihood function is 

given as follows: 

 

∑∑
==









+−=

n

t t

t
t

n

t
t h

hl
1

2

1

log
2

1 ε
. 

 

The QMLE is efficient only if tη  is normal, in which case it is the MLE. When tη  is not normal, 

adaptive estimation can be used to obtain efficient estimators, although this can be computationally 

intensive. Ling and McAleer (2003b) investigated the properties of adaptive estimators for 

univariate non-stationary ARMA models with GARCH(r,s) errors. The extension to multivariate 

processes is complicated. 

 

  Since the GARCH process in equation (2) is a function of the unconditional shocks, the 

moments of tε  need to be investigated. Ling and McAleer (2003a) showed that the QMLE for 

GARCH(p,q) is consistent if the second moment of tε  is finite. For GARCH(p,q), Ling and Li 

(1997) demonstrated that the local QMLE is asymptotically normal if the fourth moment of tε  is 

finite, while Ling and McAleer (2003a) proved that the global QMLE is asymptotically normal if 

the sixth moment of tε  is finite. Using results from Ling and Li (1997) and Ling and McAleer 

(2002a, 2002b), the necessary and sufficient condition for the existence of the second moment of tε  

for GARCH(1,1) is 1<+ βα  and, under normality, the necessary and sufficient condition for the 

existence of the fourth moment is 12)( 22 <++ αβα .  

 

As discussed in McAleer et al. (2007), Elie and Jeantheau (1995) and Jeantheau (1998) 

established that the log-moment condition was sufficient for consistency of the QMLE of a 

univariate GARCH(p,q) process (see Lee and Hansen (1994) for the proof in the case of 
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GARCH(1,1)), while Boussama (2000) showed that the log-moment condition was sufficient for 

asymptotic normality. Based on these theoretical developments, a sufficient condition for the 

QMLE of GARCH(1,1) to be consistent and asymptotically normal is given by the log-moment 

condition, namely  

 

0))(log( 2 <+ βαηtE .      (3) 

 

However, this condition is not easy to check in practice, even for the GARCH(1,1) model, as it 

involves the expectation of a function of a random variable and unknown parameters. Although the 

sufficient moment conditions for consistency and asymptotic normality of the QMLE for the 

univariate GARCH(1,1) model are stronger than their log-moment counterparts, the second moment 

condition is far more straightforward to check. In practice, the log-moment condition in equation (3) 

would be estimated by the sample mean, with the parameters α  and β , and the standardized 

residual, tη , being replaced by their QMLE counterparts.  

 

The effects of positive shocks (or upward movements in daily international tourist arrivals) 

on the conditional variance, th , are assumed to be the same as the negative shocks (or downward 

movements in daily international tourist arrivals) in the symmetric GARCH model. In order to 

accommodate asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) proposed the GJR 

model, for which GJR(1,1) is defined as follows:  

 

,))(( 1
2

11 −−− +++= tttt hIh βεηγαω              (4) 

 

where 0,0,0,0 ≥≥+≥> βγααω  are sufficient conditions for ,0>th  and )( tI η  is an indicator 

variable defined by: 
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 as tη  has the same sign as tε . The indicator variable differentiates between positive and negative 

shocks of equal magnitude, so that asymmetric effects in the data are captured by the coefficient γ . 

For financial data, it is expected that 0≥γ  because negative shocks increase risk by increasing the 
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debt to equity ratio, but this interpretation need not hold for international tourism arrivals data in the 

absence of a direct risk interpretation. The asymmetric effect, γ , measures the contribution of 

shocks to both short run persistence, 
2

γα + , and to long run persistence, 
2

γβα ++ . It is not 

possible for leverage to be present in the GJR model, whereby negative shocks increase volatility 

and positive shocks of equal magnitude decrease volatility. 

 

Ling and McAleer (2002a) showed that the regularity condition for the existence of the 

second moment for GJR(1,1) under symmetry of η t  is given by: 

 

1
2

1 <++ γβα ,      (5) 

 

while McAleer et al. (2007) showed that the weaker log-moment condition for GJR(1,1) was given 

by: 

 

0])))((ln[( 2 <++ βηηγα ttIE ,    (6) 

 

which involves the expectation of a function of a random variable and unknown parameters. 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely:  

 

111 log||log −−− +++= tttt hh βγηηαω ,  1|| <β  (7) 

 

where the parameters α , β  and γ  have different interpretations from those in the GARCH(1,1) 

and GJR(1,1) models. If γ = 0, there is no asymmetry, while γ < 0, and γαγ −<<  are the 

conditions for leverage to exist, whereby negative shocks increase volatility and positive shocks of 

equal magnitude decrease volatility.  

 

As noted in McAleer et al. (2007), there are some important differences between EGARCH 

and the previous two models, as follows: (i) EGARCH is a model of the logarithm of the 

conditional variance, which implies that no restrictions on the parameters are required to ensure 
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0>th ; (ii) moment conditions are required for the GARCH and GJR models as they are dependent 

on lagged unconditional shocks, whereas EGARCH does not require moment conditions to be 

established as it depends on lagged conditional shocks (or standardized residuals); (iii) Shephard 

(1996) observed that 1|| <β  is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the standardized residuals appear in equation (7), 1|| <β  would seem to be 

a sufficient condition for the existence of moments; and (v) in addition to being a sufficient 

condition for consistency, 1|| <β  is also likely to be sufficient for asymptotic normality of the 

QMLE of EGARCH(1,1).  

 

Furthermore, EGARCH captures asymmetries differently from GJR. The parameters α  and 

γ  in EGARCH(1,1) represent the magnitude (or size) and sign effects of the standardized residuals, 

respectively, on the conditional variance, whereas α  and γα +  represent the effects of positive and 

negative shocks, respectively, on the conditional variance in GJR(1,1).  

 

5. Estimated Models and Discussion 

 

The Heterogenous Autoregressive (HAR) model was proposed by Corsi (2004) as an alternative to 

model and forecast realized volatilities, and is inspired by the Heterogenous Market Hypothesis of 

Muller, Dacorogna, Dav, Olsen, Pictet, and Ward (1993) and the asymmetric propagation of 

volatility between long and short horizons. Corsi (2004) showed that the actions of different types 

of market participants could lead to a simple restricted linear autoregressive model with the feature 

of considering volatilities realized over different time horizons. The heterogeneity of the model 

derives from the fact that different autoregressive structures are present at each time scale (for 

further details, see McAleer and Medeiros (2008)). In this section the HAR model is used to model 

total international tourist arrivals to Taiwan, together with the three conditional volatility models 

discussed in the previous section. 

 

The alternative HAR(h) models to be estimated to capture long memory are based on the 

following: 

 

h

yyyy
y htttt

ht
121

,

... +−−− ++++
=      (8) 
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where  typical values of h are one (daily data), seven (weekly data), and 28 (monthly data). In the 

empirical application, the three models to be estimated for international tourist arrivals to Taiwan 

are as follows: 

 

ttt yy εφφ ++= −121         (9) 

tttt yyy εφφφ +++= −− 7,13121      (10) 

ttttt yyyy εφφφφ ++++= −−− 28,147,13121 .    (11) 

 

which will be referred to as the HAR(1), HAR(1,7) and HAR(1,7,28) models, respectively.  

 

The conditional mean estimates in Tables 2-4 show that the HAR(1), HAR(1,7) and 

HAR(1,7,28) estimates are all statistically significant, such that the long memory properties of the 

data are captured adequately.  

 

The estimated conditional mean and conditional volatility models are given in Tables 2-4.  

The method used in estimation was the Marquardt algorithm. As shown in the unit root tests, the 

international tourist arrivals series are stationary. These empirical results are supported by the 

estimates of the lagged dependent variables in the estimates of equations (9)-(11), with the 

coefficients of the lagged dependent variable being significantly less than one in each of the 

estimated models. 

 

As the second moment condition is less than unity in each case, and hence the weaker log-

moment condition (which is not reported) is necessarily less than zero (see Tables 2-4), the 

regularity conditions are satisfied, and hence the QMLE are consistent and asymptotically normal, 

and inferences are valid. The EGARCH(1,1) model is based on the standardized residuals, so the 

regularity condition is satisfied if 1|| <β , and hence the QMLE are consistent and asymptotically 

normal (see, for example, McAleer et al. (2007)). 

 

The GARCH(1,1) estimates in Tables 2-4 for the HAR(1), HAR(1,7) and HAR(1,7,28) 

models of international tourist arrivals to Taiwan suggest that the short run persistence of shocks 

lies between 0.254 and 0.285, while the long run persistence lies between 0.236 and 0.432. As the 

second moment condition, 1<+ βα , is satisfied, the log-moment condition is necessarily satisfied, 

so that the QMLE are consistent and asymptotically normal. Therefore, statistical inference using 
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the asymptotic normal distribution is valid, and the symmetric GARCH(1,1) estimates are 

statistically significant.  

 

If positive and negative shocks of a similar magnitude to international tourist arrivals to 

Taiwan are treated asymmetrically, this can be evaluated in the GJR(1,1) model. The asymmetry 

coefficient is found to be positive and significant for HAR(1), namely 0.317, which indicates that 

decreases in international tourist arrivals increase volatility. This is a similar empirical outcome as 

is found in virtually all cases in finance, where negative shocks (that is, financial losses) increase 

risk (or volatility). Thus, shocks to international tourist arrivals resemble financial shocks, and can 

be interpreted as risk associated with international tourist arrivals. Although asymmetry is observed 

for the HAR(1) model, there is no evidence of leverage. As the second moment condition, 

1
2

1 <++ γβα , is satisfied, the log-moment condition is necessarily satisfied, so that the QMLE are 

consistent and asymptotically normal. Therefore, statistical inference using the asymptotic normal 

distribution is valid, and the asymmetric GJR(1,1) estimates are statistically significant. 

 

However, in comparison with the HAR(1) model, the estimated asymmetry coefficients for 

GJR(1,1) are not statistically significant for the HAR(1,7) and HAR(1,7,28) models, so that their 

respective GARCH(1,1) counterparts are to be preferred. These empirical results show that the 

conditional volatility estimates are sensitive to the long memory nature of the conditional mean 

specifications. 

 

The interpretation of the EGARCH model is in terms of the logarithm of volatility. For 

international tourist arrivals, each of the EGARCH(1,1) estimates is statistically significant for the 

HAR(1) model, with the size effect, α , being positive and the sign effect, γ , being negative. The 

coefficient of the lagged dependent variable, β , is estimated to be 0.122, which suggests that the 

statistical properties of the QMLE for EGARCH(1,1) will be consistent and asymptotically normal.  

 

As in the case of the GJR(1,1) model, the estimated asymmetry coefficients for 

EGARCH(1,1) are not statistically significant for the HAR(1,7) and HAR(1,7,28) models. These 

empirical results show that the volatility in the shocks to international tourist arrivals to Taiwan are 

sensitive to the long memory nature of the conditional mean specifications. 
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Overall, the QMLE for the GARCH(1,1), GJR(1,1) and EGARCH(1,1) models for 

international tourist arrivals to Taiwan are statistically adequate and have sensible interpretations. 

However, asymmetry (though not leverage) was found only for the HAR(1) model, and not for the 

HAR(1,7) and HAR(1,7,28) models. 

 

6. Concluding Remarks 

 

Although it is not yet one of the most important industries in Taiwan (or the Republic of China), an 

island in East Asia off the coast of mainland China (or the People’s Republic of China), the most 

important tourism source countries for Taiwan are Japan, followed by USA, Republic of Korea, 

Malaysia, Singapore, UK, Germany and Australia. These countries reflect short, medium and long 

haul tourist destinations. Although the People’s Republic of China and Hong Kong are large 

sources of tourism to Taiwan, the political situation is such that tourists from these two sources to 

Taiwan are reported as domestic tourists.  

 

International tourism is a major source of export receipts for many countries worldwide, and 

Taiwan is no exception. The most well known tourist attractions in Taiwan include the National 

Palace Museum (Taipei), Night Markets (especially in Taipei), Taipei 101, formerly the world’s 

tallest building, Sun Moon Lake (central highlands), and Taroko National Park (east coast).  

 

As international tourism has not yet achieved the status of an important economic activity 

for Taiwan’s finances, there is significant room for improvement in international tourism receipts. 

However, the potential negative impacts of mass tourism on the environment, and hence on future 

international tourism demand, must be managed appropriately. In order to manage international 

tourism growth, it is necessary to model adequately international tourist arrivals and their associated 

volatility. 

 

The paper daily international tourist arrivals to Taiwan from 1 January 1990 to 30 June 

2007, as obtained from the National Immigration Agency of Taiwan, and the Heterogeneous 

Autoregressive (HAR) model was used to capture the long memory properties in the data. The 

empirical results showed that the time series of international tourist arrivals are stationary. In 

addition, the estimated symmetric and asymmetric conditional volatility models, specifically the 

widely used GARCH, GJR and EGARCH models all fit the data extremely well. In particular, the 



14 

 

estimated models were able to account for the higher volatility persistence that was observed at the 

end of the sample period.  

 

The empirical second moment condition also supported the statistical adequacy of the 

models, so that statistical inference was valid. Moreover, the estimates resembled those arising from 

financial time series data with both short and long run persistence of shocks to international tourist 

arrivals to Taiwan. Although asymmetry was observed for the HAR(1) model, but not the HAR(1,7) 

and HAR(1,7,28) models, there was no evidence of leverage. Therefore, volatility can be interpreted 

as risk associated with international tourist arrivals. 
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Figure 1 Daily international tourist arrivals to Taiwan 
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Figure 2 Daily volatility of international tourist arrivals to Taiwan 
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Figure 3. Annual total international tourist arrivals to Taiwan 
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Figure 4. Annual growth rate of total international tourist arrivals to Taiwan 
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Table 1.   Unit toot tests 
 

Variable ADF(29) 
Z={1} 

PP(55) 
 Z={1} 

ADF(28) 
 Z={1,t} 

PP(54)  
Z={1,t} 

     
TA -0.031** -0.243** -0.077** -0.377** 
     
 
Notes:  
TA denotes international tourist arrivals to Taiwan. 
Lag lengths are given in parentheses. 
The critical values for the ADF test are -3.43 at the 1%  level, when Z={1} for lag length 29, and -3.95  at the 
1%  level when Z={1,t} for lag length 28. 
The critical values for the PP test are -3.43, at the 1% level when Z={1} for lag length 55, and -3.95 at the 
1% level when Z={1,t} for lag length 54. 
**denotes the null hypothesis of a unit root is rejected at the 1%  level. 
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Table 2: Estimated Conditional Mean (HAR(1)) and Conditional Volatility Models 

 

Parameters GARCH GJR EGARCH 

1φ  
 

1115** 
(48.85) 

1020** 
(47.22) 

1004** 
(46.97) 

2φ  
 

0.806** 
(0.007) 

0.816** 
(0.007) 

0.817** 
(0.007) 

ω  868407** 
(24864) 

807223** 
(25610) 

11.81** 
(0.524) 

GARCH/GJR α  
0.254** 
(0.015) 

0.155** 
(0.010) 

-- 

GARCH/GJR β  -0.018 
(0.015) 

0.011 
(0.018) 

-- 

GJR γ  -- 
0.317** 
(0.043) 

-- 

EGARCH α  -- -- 
0.483** 
(0.021) 

EGARCH γ  -- -- 
-0.128** 
(0.016) 

EGARCH β  -- -- 
0.122** 
(0.037) 

Diagnostics    

Second moment 0.236 0.324 - 
AIC 16.716 16.709 16.706 
BIC 16.722 16.715 16.713 
Jarque-Bera 
[p-value] 

690.73 
[0.000] 

814.82 
[0.000] 

782.94 
[0.000] 

Notes:  
The dependent variable, TA, is international tourist arrivals to Taiwan. 
Numbers in parentheses are standard errors.  
The log-moment condition is necessarily satisfied as the second moment condition is satisfied. 
AIC and BIC denote the Akaike Information Criterion and Schwarz Bayesian Information Criterion, respectively. 
** denotes the estimated coefficient is statistically significant at 1%.  
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Table 3: Estimated Conditional Mean (HAR(1,7)) and Conditional Volatility Models 
 

Parameters GARCH GJR EGARCH 

1φ  
 

311.34** 
(51.00) 

311.52** 
(51.19) 

294.32** 
(49.58) 

2φ  
 

0.299** 
(0.014) 

0.299** 
(0.014) 

0.320** 
(0.013) 

3φ  0.642** 
(0.015) 

0.642** 
(0.015) 

0.625** 
(0.015) 

ω  526553** 
(20618) 

526310** 
(21106) 

9.563** 
(0.430) 

GARCH/GJR α  
0.285** 
(0.015) 

0.285** 
(0.017) 

-- 

GARCH/GJR β  0.147** 
(0.022) 

0.147** 
(0.022) 

-- 

GJR γ  -- 
-0.001 
(0.031) 

-- 

EGARCH α  -- -- 
0.501** 
(0.022) 

EGARCH γ  -- -- 
-00007 
(0.015) 

EGARCH β  -- -- 
0.271** 
(0.031) 

Diagnostics    

Second moment 0.432 0.432 - 
AIC 16.491 16.491 16.493 
BIC 16.497 16.499 16.500 
Jarque-Bera 
[p-value] 

914.70 
[0.000] 

913.55 
[0.000] 

889.92 
[0.000] 

Notes:  
The dependent variable, TA, is international tourist arrivals to Taiwan. 
Numbers in parentheses are standard errors.  
The log-moment condition is necessarily satisfied as the second moment condition is satisfied. 
AIC and BIC denote the Akaike Information Criterion and Schwarz Bayesian Information Criterion, respectively. 
** denotes the estimated coefficient is statistically significant at 1%. 
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Table 4: Estimated Conditional Mean (HAR(1,7,28)) and Conditional Volatility Models 
 

Parameters GARCH GJR EGARCH 

1φ  
 

167.28** 
(54.26) 

166.58** 
(54.59) 

144.40** 
(52.93) 

2φ  
 

0.298** 
(0.014) 

0.299** 
(0.014) 

0.317** 
(0.013) 

3φ  0.460** 
(0.021) 

0.459** 
(0.021) 

0.445** 
(0.020) 

4φ  0.208** 
(0.019) 

0.208** 
(0.019) 

0.208** 
(0.018) 

ω  532729** 
(19854) 

533665** 
(20228) 

10.032** 
(0.439) 

GARCH/GJR α  
0.285** 
(0.015) 

0.283** 
(0.017) 

-- 

GARCH/GJR β  0.131** 
(0.021) 

0.130** 
(0.021) 

-- 

GJR γ  -- 
0.006 

(0.031) 
-- 

EGARCH α  -- -- 
0.501** 
(0.021) 

EGARCH γ  -- -- 
-0.010 
(0.015) 

EGARCH β  -- -- 
0.236** 
(0.031) 

Diagnostics    

Second moment 0.416 0.416 - 
AIC 16.478 16.478 16.480 
BIC 16.485 16.487 16.488 
Jarque-Bera 
[p-value] 

1020.8 
[0.000] 

1026.4 
[0.000] 

1036.8 
[0.000] 

Notes:  
The dependent variable, TA, is international tourist arrivals to Taiwan. 
Numbers in parentheses are standard errors.  
The log-moment condition is necessarily satisfied as the second moment condition is satisfied. 
AIC and BIC denote the Akaike Information Criterion and Schwarz Bayesian Information Criterion, respectively. 
** denotes the estimated coefficient is statistically significant at 1%. 

 
 
 
 
 

 

 


