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Abstract

Within an asset allocation framework, when the number of assets is
larger than the sample dimension, mean-variance approaches cannot be
used due to the limited number of degrees of freedom. In such a situation,
performance measures could be used to rank assets, and then select a sub-
set of them for further analysis. However, the financial economics litera-
ture proposes dozens of measures, and there is thus a problem: which mea-
sures should be considered? Some authors already discussed this topic.
We extend the current literature by enlarging the set of analyzed measures
and also by exploiting the possible dynamic evolution of rank correlations.
Our analysis is mainly empirical, based on the S&P 1500 constituents, and
includes an example of the optimal combination of performance measures
for allocating an equity portfolio.
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1 Introduction

Since the pioneering works of Sharpe (1964 and 1966) and Treynor (1965), the
topic of performance measurement has attracted considerable interest in the
financial economic literature. From a general viewpoint, we may identify two
fundamental topics covered by performance measurement.The first considers the
returns of financial assets, and aims to define and interpret ratios or indices, the
performance measures or reward-to-risk ratios, for the purpose of determining
the assets’ risk/return trade-off. The second analyzes to the returns of managed
portfolios and focuses on the introduction and use of models and approaches
which make it possible to infer the choices made by investment managers. For
examples on the second topic see Knight and Satchell (2002) and the references
therein, the literature on style analysis (see Sharpe (1992), among others) and
the contributions related to conditional CAPM approaches, including Ferson
and Schadt (1996), Avramov and Chordia (2006), and Caporin and Lisi (2009).

This study belongs to the literature dealing with the first issue. We focus on
the comparison of performance measures based on the returns of specific assets.
The analysis proposed by this strand of the literature may be considered as
tools for portfolio managers and agents facing investment decisions. Achieving
this objective with performance measures could seem counterintuitive given that
mean-variance based approaches, starting from the seminal paper by Markowitz,
(1959), may provide appropriate answers. Unfortunately, their assumptions may
not be valid, and even generalized mean-variance analysis may be unfeasible
because the asset cross-sectional dimension (the number of tracked assets) may
be larger than the temporal dimension (the number of periods where returns are
available). In these cases, there are not enough degrees of freedom to estimate
the full covariance matrix unless a limited factor structure is assumed. Some
examples of the last approach are given by the contributions of Ledoit and Wolf
(2003 and 2004), Briner and Connor (2008), and Caporin and Paruolo (2009).

Within this paper we focus on cases where the cross-sectional dimension is
larger than the temporal one, and performance measures are used to select a
small number of assets with given features (such as small drawdown or high
return...) for a subsequent allocation using a generalization of the Markowitz
approach. Alternatively, performance measures may be used to select a number
of assets for the direct application of näıve portfolio allocation rules, such as the
equally weighted one (see De Miguel et al. (2009)).

The financial economics literature proposes also to use performance measures
as objective functions for determining the weights of an optimal portfolio. In
other words, instead of choosing the portfolio with the highest Sharpe index, we
may determine the optimal portfolio by maximizing, for instance, the Omega
index of Shadwick and Keating (2002). We will not deal with this issue, but for
an example of this approach see Farinelli et al. (2008, 2009). A related aspect,
not included in the current paper, is the analysis of the optimality properties of
risk measures with a focus on optimized portfolio allocation. Examples of this
approach are given in Biglova et al. (2004), Ortobelli et al. (2005), Rachev et
al. (2008), and Chen and Wang (2008).
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In theory, the problem of a limited temporal dimension may be solved by
increasing the observation frequency, say from monthly to daily. But pursu-
ing this approach causes a number of associated problems to arise. From the
statistical point of view, the returns have time-varying moments, they are far
from the normality hypothesis and their prediction is even more complex. From
the financial point of view, the analyzed returns should be consistent with the
frequency of portfolio rotations or revisions which are generally monthly, given
that the use of daily data makes it difficult to efficiently track a large number
of companies, either with a quantitative or a qualitative focus. Therefore, we
will assume in the following that the data frequency is monthly, and that the
time dimension cannot be increased by changing the sampling frequency.

When the cross-sectional dimension is large compared to the temporal ones,
performance indices could be considered as the easiest tool (and maybe the only
quantitative tool) available for asset ranking and selection. However, a relevant
open point remains: which performance measure should be used? In fact, many
reward-to-risk ratios are available. Besides the well-known Sharpe, Sortino and
Treynor indices, a number of alternative measures have been proposed, such as
the Omega index (Shadwick and Keating, 2002), the Rachev ratio (Rachev et al.,
2003), and the FT ratios (Farinelli and Tibiletti, 2003a,b), among others. Their
number is increasing over time, and many authors propose indices designed
in order to meet specific requirements, for example Pedersen and Rudholm-
Alfvin (2003), or with the purpose of overcoming the limitations of the oldest
measures. Some examples are given by the need of increasing the robustness of
performance measures to deviations from normality, or of introducing measures
more appropriate for agents characterized by loss aversion (Gemmill et al., 2006)
or by aggressiveness (Farinelli and Tibiletti, 2003a,b).

Some authors have already considered the comparison of alternative perfor-
mances, generally using rank correlations. In particular, we refer to Gemmill
et al. (2006), Eling and Schuhmacher (2007), and Eling (2008). The previous
contributions use a simple and effective approach for deciding which measures
to use: in order to compare alternative indices, they verify whether they rank
assets differently. Clearly, performance measures providing equivalent rankings
are redundant and may thus be discarded. Following this method, we may iden-
tify a restricted set of performance measures carrying different information on
the risk/return trade-off.

Building on the work of Eling and Schuhmacher (2007), this paper provides
four main contributions. The first one extends the cited paper by broadening the
set of performance measures to be compared. In particular, we extend Eling and
Schuhmacher (2007) by including performance measures based on loss aversions
(Gemmill et al., 2006) and on partial moments (Farinelli and Tibiletti (2003a,b)
and Rachev (2003)). In addition, we base our analysis on equities, rather than
on hedge funds as in Eling and Schuhmacher (2007). Since we reach different
conclusions, we argue that the equivalence across performance measures may
depend on the kind of assets considered. As a minor contribution, we also
propose four new performance measures: the Expected Return over Range (a
variation of the Sharpe ratio); the VaR-ratio (the ratio of upper and lower Value-

3



at-Risk levels); and two measures generalizing the contribution of Gemmill et
al. (2006).

The second contribution is associated with a different topic: the stability
over time in the rankings induced by different performance measures. We will
try to answer the question: ”Are rank correlations dynamic?” To that end, we
compare the rank correlations computed both over samples of different length,
and over rolling windows. To the best of our knowledge, this issue has never
been addressed.

Another important topic we consider is that of the redundancy of the perfor-
mance measures in a dynamic context: given a set of N performances measures,
how to reduce them in order to consider only those which really carry different
information. In this paper we start, in the most general case, with 80 mea-
sures and, using a procedure based on the asymptotic distribution of the rank
correlation coefficient, we conclude that 57 measures are redundant since they
carry information similar to the 23 we select. In connection with the second
outcome of this paper, we also infer that the set of performance measures car-
rying relevant information may be time-varying as well. This additional piece
of information could be proven to be extremely relevant for periodic rotation or
rebalancing of managed portfolios.

Finally, using the previous results, at each point in time we are able to
build a set containing highly informative performance measures. However, a
problem still remains unsolved: which measure should be used? Or, in other
words, how could we jointly use the restricted set of selected measures? We
propose to combine the ”not equivalent” measures we identify following the
approach previously described. This topic is not trivial and carries a number of
additional problems. For this reason, in this paper we consider the simplest way
to combine different performances measures: we sum up the ranks obtained from
the selected performance measures to build a composite performance index. A
more advanced and complex approach can be found, for example, in Hwang
and Salmon (2002) that uses copula functions to combine the measures. The
optimal combination of different reward-to-risk ratios is not the main purpose of
the paper, and we leave this topic to future researches. In this work, we simply
show that the use of our näıve combination can be effective in a simulated asset
allocation strategy.

In the remainder of the paper, Section 2 reviews the performance measures
that will be considered in our work. Section 3 describes the dataset and discusses
some problems connected to bias selection. In Section 4 we report the results of
the analysis concerning the correlations between different performance measures
and we show how to reduce the initial set to the measures that are significantly
different. Section 5 considers the combination of different performance measures
and shows its effectiveness in a simulated portfolio allocation problem. Our final
conclusions are presented in Section 6.
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2 Performance measures: review and classifica-
tion

We introduce here the set of performance measures that we will empirically
compare in the following sections. From a general viewpoint, performance mea-
sures can be defined as ratios between a reward measure and a risk measure, and
their value can be interpreted as the reward per unit of risk. Despite general
agreement on what a performance measure is, a number of choices are available
for the reward and risk measures to be considered, as well as the typed of vari-
ables to be used for their evaluation. For instance, many authors compute these
quantities on nominal returns of financial instruments, or on excess returns from
a risk-free investment, or on deviations from a benchmark investment. All three
of these approaches have a proper relevance. The first allows comparisons of the
performances of risky instruments without the introduction of a reference quan-
tity. In the second and third, the users evaluate the performances in excess of
what they could obtain from a benchmark investment (risky or risk-free). The
third case, deviations from a risky benchmark, may also be used to evaluate the
effectiveness of active management for managed portfolios.

In order to provide a general setup that nests all the previous cases, we start
by introducing some notation: t is the time index, and the available sample on
which alternative performance measures are computed goes from 1 to T ; returns
on assets are determined as the log-price difference; we use Ri,t to denote the
(nominal) returns of asset i in period t; we assume that there exists a risk-free
investment (over each period), denoted by Rf,t (note the risk-free is time-varying
since we consider it a pure risk-free investment within each period, that is, at
the beginning of the period we know which will be the return we will get from
that investment at the end of the period), and a benchmark index (or a market
return index), called RB,t.

The performance measures presented below will be defined over a variable
Xi,t that may take one of the following values

Xi,t =





Ri,t

Ri,t −Rf,t

Ri,t −RB,t

. (1)

These cases represent the three possible relevant dimensions for performance
measurement, not necessarily mutually exclusive. In addition, we will denote
by XT

t=1 the sequence of observations of the variables Xt from time 1 to time
T , by E [Xp] the pth-order moment of X, by σ [X] the volatility of X and by
E [Xp|Y ] the conditional pth-order moment of X. The classification of perfor-
mance measures we follow extends and generalizes the approach in Eling and
Schuhmacher (2007).

We will not include in the following list the measures proposed by Favre and
Galeano (2002), Gregoriou and Gueyie (2003), and Zakamouline and Koeke-
bakker (2009). These authors modify standard performance measures to cope
with deviations from normality. However, most of the indices we consider in
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the following are not assuming normality and could be considered for highly
non-Gaussian assets. As a result, the inclusion of the measures proposed by the
previously cited authors would need a deeper discussion of the links between
the comparison of the performance measures and the true densities of the un-
derlying assets. We believe this topic is outside the scope of the present paper,
and it is left for future researches.

2.1 Traditional (and similar) performance measures

This first set of performance measures contains the most known and traditional
indices. The starting point for performance evaluation of financial instruments
is the Sharpe ratio, introduced by Sharpe (1966, 1994). The Sharpe ratio can
be computed as the ratio between the expected returns and their standard
deviations as

Sh (Xi,t) =
E [Xi,t]
σ [Xi,t]

. (2)

Note that our representation nests the traditional one when computed on
deviations from a time independent risk free return (Xi,t = Ri,t − Rf ). The
Sharpe ratio represents the compensation per unit of overall risk. A related
measure is the Information ratio which is computed as the ratio between the
mean and the standard deviation of a tracking error measure. In turn, tracking
error could be defined as the deviation between the returns of a financial asset
(security or fund) from a reference benchmark. In our representation, the Sharpe
computed on excess returns is an Information ratio where the risk-free is a
benchmark. In contrast, the Sharpe ratio computed on deviations from the
benchmark is the traditional Information ratio (Xi,t = Ri,t −RB,t).

Other standard performance measures could be derived from the empirical
estimates of the CAPM model of Sharpe (1964), Lintner (1965) and Mossin
(1969). In our setup, the CAPM equation could be estimated both on asset
returns as well as on deviations from the risk-free investment, giving the two
alternative equations

Ri,t = αi + βiRB,t + εi,t,

Ri,t −Rf,t = αi + βi (RB,t −Rf,t) + εi,t.
(3)

Using the estimated parameters, we could compute the index proposed by
Treynor (1965), for nominal returns and for excess returns as

Tr (Xi,t) =
E [Xi,t]

βi
. (4)

Note that when Xi,t = Ri,t −RB,t the Treynor index has no meaning. The
intercept in equations (3) is the Jensen Alpha, a performance measure proposed
by Jensen (1968). This index represents the extra-compensation provided by a
financial instrument in excess of that predicted by the CAPM model. However,
the Jensen Alpha is not consistent with the definition of performance measure
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which we consider, that is, reward to variability ratios. In our setup the Jensen
Alpha is simply a reward measure. A different index, derived again from (3), is
the Appraisal ratio, defined as

AR (Xi,t) =
αi

σ [εi,t]
. (5)

The Sharpe and Treynor performance measures differ in the way they mea-
sure the risk of asset i. Additional performance measures are derived by using
alternative risk indices. The Mean Absolute Deviation (MAD) was proposed as
a risk measure in Konno (1990), while Konno and Yamazaki (1991) proposed
as a performance measure the expected return over MAD ratio

ERMAD (Xi,t) =
E [Xi,t]

E [|Xi,t − E [Xi,t]|] . (6)

Differently, Young (1998) proposed the expected return over the MiniMax
ratio

ERMM (Xi,t) =
E [Xi,t]

max
(
max XT

t=1,−min XT
t=1

) . (7)

We contribute to this group of indices by adding the expected return over
the range ratio

ERR (Xi,t) =
E [Xi,t]

maxXT
t=1 −min XT

t=1

. (8)

These indices differ from the Sharpe index only in the method used to mea-
sure the risk. A rather different measure was proposed by Modigliani and
Modigliani (1997), the Risk Adjusted Performance (RAP) or M2 index. M2
is based on the excess return from a benchmark in the presence of a risk-free in-
vestment, and introduces a correction, taking into account the possible different
risk levels of asset i and benchmark B. The index M2 is defined as

M2 = (E [Ri,t]− E [RB,t])
σ [RB,t]
σ [Ri,t]

+ E [Rf,t]− E [RB,t] . (9)

2.2 Measures based on Drawdown

Most of the previous performance measures are based on a risk index whose
purpose is the evaluation of the overall risk of an asset. However, the risk mea-
surement may follow alternative approaches (see Biglova et al. (2004), Ortobelli
et al. (2005), and Rachev et al. (2008) for a survey). One possible alternative is
to use as risk measure a quantity based on Drawdowns. Let us define Drawdown
in a recursive way as

Dt (Xi,t) = min (Dt−1 + Xi,t, 0) D0 = 0. (10)

Given the sample observations for Xi,t t = 0, 1, ...T , the Drawdown Dt (Xi,t)
or simply Dt represents, at time t, the maximum loss an investor may have suf-
fered from 0 to t. Risk measures are defined ordering drawdowns and computing
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quantities such as the maximum drawdown, D1 (Xi,t) = min DT
t=1, or the sec-

ond largest drawdown D2 (Xi,t) = min
(
DT

t=1 −D1 (Xi,t)
)
, and so on. We also

assume D1 (Xi,t) < 0. Three indices based on drawdowns have been proposed:
- the Calmar ratio, suggested by Young (1991), is the ratio between expected

returns and the maximum drawdown:

CR (Xi,t) =
E [Xi,t]

−D1 (Xi,t)
; (11)

- the Sterling ratio, introduced by Kestner (1996), is the ratio between the
expected returns and the N largest drawdowns:

SR (Xi,t; w) =
E [Xi,t]

− 1
w

∑w
j=1 Dj (Xi,t)

; (12)

- the Burke ratio, due to Burke (1994), is the ratio between the expected
returns and the second order non central moment of the N largest drawdowns:

BR (Xi,t; w) =
E [Xi,t](

1
w

∑w
j=1 [Dj (X,t)]

2
) 1

2
. (13)

The Sterling and Burke ratios depend on a parameter, w, that identifies
the number of values used in the computation of the risk index. While Eling
and Schuhmacher (2007) fix the value to 5, we prefer linking the number of
drawdowns to the sample dimension as w =

{[
T
20

]
,
[

T
10

]}
where [a] denotes the

nearest integer of a.

2.3 Measures based on partial moments

Drawdown-based indices measure the risk by assigning a larger weight to neg-
ative returns or cumulative losses, while the risk indices used in traditional
performance measures consider the entire distribution of returns. In the spirit
of drawdowns, Sortino and van der Meer (1991) define risk using a lower par-
tial moment (LPM). In fact, LPMs could be preferred because they consider the
downside deviations from the target return or minimum acceptable return while
upside movements do not enter in the evaluation of risk but in the evaluation
of returns only. Two examples of performance measures using partial moments
are:

- the Sortino or Sortino-Satchell ratio, Sortino and Van der Meer (1991),
Sortino (2000), Sortino and Satchell (2001), and Pedersen and Satchell (2002):

Sr (Xi,t) =
E [Xi,t]

E
[
(min (Xi,t, 0))2

] 1
2
; (14)

- the Kappa 3 measure of Kaplan and Knowles (2004):

K3 (Xi,t) =
E [Xi,t]

E
[
(min (Xi,t, 0))3

] 1
3
. (15)
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Farinelli and Tibiletti (2003a,b) generalize the previous indices introducing
partial moments also in the evaluation of rewards proposing the FT ratio:

FT (Xi,t; b, p, q) =
E

[(
(Xi,t − b)+

)p] 1
p

E
[(

(Xi,t − b)−
)q] 1

q

(16)

where (Xi,t − b)+ = max (Xi,t − b, 0), (Xi,t − b)− = max (b−Xi,t, 0). The

quantities E
[(

(Xi,t − b)−
)q] 1

q

and E
[(

(Xi,t − b)+
)p] 1

p

are the LPM of order
p and the Upper Partial Moment (UPM) of order q, respectively, and b is a
threshold return level separating the returns entering in the upper and lower
moments. The FT ratios are thus generalized ratios between an Upper Partial
Moment and a Lower Partial Moment with respect to a given threshold or
minimum acceptable return b. Following Farinelli and Tibiletti (2003a,b), we
could consider the following combination of UPM and LPM orders, which are
associated to investors’ styles or preferences:

- p = 0.5 and q = 2 for a defensive investor;
- p = 1.5 and q = 2 for a conservative investor;
- p = q = 1 for a moderate investor (note that this combination makes the

FT (Xi,t; b, 1, 1) equivalent to the Omega index of Shadwick and Keating (2002),
and Kazemi et al. (2003));

- p = 2 and q = 1.5 for a growth investor;
- p = 3 and q = 0.5 for an aggressive investor.
The previous indices will all be considered in the empirical part together

with the parameter combination p = 1, q = 2 which defines the Upside Po-
tential Ratio of Sortino et al. (1999). Finally, as b represents a minimum
acceptable return, we could fix it to zero, simply distinguishing between pos-
itive and negative Xi,t, or to different values. In the empirical part we will
consider the following cases b = {−0.02, 0, 0.02}, where the −2% and 2% values
may represent the choices of a less risk averse and a more risk averse investor,
respectively.

2.4 Measures based on quantiles

A class of performance measures similar to the previous one replaces partial
moments with reward and variability measures based on quantiles (see Rachev
et al. (2003), Biglova et al., 2004, among others). At first, we define the
following quantities:

- the Value-at-Risk at the α level is the quantity V aR (Xi,t; α) such that
P [Xi,t ≤ V aR (Xi,t; α)] = α;

- the Expected Shortfall or Conditional Value at Risk (CVAR), or Expected
Tail Loss (ETL)

ES (Xi,t; α) = E [Xi,t|Xi,t ≤ V aR (Xi,t;α)] . (17)
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Using V aR (Xi,t; α) and ES (Xi,t; α), a number of indices could be consid-
ered:

- the Expected return over absolute VaR, of Dowd (2000), Favre and Galeano
(2002), and Rachev et al. (2003):

V R (Xi,t; α) =
E [Xi,t]

|V aR (Xi,t;α)| ; (18)

- the VaR ratio, defined as:

V aRR (Xi,t; α) =
|V aR (−Xi,t; α)|
|V aR (Xi,t;α)| ; (19)

(to the best of our knowledge this index has never appeared in the literature -
it could be also considered as a tail asymmetry index);

- the Expected return over absolute Expected Shortfall or Conditional Sharpe
ratio or STARR ratio (Rachev et al., 2003, and Agarwal and Naik, 2004):

STARR (Xi,t; α) =
E [Xi,t]

|ES (Xi,t; α)| ; (20)

- finally, the Generalized Rachev Ratios (Biglova et al., 2004):

GR (Xi,t; α, p, q) =
E [|Xi,t|p |Xi,t ≥ −V aR (−Xi,t; α)]

1
p

E [|Xi,t|q |Xi,t ≤ V aR (Xi,t; α)]
1
q

,

where p > 0 and q > 0 are conditional moment orders.
In this last index, the combination p = q = 1 gives the simple Rachev Ratio

(Biglova et al., 2004) and the two orders could be combined as for the Farinelli
and Tibiletti ratios, thus providing a moment design associated with investors’
type. We note that the Generalized Rachev ratios are ratios of conditional upper
and lower moments.

In the empirical part we will use 5% and 10% as the quantile levels. Note
that, differently from other papers, we introduce the absolute value over Value-
at-Risk and upper and lower conditional moments given that these quantities
are defined over the returns. This allows obtaining positive values risk indices
and avoids computing powers of upper negative quantities (in principle, upper
VaR could be negative for an asset evaluated over an extremely negative period).

2.5 Measures derived from utility functions

Some performance measures deviate from the general structure of reward-to-
variability ratios. A relevant example is given by quantities derived from utility
functions, and allowing the computation of risk-adjusted returns. In the mutual
fund industry such a measure is used by Morningstar. The Morningstar Risk-
Adjusted Return, MRAR (Morningstar, 2007), is derived from a power-utility
function and defined as the expected value of the certainty equivalent annualized
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geometric return. We rearrange the Morningstar formulae and represent MRAR
over Xi,t as

MRAR (Xi,t; λ) =





E
[
(1 + Xi,t)

−λ
]− 12

λ

λ > −1, λ 6= 0

eE[ln(1+Xi,t)] λ = 0

, (21)

where λ identifies the risk aversion coefficient (which is set equal to 2 by Morn-
ingstar).

The MRAR is also known as AIRAP, Alternative Investments Risk Adjusted
Performance, Sharma (2004). Sharma (2004) suggests a risk aversion coefficient
of 3, while Ait-Sahalia et al. (2001) estimates a coefficient of 2.2 for ultra
high net worth individuals. In the empirical part, we will fix the risk aversion
coefficient to the values 2, 10 and 50.

Gemmill et al. (2005) introduced a set of performance measures derived
within a behavioral finance framework. Following the prospect theory of Kah-
nemann and Tversky (1979), the utility function is replaced by a value function
displaying loss aversion, and focusing on gains and losses at time t with respect
to the beginning of period wealth Wt−1. The following equation defines the
value function

Vt (Xi,t) =
{

[Wt−1Xi,t]
p

Xi,t ≥ 0
−λ [−Wt−1Xi,t]

q
Xi,t < 0 , (22)

where p, q and λ are positive parameters, and loss-aversion is included if λ > 1.
Note that the value function is defined over gains or losses while the wealth
evolves according to Wt = Wt−1 (1 + Ri,t). In the studies of Tversky and Kah-
nemann (1992), Bernatzi and Thaler (1995) and Gemmill et al. (2005), λ was
set to 2.25. In contrast, p and q were set to 0.75 and 0.95, respectively, by
Gemmill et al. (2005), and both to 1 by Barberis et al. (2001). The Value
Function in (22) displays a ’House-Money’ effect, as defined in Barberis et al.
(2001), if the loss aversion coefficient depends on previous gains and losses, thus
becoming time varying

λt = λ0 + λ1Wt−2Xi,t−1. (23)

Following Gemmill et al. (2005) we define a set of performance measures ac-
counting for loss aversion. Like the cited authors, we first rewrite the value
function as

Vt (Xi,t) = [Wt−1Xi,t]
p
I (Xi,t ≥ 0)− λ [−Wt−1Xi,t]

q
I (Xi,t < 0) , (24)

where the first component identifies gains while the second identifies losses. The
expectation of the ratio between the two quantities is a performance measure

E [[Wt−1Xi,t]
p
I (Xi,t ≥ 0)]

E [λ [−Wt−1Xi,t]
q
I (Xi,t < 0)]

=
E [(Wt−1Xi,t)

p |Xi,t ≥ 0]
E [λ (−Wt−1Xi,t)

q |Xi,t < 0]
, (25)
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as it can be considered a reward to variability quantity. Similar equivalences
can be considered with the introduction of the House money effect.

Gemmill et al. (2005) suggest as performance measures the following ratios

LAPS =
E [(Xi,t)

p |Xi,t ≥ 0] P (Xi,t ≥ 0)
E [(−Xi,t)

q |Xi,t < 0] (1− P (Xi,t ≥ 0))
, (26)

LAPH =
E [(Xi,t)

p |Xi,t ≥ 0]P (Xi,t ≥ 0)
λtE [(−Xi,t)

q |Xi,t < 0] (1− P (Xi,t ≥ 0))
, (27)

where P (Xi,t ≥) is the probability of having returns above zero. Given that
the wealth evolves according to Wt−1 = Wt−2 (1 + Ri,t−1) the previous indices
are valid only if the expectations are conditional to time t− 1 information set.
In fact, under this restriction the ratios involving the wealth are known at time
t. In this case the ratio in (25) becomes

W p
t−1

λW q
t−1

E [(Xi,t)
p |Xi,t ≥ 0]

E [(−Xi,t)
q |Xi,t < 0]

. (28)

Then, if the purpose is the selection of the best instruments for an investment
with a one-period horizon, today’s wealth can be fixed at 1 and the first ratio
in (28) is irrelevant in the comparison of alternative assets. Notably, the ratios
proposed by Gemmill et al. (2005) add a Loss Aversion interpretation to the FT
ratios when the minimum acceptable return b is set to zero (and House money is
not included). However, in the ex-post evaluation of an investment, the indices
in (26) loose the loss aversion interpretation because they do not maintain the
effective perception of reward and risk faced by the investors. In fact, this is
given by the wealth evolution, the risk aversion coefficients, and, when present,
by the House Money effect. In order to make the indices more suitable for the
ex-post performance evaluation we introduce two other measures:

LAPWS =
∑T

t=1 (Wt−1Xi,t)
p

∑T
t=1 I (Xi,t ≥ 0)

(∑T
t=1 (−Wt−1Xi,t)

q

∑T
t=1 I (Xi,t < 0)

)−1

,

LAPWH =
∑T

t=1 (Wt−1Xi,t)
p

∑T
t=1 I (Xi,t ≥ 0)

(∑T
t=1 λt (−Wt−1Xi,t)

q

∑T
t=1 I (Xi,t < 0)

)−1

.

The two indices we propose do not include the expectation symbol since
they are not unconditional expectations. LAPWS is the ratio of gains to losses
realized over the sample without the loss aversion effect, while LAPWH is the
ratio between the cumulative sums of value functions for gain with respect to
that for losses. Note that the LAPS index is equivalent to the Omega index
of Shadwick and Keating (2002) if p = q = 1. In the empirical part we will
fix the p and q orders to the values suggested by Gemmill et al. (2005) and to
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the combinations proposed by Farinelli and Tibiletti (2003a,b), thus allowing
for different investor types. In all cases, the threshold for gains and losses is set
to 0. The case with orders set to 1 is not considered since it provides quantities
equivalent to the Omega index.

3 Data and performance measures

In the following section, we compare a set of performance measures over a
dataset that contains the stocks included in the S&P 1500 index. The index
covers from large-cap to small-cap stocks and is thus heterogeneous with respect
to the company market value. We retrieved from Datastream the monthly
returns of the S&P 1500 components for the period January 1990 - October
2008. For these assets, the S&P 1500 index represents the appropriate equity
benchmark, and the US 1-month bond index, provided by Citigroup, is our
proxy for the risk-free asset. For each asset, we consider logarithmic returns
and excess returns over the risk-free asset and over the benchmark.

Note that the index composition changes over time. Since our dataset in-
cludes the 1500 assets belonging to the S&P 1500 index at the end of October
2008, not all of them are available for the whole considered period (for example,
in January 1990 only 754 assets out of 1500 were available). To deal with this
problem, we followed two different strategies. At first, we focused on the last
120 observations of the sample, corresponding to the period November 1998 -
October 2008: there are 1236 assets always included in the index over this range.
On this reduced set of stocks, we performed a static analysis of the rank corre-
lation using three different evaluation windows: November 1998 - October 2008
(120 monthly returns); November 2003 - October 2008 (60 monthly returns);
November 2005 - October 2008 (36 monthly returns). This study allows a com-
parison of performance measures over time, avoiding possible effects due to a
changing cross-sectional dimension. We also obtain some preliminary results on
the window size effect and on the time-varying nature of the rankings.

In a second step, we focus on the entire sample (January 1990 - October
2008) and use a rolling approach to evaluate the stability of rankings over time.
At this stage, the rank correlations are measured over a rolling window of 60
months for assets always available in the window. The number of assets is 754
in the first window and 1404 in the last one. This different approach allows a
comparison of rank correlations over a number of periods.

The use of an increasing number of assets over time could be questionable.
However, using only the 754 available for the entire sample period would have
induced a sample selection bias in the analysis. Clearly, the optimal solution
would have been to use the entire track record of all the S&P 1500 components,
including dead or de-listed companies, but unfortunately this piece of informa-
tion was not available to us. This second approach also permits us to study
portfolio allocation rules based on performance rankings.

[TABLE 1]
Table 1 lists the performance measures considered in the empirical analy-
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sis. In brackets we report the number of cases considered for each performance
measure, deriving it from the parameter combinations presented in the previous
section. For instance, the Burke and Sterling ratios have two different cases asso-
ciated with the two values of the parameter w. Similarly, the Farinelli-Tibiletti
ratios are included in eighteen different forms combining the six cases for the
moment order pairs and the three thresholds. Note that the LAP measures
include 19 cases, obtained by combining the 4 performance measures described
in the previous section, and 6 parameter combinations mimicking Farinelli and
Tibiletti (2003a,b) and Gemmill et al. (2005). The 5 cases with LAPS and
the FT parameter combinations are not considered since these are equivalent
to Omega measures (which are separately included in the list).

4 Empirical analysis

We compute the previously listed performance measures over the S&P 1500
constituents and compare them using the Spearman rank correlation (RS).
This choice makes our results comparable with those in Eling and Schuhmacher
(2007) and Eling (2008). After the Z-transformation of Fisher (1915), the Spear-
man rank correlation has an asymptotic density which could be used to test the
null hypothesis of independence between two variables. However, our purpose is
not to test independence, but rather to study the degree of correlation between
performance measure based ranks and, in particular, to detect measures that
are highly correlated or concordant. Eling and Schuhmacher (2007) tested the
null hypothesis RS ≤ p, and determined the value of p associated with a rejec-
tion of the null for all assets. They found that for p = 0.917 the null hypothesis
was always rejected. Note that the test cannot be applied under the null of
unit correlation, i.e. perfect agreement, because, as claimed also by Eling and
Schuhmacher (2007), in this case there is no discrepancy between the rankings
induced by the performance measures and thus no variability.

In this work, we follow an approach similar to that of Eling and Schuhmacher
(2007), but differing in the kind and in the number of assets used to compute
performance measures. In fact, the database of Eling and Schuhmacher (2007)
includes both surviving and dead hedge funds, implying by construction that
the series have different lengths across funds and that the sample periods are not
the same. The inclusion of data referring to different periods may strongly affect
the results about performance evaluation. In contrast, we focus on equities and
we always compute performance measures, and the associated rank correlations,
across assets available over a common period. In addition, our results suggest
that the threshold level p may depend on the asset type as well as on the sample
dimension.

Another important issue not considered by Eling and Schuhmacher (2007), is
that of defining the decision rule that specifies when two performance measures
carry different pieces of information. Since Eling and Schuhmacher (2007) found
only very high correlations between performance measures, they did not face the
problem of defining what is a “low” rank correlation. Instead, for our data, we
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do find evidence of “low” correlation and, in order to develop a decision rule, we
define as “low” a rank correlation lower than 0.8. Since we only know the value
of the sample rank correlation, R̂S , to define a precise threshold, we considered
the asymptotic distribution of RS . We thus considered the critical value, at 1%
significance level, of the test H0 : RS ≤ 0.8 against H1 : RS > 0.8. In detail, if
we denote by ρ the Fisher transformation of RS , ρ = 1

2 ln( 1+R̂S

1−R̂S
) and by ρ̂ the

corresponding sample quantity, asymptotically we have
√

N − 2ρ̂ ∼ N (ρ, 1) .

This allows us to define the required threshold for RS as

R∗S (α) =

(
exp

(
ln

(
1+RS

1−RS

)
+ 2Z1−α

√
1

N−2

))
− 1

(
exp

(
ln

(
1+RS

1−RS

)
+ 2Z1−α

√
1

N−2

))
+ 1

,

where Z1−α is the (1− α)−th quantile of a standard normal distribution. In
our analysis, with N = 1236 in the static case, and α = 1%, the threshold
defining the low correlation is 0.822.

4.1 Within group analysis

In this section we report, analyze and comment on the rank correlation between
performance measures that differ only for the parameters included in their defi-
nition. The purpose of this section is to provide a first reduction of the number
of performance measures included in Table 1.

The first group we consider includes some measures based on Drawdowns:
the Sterling and Burke indices. These two quantities depend on the number of
returns used for their computation. In the previous section we suggest the use
of at least two values associated with 5% and 10% of the sample dimension.
Given these two sets of performance measures, we evaluate whether the number
of points used in the computation of the indices provides a different ranking
across the assets. The results are reported in the first and second row of Table
2. The rank correlations show evidence of equivalent informative content of
the performance measures with respect to the number of returns used for the
evaluation of the Burke and Sterling indices. Result do not change with respect
to the sample dimension or to the return used for the evaluation. We conclude
that there is no need to consider the Sterling and Burke indices computed over
different numbers of drawdowns.

The second set of performance measures we analyze includes the quantile
based measures, with the exclusion of the Generalized Rachev ratios. Table 2
reports the rank correlations between the VR index, the VaR ratios and the
Conditional Sharpe index at the 5% and 10% quantile levels. Results show that
the VR index and the Conditional Sharpe ratios should be considered with a
single quantile level (rank correlation is always higher than 0.985) while the VaR
ratio should be considered with both the 5% and 10% quantiles, given that the
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rank correlation is lower than 0.822 in all cases and also reaches a minimum
close to 0.6 with a 10 years sample dimension (irrespective of the return used).

Table 3 reports the rank correlations across the Generalized Rachev ratios.
We recall that we computed 10 different GR ratios combining five parameter
combinations (Aggressive, Growth, Moderate, Conservative and Defensive) with
two quantile levels (5% and 10%). We distinguished two groups, separating the
effect of the Aggressive indices. Our analysis points out that this last parameter
combination is the most sensible to the sample dimension, providing results
different from the other GR ratios when the sample used is medium to small
(3 or 5 years). The difference tends to be canceled with the sample set to 10
years, with the exclusion of the case of the evaluation of deviations from the
benchmark. Differently, the other GR ratios (Growth to Defensive) are almost
equivalent (the smallest rank correlation is equal to 0.955). In addition, the
effect of the quantile level is minor. Building on these results, we chose to
include the Moderate GR ratio at the 10% level when the sample dimension is
large (10 years). In contrast, when the sample is small or medium, the GR for
Aggressive investors will also be considered (again at the 10% level).

Following the performance measure groups previously introduced, we move
then to measures based on partial moments that include the indices of Sortino,
the Kappa 3 index and the FT ratios. Similarly to the Generalized Rachev
ratios, we group the FT performance measures into two sets, separately consid-
ering the Aggressive parameter combination. The results are reported in Table
4, where the first group includes the parameter combinations Growth, Moder-
ate, Conservative, Defensive as well as the Upside Potential Ratio (which is a
special case of the FT index as we previously argued). Our analysis shows that
these parameter combinations do not provide additional information or relevant
differences in the ranking of the underlying assets (first to third rows). The
result is marginally influenced by the sample length and the kind of returns
used in the evaluation of the indices. On the other hand, the threshold used in
the index construction matters, making the indices sensibly different in terms
of assets ranking (fourth to sixth rows of Table 4). In fact, the rank correlations
across indices computed over different thresholds are generally small and always
lower than 0.822. When considering the Aggressive parameter combination, the
rank correlations are always small, and sometimes negative. In addition, they
are affected by both the sample dimension and the return type. Summarizing,
we suggest considering the FT Moderate index (or Omega index) together with
the Aggressive parameter combination, under all three of the thresholds consid-
ered. For the Sortino and Kappa 3 indices, the rank correlation with respect
to the Omega index is higher than 0.98 and therefore the two indices are not
considered.

Moving to the performance measures based on utility functions, we first note
that the MRAR indices with risk aversion set to 10 and 50 are almost equivalent.
Therefore, we decide to focus on the measure with risk aversion set to 2 and 10.
By contrast, in the LAP measures, the Hwang-Satchell, Moderate and Growth
parameter combinations are almost equivalent while the Conservative case is
very close to them. In order to provide a selection of measures which is limited,
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internally consistent, and that maximizes the difference across parameter com-
binations, we suggest focusing on the cases Defensive, Moderate and Aggressive.
Within each group, we suggest considering all performance measures even if the
Moderate case reports a high within-group average rank correlation.

Finally, we consider a further group composed by most of the traditional
performance measures. Table 6 includes the rank correlation of these indices
with the ranking induced by the Sharpe index. As we may observe, all indices
are almost identical to the Sharpe ratio in terms of ranking of the assets. Some
minor exceptions are the Appraisal ratio and the M2 index for the 3 year sam-
ple. Overall, we may infer that the Treynor index, the Appraisal ratio and
the indices replacing the standard deviation in the Sharpe with a proxy are
all equivalent. We thus suggest introducing in the following analysis only the
Sharpe index. Notably, this result is in line with the findings of Eling and Schuh-
macher (2007). In our case, the rank correlations are not as high as shown by
these authors. Furthermore, our results point out that the equivalence across
the selected performance measures is not influenced by the return used for the
evaluation and only scarcely affected by the sample dimension.

After this within-group analysis, we select the following performance mea-
sures: the Sharpe ratio; the Calmar ratio; the Sterling Ratio and the Burke
ratio computed over the 5% of the sample dimension; the VR index and the
Conditional Sharpe at the 5% quantile; the VaR ratio at both the 5% and 10%
quantiles; the Generalized Rachev ratio with Moderate parameter combination
at the 10% quantile level (one single index - the Aggressive index is included
only if the evaluation window is small); the FT Moderate and Aggressive indices
under all three threshold levels (6 indices); the MRAR index with risk aversion
set to 2 and 10; and the LAP measures for Defensive, Moderate and Aggressive
parameter combinations (9 indices). On the whole, the total number of selected
measures is 26.

[TABLES 2 TO 6]

4.2 Descriptive and rolling analysis of selected measures

We run additional correlation analysis on the reduced set of performance mea-
sures identified in the previous section. As a first outcome, we highlight that
some of the measures are still highly correlated. In particular, we report in
Table 7 the correlation between the Sharpe ratio and some selected measures.
As shown in the table, we may infer that the Calmar ratio, the Sterling ratio
(5%), the VR Index (5%), and the Conditional Sharpe (5%) are all equivalent to
the Sharpe ratio. These findings confirm the results of Eling and Schuhmacher
(2007) and are in line with the findings of Ortobelli et al. (2005) showing
that traditional risk measures induce indifference across performance measures
where the reward index is the average return. However, we obtain rather dif-
ferent rank correlations for Omega, with values going down to 0.536 and high
rank correlation for long samples (120 months) only. Note that these differences
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are pronounced if we compute the Omega over Excess Returns or Deviations
from the benchmark, while in the case of asset returns the Omega (with a zero
threshold) is very close to the Sharpe, as in Eling and Schuhmacher (2007).

[TABLE 7]

Such a result points out that ranking of performance measures and their
equivalence may be influenced by the kind of assets considered, the return type
(nominal or excess return), the estimation window, and the sample period. To
shed some light on the last motivation, and considering also the purposes of the
actual paper, we perform a rolling analysis on the rank correlation across the
reduced set of selected performance measures. Considering all the 1500 stocks in
the S&P Index at the end of October 2008, and available over the range January
1990 to October 2008 (226 observations), we compute the rank correlation over
23 performance measures (we drop from the set the Sterling ratio (5%), the
VR Index (5%), and the Conditional Sharpe (5%)) on a rolling window of 60
months, obtaining 166 instances of the rank correlation matrix.

Across the performance measures with the highest average rank correla-
tions, some pairs evidence a clear instability. This is the case for Omega with
zero threshold and the Sharpe index when computed on deviations from the
benchmark index (see Figure 1). Even though the global level of correlation
is around 0.90, there are periods where the rank correlation is below 0.70 and
periods where it is much higher than 0.90. Furthermore, this behavior does not
seem random but shows a clear persistence. Notably, similar behaviors are not
observed when considering the same pair of indices but using standard returns
or returns in excess to the risk-free investment. A second example is given
by considering the rank correlations between the pairs Sharpe-MRAR(2), and
Sharpe-MRAR(10). Figure 2 shows that both MRAR(2) and MRAR(10) have
low rank correlation with respect to the Sharpe index, but with relatively large
changes over time, with a range going from about −0.15 to about 0.15. Similar
results have been observed also for other pairs of performance measures. These
results show evidence of dynamics in the rank correlations. They also suggest
that the use of one single index should be avoided given that, over time, alter-
native performance measures provide different informative contents which could
be relevant for selecting the optimal assets in a more appropriate way.

In addition, we explore the relation between the sample length, the return
type and the rank correlation levels. For this purpose, we run simple linear re-
gressions across the rank correlations computed over different combinations of
return types and sample periods. Let RS (Xt, T ) denote the set of rank correla-
tions computed over the returns Xi,t i = 1, 2, ...N using a sample of dimension
T = 36, 60, 120. We consider the cross-sectional linear regressions across all dif-
ferent pairs of RS (Xt, T ) by varying the return type and the sample dimension.
We obtain nine possible sets RS (Xt, T ) (three return type and three sample
size) and 45 regressions of the form RS (Xt, T ) = β0 + β1R

′
S (X ′

t, T
′) + ε where

R′S (X ′
t, T

′) differs from RS (Xt, T ) either for the return type (X ′
t 6= Xt), the

sample size (T 6= T ′), or for both. We then compare the R2 of the regressions and
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Figure 1: Ratio Sharpe/Omega for returns (full line), excess return (dashed
line) and excess returns from benchmark (dotted line).

find that the sample size induces some change over rank correlations computed
using the same return type. In fact, when X ′

t = Xt, the R2 for the regressions
with T = 120 and T ′ = 60 are the lowest, reaching a minimum of 0.57, which
is still considerable. This is a somewhat expected result given that over shorter
intervals the performance measures may be more sensitive to extreme returns.
However, interesting observations emerge when comparing the rank correlations
computed over the same sample dimensions (T = T ′) using different return
types. In this case, we note that the return type plays an extremely limited
role in the evaluation of rank correlations. The R2 of these regressions range
from 0.93 to 0.99, without any clear difference across returns. As a result, we
conclude that the choice of returns is not relevant within a selection process
of assets (the simple return without any benchmark or risk-free can be used),
while the use of at least 60 months could be suggested in order to reduce the
impact of extreme returns.
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Figure 2: Ratio Sharpe/MRAR(2) (full line) and Sharpe/MRAR(10) (dashed
line).

5 A simulated portfolio allocation strategy based
on performance ranking

The previous section highlights that, differently from Eling and Schuhmacher
(2007), not all performance measures are equivalent either on the basis of a
static analysis or, and even more evidently, if we consider a rolling approach.
However, such a result leaves some open problems associated with the use of
performance measures with different, and maybe complementary, information.
What is called for is a method allowing the combining of the selected reward-
to-risk ratios. Given that this topic raises a number of additional questions
related to the method of combining information and to the optimality criteria
of combined measures, we limit our analysis to a very simple example. We
refer to the combination of different ranks created by alternative raters (our
performance measures). The combination of ranks is an optimal solution under
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the assumption of independence across raters, (Kendall, 1970). Unfortunately,
this is not the case in our setup, because the raters (the performance measures)
use the same information set to derive ranks. Being aware of this limitation,
our choice of focusing on performance measures with low rank correlations can
be considered as a naive approach for controlling and reducing the dependence
across raters.

As a result, we propose the use of a composite performance index that, at
each point in time, will be obtained as follows. Assume we monitor Q perfor-
mance measures and, at time t, we want to invest in n assets chosen from a
basket of N assets. Denote by Pt the N × Q matrix containing the values of
the performance measures at time t. Starting from Pt we can obtain the N ×Q
matrix Rt of the asset ranks. In particular, let us denote by Rij,t the rank of
the i-th asset with respect to the j-th measure (i = 1, ..., N ; j = 1, ..., Q) and
assume that the asset with highest performance measure q has rank 1.
The composite index, CIi,t for the asset i-th at time t is simply the sum of the
ranks of asset i

CIi,t =
Q∑

j=1

Rij,t. (29)

The CI index can be considered a joint performance measure where the best
assets are associated with the lowest values of CIi. At each month t, CIt is
computed using the last 60 monthly returns for all the available assets. Us-
ing the composite index we determine the portfolio allocation for month t + 1
choosing the M assets with the highest composite index and using an equally
weighted approach. This allocation strategy avoids estimation errors related
to the weights (see De Miguel et al., 2009). Finally, we rotate the portfolio
monthly.

We consider four possible values of M : 10, 25, 50, and 100 and the three
possible return measures in (1): standard returns (R), excess returns from the
risk-free (ER), and deviations from the benchmark investment (DB). In our
exercise we consider a restricted set of performance measures formed by: the
Sharpe ratio; the Burke ratio computed over the 5% of the sample dimension;
the VaR ratio at both the 5% and 10% quantiles; the Generalized Rachev ratio
with Moderate parameter combination at the 10% quantile level (one single
index); the FT Moderate indices under all three threshold levels (or the Omega
indices - these are 3 indices); the MRAR index with risk aversion set to 2
and 10; the LAP measures for Defensive and Moderate parameter combinations
(another 6 indices). Differently from the restricted set of measures identified in
Section 4, the FT and LAP performance measures with Aggressive parameter
combinations have been excluded in order to consider the case of a standard
investor characterized by moderate risk aversion (these measures are appropriate
for investors with low risk aversion).

We consider three benchmarks for our strategy: the risk-free investment,
represented by the returns over the 1-month bond index by Citigroup, the S&P
1500 index, and a similar strategy where assets are selected according to the
Sharpe ratio. Furthermore, we compare the strategy results over 165 months us-
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ing the cumulated returns of the strategies, their risk, measured by the standard
deviation and Value-at-Risk at the 5% level, and the average monthly turnover
of the portfolios.

[TABLE 8]

Table 8 lists the results of our simulations. Using the CI index, cumulated
returns are higher than for the strategy based on the Sharpe index in 7 cases out
of 12, but without a clear pattern, while the standard deviation is always lower
for CI strategies based on R and ER and higher for DB cases. The turnover is
lower in all cases but one, where it is close to the Sharpe strategy. We highlight
that the turnover reduction is considerable, in particular for the cases with M
low, while increasing M , the advantage over the turnover decreases suggesting
that the ranks of the two methods are different only for the top performer assets.
Differently, if we consider top performers and very good assets, the two methods
could provide similar groups. The relevant reduction in turnover will induce a
small impact of transaction and operational costs on the strategies based on the
CI index. As a result, if transaction costs will be taken into account, strategies
average returns, risk measures and performance measures will show a relatively
higher preference for CI based allocations.

In addition, the Sharpe index is generally higher for CI-based allocations,
with some preference for strategies based on ER and DB rather than the sim-
ple R case. The β with respect to the market index is always smaller in the
CI-allocation case, suggesting that these strategies induce a reduction of the
portfolio exposure to market shocks in all cases. On the contrary, the extra
performance with respect to the market index is generally larger with a pattern
similar to that of the Sharpe (a preference for ER and DB strategies). Finally,
the absolute VaR at the 5% level is in most cases higher for Sharpe based strate-
gies, but without a clear interpretation with respect to N and the return choices.
Overall, for low levels of M , the CI index seems to be better than the simpler
Sharpe based strategies, while the preference decreases for larger M though still
remaining relevant.

6 Conclusions

A typical problem of portfolio management is to select some assets within a
large group to build an optimal portfolio. However, sometimes there are not
enough degrees of freedom to implement standard mean-variance optimizers,
and alternative selection approaches can be used. Within this framework, per-
formance measures could do the task. Nevertheless, a different problem emerges:
which measures to use? To answer this question, we followed the approach of
Eling and Schuhmacher (2007) and compared performance measures using rank
correlations. Within this paper we generalize the study of Eling and Schuh-
macher (2007) by enlarging the selection of performance measures compared
and exploring the dynamic properties of rank correlations. We show that per-
formance measures based on partial moments and loss aversion are generally
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different from the traditional ones (including the Sharpe ratio). As an addi-
tional finding, we show evidence of changing behavior in rank correlations, even
across pairs considered equivalent by Eling and Schuhmacher (2007). Finally,
we provide a simple example of the use of such a comparison across perfor-
mances within a simplified asset allocation exercise. The approach we proposed
could be generalized to different datasets, further enriching the set of perfor-
mance measures. Such extensions are left to future researches as well as the
identification of the optimal combination of performance measures. The results
of such future contributions could provide relevant tools for quantitative asset
allocation.
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Performance measures Returns Excess Deviations from
(cases) returns benchmark
Sharpe ratio X X X
Treynor index X X NA
Appraisal ratio X X NA
Average R over MAD X X X
Average R over MiniMax X X X
Average R over Range X X X
M2 X NA NA
Calmar ratio X X X
Sterling ratio (2) X X X
Burke ratio (2) X X X
Sortino ratio X X X
Kappa 3 measure X X X
Farinelli-Tibiletti (18) X X X
Average R over VaR (2) X X X
Average R over ES (2) X X X
VaR ratio (2) X X X
Generalized Rachev Ratios (20) X X X
MRAR (3) X X X
LAP (19) X X X
Total 80 79 77

Table 1: List of performance measures considered
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