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Abstract. The modelling of wind speed is a traditional toianeteorological research,
where the main interest is on the short-term faead wind speed intensity and
direction. More recently, this theme has receivatie interest in the quantitative finance
literature for its relationship with electricitygutuction by wind farms. In fact, electricity
producers are interested in long-range forecasissanulation of wind speed for two
main reasons: to evaluate the profitability of Quny a wind farm in a given location and
to offset the risks associated with the variabibfywind speed for an already operating
wind farm. In this paper, we contribute to the ewaging literature regarding
environmental finance by comparing three approatisare capable of forecasting and
simulating the long run evolution of wind speedemgity (direction is not a concern,
given that the recent turbines can rotate to follewvd direction): the Auto Regressive
Gamma process, the Gamma Auto Regressive procedstha ARFIMA-FIGARCH
model. We provide both in-sample and out-of-sansplaparisons of the models, as well
as some examples for the pricing of wind speedvdtivies using a model-based Monte
Carlo simulation approach.
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1. Introduction

Wind conditions represent a relevant source of fwk every wind farm. The risk
exposure can be associated with two elements tratacterize the wind: the overall
wind speed, or wind speed intensity, and the wiidction. However, most turbines
currently built have mechanisms for automatic rotabf blades in the appropriate wind
direction. Therefore, in practice, the most reléwasather exposure of wind farms can
be measured by analyzing only the wind speed iitte(an approximation is included
since blade rotation is not immediate). In ordemtitigate this wind risk, we often use
insurance contracts or wind derivatives, makingrectl connection between atmospheric
elements, financial markets, and economic impliceti For a survey of the literature on
wind risk evaluation and modelling, see Brix et(2D05).

From a meteorological point of view, wind speecendity is just one of the variables
generally modelled to provide robust short-term tvea forecasts. However, for the
purpose of wind risk evaluation, on the one hand, veed long-term forecasts and
simulations, while, on the other hand, the interesweather variables other than wind
may be limited. As a result, meteorological modais not appropriate for long-range
wind speed intensity forecast and simulation, whibgistical approaches are viable. The
scientific literature includes some contributionstbat topic, for example, Brown et al.
(1984), Castino et al. (1998), and Aillot et al0O@B), among others. However, few
authors have yet considered the economic and fimlapaoint of view; that is, studying
problems associated with the modelling of wind spe#ensity for evaluating wind
risks, and for the pricing of wind derivatives (s&@ instance, Leroy (2004) and Yamada
(2008)).

In this framework, the main interest is in the eion (even by simulated methods) of a
wind index, which is a transformation of wind speédensity into a quantity
proportional to the energy power potentially proetlidy a turbine over a given period.
Simple and naive approaches focus on low frequéinagn monthly to yearly, usually)
wind data time series. These data are fitted withireconditional density, which we then
use to simulate wind speed paths. In turn, thetespetermine simulated wind indices.
However, these unconditional approaches fail tesictar the periodic evolution of wind

speed intensity, or the presence of serial coroglatWe can capture both of these



features by alternative methods based on highgquémecy data. Moreover, the normality
assumption of wind indices is questionable.

Our present paper contributes to the weather derdsaand environmental finance
literature in several ways. First, we consider & sk models that capture serial
correlation; these have already appeared in sfierontributions, but generally in
different contexts. We consider the ARFIMA-FIGARGHbdel of Beine and Laurent
(2003), as used in many frameworks including finanitme series analysis, as well as
for the study of average temperature sequence;aeerin and Prés (2009). We adapt
the ARFIMA-FIGARCH model to the logarithms of winspeed intensities, adding
periodic deterministic components to capture tharlyeseasonal cycle. We then consider
two competing approaches that introduce serialetation in Gamma densities: the
Gamma Auto Regressive (GAR) model of Tol (1997)e@dly used by the author to
model wind speed intensity) and the Auto RegresGiamma (ARG) of Gourieroux and
Jasiak (2006), which has been proposed for modelhtertrade durations.

Our second contribution is to provide a methodolé@ycomparing wind speed models
by focusing on both in-sample and out-of-sample ehquerformances. In-sample, we
compare the model fit with traditional statisticakthods. Out-of-sample, we compare
the alternative models and specifications using looie-step-ahead wind speed point and
density forecasts, as well as in terms of the medddility to simulate the evolution of
wind indices. This last element will provide fundamtal results, given that wind indices
are the relevant element for the pricing of contt@overing wind risks. From a different
point of view, the ability to simulate wind indicesill also be interesting for the
identification of optimal locations for wind farmowstruction. All of the considered
models, approaches, and methods we will compareywsinumber of daily wind speed
intensity time series obtained from meteorologisthtions based in Poland. By
simulation based methods we will verify the modeffprmance, and we will provide
theoretical prices of wind derivatives, comparihgge to the ones provided by simpler
unconditional methods.

This paper differs from other contributions on wispgeed modelling in a number of
ways. Firstly, we do not base the models on datsstormations, such as the Box-Cox in
Brown et al. (1984), but on actual original datar fvhich we postulate a specific
stochastic structure whose components have a dimecpretation. In detail, we assume

that wind speed intensities are function of pegodeterministic components and of



stochastic components. As a result, we incorposseal correlation in stochastic
processes, defined over a positive support. Segotith models we propose are able to
capture the yearly seasonal evolution of wind se®l] with generalization, can capture
intra-daily periodicity created, for instance, thetdifferences between day and night
wind speed intensities. However, the dataset wesiden in the empirical analysis
contains only average daily wind speed intensies] thus we are not able to recover
intra-daily patterns. The empirical results of owork show how alternative models
appropriately fit historical data, while their faaesting performances may differ.

The paper proceeds as follows: Section 2 introdtitesmodelling approaches and the
techniques we consider for model comparison. Se@&ipresents the empirical estimates
of the models and a first comparison across thesetion 4 compares the fitted model

within a wind risk management framework. Secticsobcludes the paper.

2. Modelling wind speed intensity

Meteorological stations measure wind speed intessitand direction at regular
frequencies, typically in minutes. These data prese superimposition of several
elements: the stochastic nature of the series son|uhe intra-daily periodic evolution
governed by the alternation of day and night arel ltng-term seasonal component
driven by the sequence of seasons. The models oyse in this paper appropriately
capture these components. All of the models we idengpresume that the periodic
components are purely deterministic and we coulkerfithese out a priori, before
modelling the underlying stochastic process. Wee ribaait we could follow alternative
approaches; for instance, by assuming a stochaattice of the periodic components, we
could specify a GARMA processes as in Guégan amdrie (2009). In the following
section, we describe the structure of the periegtmution of wind speed intensities and
show possible ways to estimate and filter out tdusponent. The subsequent sections
will then introduce the alternative models (dealwigh their structure, estimation and

simulation), and the approaches for their compariso



2.1. Periodic component

We consider two alternative specifications of tleeiquic deterministic component: the
first is multiplicative and we apply it to wind sk levels (we can also recast it into an
additive periodic function using logs); the seconddels the wind speed logarithm with

additive and multiplicative periodic effects. Notieat the purely additive approach

provides a filtered series with support oMBf as an output, while the additive and
multiplicative method gives a filtered series wstlpport overR .

If x denotes the positively valued random variable mn#ag the average wind speed

over a relatively short time period (say 1 houng multiplicative periodic component

s(t) affectsx as follows:

x =elly, . (1)

where y, is the “seasonally adjusted” series. We assume tthmtfunctiors(t) is

deterministic, as we previously stated, and hasath@wving structure:
w ) q

s(t)=B,+ > Bt +>(, cos( 2rjf (t))+y, si zjt (1)), )
i=1 j=1

where f (t) is a yearly periodic sequence adapted to the fdetmency. For instance,

when daily data are used, it has the following fo{ k4, 1 2 }

365’ 365 '365 365 365 |

assuming valueq1 2 .,365,1 for leap years. Similarly, for hourly data, we eu
366 366 366

. 365x 24 . 366x 24
ve{ J } for regular years an%%} for leap years.
365x 24) 366x 24

The periodic component is formed by a constanplgnomial trend, and a combination

of harmonics. Note that the multiplicative periodiomponent affects the wind speed
levels through an exponential transformation, whealsures that it has a positive value,

and its interpretation is as a multiplicative semsdactor.



The standard least squares approaches on thealugfdrmation ideally estimate the
parameters in equation (2) (we assume that theapiily of having zero average wind

speed over a not too short period is zero or nibigi
in(x) =s(t) +In(y) . ©

We then identify the orders andq, as well as of the significant coefficients, based
information criteria and using Heteroskedastic @&uwdocorrelation Consistent (HAC)
standard errors, due to the possible presenceriaf serrelation and heteroskedasticity

over theln (yt) series. Note that the multiplicative representaiio(1) allows modelling

y, with positive-valued stochastic processes.

As previously stated, we also consider an alteraapproach for removing the periodic
component. In this case we replace (1) with thiewahg equation

X = es(t)+|/(t)y‘ (4)

which adds a second periodic functigft) . Taking the logarithms of (4), we obtain:

In(x)=s(t)+v(t) %. (5)

In equation (5),5(t) follows (2) and we estimate this by OLS, as ingihevious case. In
contrast, the extraction oi(t) requires a preliminary transformation. Given theed

§(t) values, we can compute the residuli§x )-5(t), square them and take the

logarithms. Theoretically, the resulting quantityegs:
In([ln(xt)—s(t)f) = In(v(t)2)+ln(yt2) . (6)

Therefore, we could recover(t) by assuming a representation similar to thas(d :



in(v(t)*) =a, +at +3(3, cosl 2rif (1)) +y, si i (1)) (7)

p
i=1 =1

We could estimate the parameters in (7) by OLSquBIAC standard errors. Removal of

both periodic components allows modelling of tiie series using stochastic processes
with support over the real line. Note that undemasumption of Gaussianity for , the
wind speed intensityx, follows a Log-Normal distribution. For this reasome could

recover parameter estimates for the periodic compisn by maximum likelihood
methods.

Note that we do not consider the estimation of lamttlitive and multiplicative periodic
components over the wind speed levels, as thisoapprcould create problems in the
simulation of wind speed trajectories. In fact, ofan additive component over the wind
speed mean results in the residuals having suppertthe real line, and the simulation
of wind speed patterns cannot be easily constramedsume only positive values.
Summarizing, we will consider two alternative sfieations for the periodic
components affecting wind speed time series. Weesgnt the first by equations (1)-(2)
and the second by (4), (2) and (7). Note thatef éstimated periodic component in (7)

collapses to a constant, the specification in @gomes equivalent to that in (1).

2.2. Modelling wind speed intensity

This section presents a set of competing modetsatieausable for capturing the dynamic
evolution of wind speed. We will compare these niodeer real data in the subsequent
sections. We describe here the model structuregghmation approaches as well as the
simulation methods that are fundamental for gemegathe simulated distribution of
wind speed series and for pricing wind speed deves. We will propose all of the
models for series filtered from the periodic deteistic component, which we denote by

Yy, , independently from the approach used for recagetie periodic component. As a
result, the support for thg, densities could be different and will be cleathe context

of each proposed model.



2.2.1 ARFIMA-FIGARCH

If we remove period components following equatidj ¢(he residual serieg, could be

modelled with an ARFIMA-FIGARCH process (see Beamsl Laurent, 2003), allowing
for the possible presence of long-memory both & mfean and in the variance. We
consider this double long-memory model since prielary analyses we verified that
“seasonally adjusted” wind speed series could ptesdd long-memory behaviours. In
the empirical applications, we estimate the ARFIMKGARCH process, and when the
data do not support the presence of long-memomean and/or in variance, we could
consider short-memory specifications. In fact, MRFIMA-FIGARCH model nests both
ARMA mean specifications as well as GARCH strucsurethe conditional variances.

The following equations characterize an ARFIMA-FIBBH process for the serigs:

(L)L) w=0(L)s & I -D(0?) .

o2 = w+ B(L) o +[1-B(L)-w(L)(2-L)' |e2, (®)

where 1™ is the information set up to timel, L is the lag operatob) is an un-specified
conditional densityp<d<0. an, 0<1<1 are the long-memory coefficients for mean and

variance, respectivelyq>0, CD(L):1+Zp:¢(Li, G)(L):1+Zq:6{Li, ,B(L):i,BiL‘,
i=1 i=1 i=1

LIJ(L):1+Z¢4I_i , and all polynomials satisfy the constraints emgurstationarity,

i=1
invertibility, and positivity of conditional variaes. The ARFIMA model in (8) does not
include an intercept since it must be equal to grconstruction, as we filter the wind
speed logarithms following (5).
Under an assumption of normality, we derive the-ste@-ahead conditional mean and
variance of wind speed as follows. At first, weatatine the one-step-ahead conditional

mean and variance of the series:

EL[w]=2 7y +2 86 Vau[v]=0a7, 9)



where E_,[] and Var,_,[] are the expectation and the variance conditiomainte t-1

information set, respectively, ane(L)(1- L)d =1-> 7mLl'. The conditional mean

i=1
depends on the past values wpf with a truncation lagv, which is normally set to one

thousand (or to all the available information i€ ttample dimension is lower). We then

obtain the mean and variance of wind speed logasthy:

E[In(x)]=s(t) +v(t) Ely]. Ve[ In(x)]=v(tf o7 (10)

Finally, the normality assumption oftyanslates into a log-normality assumption of wind
speed intensitypwhose conditional mean and variance follows fréam@ard formulae.
We suggest the use of Maximum likelihood (ML) ammioes or Quasi Maximum
Likelihood (QML) methods to estimate the parametefsthe ARFIMA-FIGARCH
model in equations (4), (2), (7) and (8). The eation of the entire model could be
performed by a three-step procedure as followsstimate the parameters of the additive
periodic component by OLS over equation (5) whengariodic component follows (2);
i) estimate the parameters of the multiplicatiexipdic component by OLS in equation
(6) when the periodic component is that in (7)) @stimate the ARFIMA-FIGARCH
parameters in (8) using a normal likelihood funatidlternatively, we may estimate the
full model using a normal likelihood function oviire wind speed logarithms and using
the expected mean and variances reported in (10).

We could perform the simulation of wind speed urntther model in (4), (2), (7) and (8)

by extracting the standardized normal residuals g; ‘¢, from a normal density or by

resampling them from the in-sample residuals. Ug@®)s(10) allows easy derivation of

the recursion for the simulation of wind speedegrat.

2.2.2 Gamma Auto Regressive (GAR) models
The statistical literature includes a number of kgorcombining autoregressive
behaviours and Gamma distributions. The Gamma Ragressive model of Gaver and

Lewis (1980) provides a relevant example (see akarence and Lewis, 1981, and



Smith and Miller, 1986). However, the approach av& and Lewis (1980) is not
appropriate in our setup since it assumes homostieithiaand a probability mass at zero
which is not necessarily present in wind speed.data

Tol (1997) used a different approach to model wspded data, proposing the following

two-parameter conditional Gamma process for theattiod of seriesy, :

e_ctilyt yq -1
—_ t

f(yt)_ctqr—(d()’ (11)

where I (.) is the Gamma functiorg>0 is the scale parameters a#gl0 is the shape

parameter. The two time-varying parameters havéadll®ving dynamic representation:

K L a
a;_a_tz’ Ct ,Ut ’ (12)
4= Yty (L) Yo (13)
ot =w+B(L)ai +a(L)(y. )" (14)

where y(L) :iyil_i , B(L) :Zp:ﬂll_i , and a(L) :Zq:aiLi . The conditional first order
i=1 i=1

i=1
moment, and the conditional variance gf are then equal tcEl_l[yt] =96 =4 and

Vart_l[yt] = Jtctz = Uf, respectively. Note that (13) represents the d¢adil mean of the

Gamma process, while (14) is a conditional variand@e spirit of the GARCH process
of Engle (1982) and Bollerslev (1986). The GAR mlosteucture previously outlined
does not include long-range persistence, neitheghénmean nor in the variances. In
principle, we could generalize both (13) and (14) imtroducing long-memory
polynomials, but we will not pursue this objectivie the current paper, since the
empirical analyses we will present show that tinepée GAR model could appropriately
capture the dynamic structure of wind speed intgnsi

We can estimate the complete model in (1)-(3),-(1%) by a two-step procedure: i)

estimate the multiplicative periodic component 3 by OLS; and ii) estimate by ML

10



methods the other parameters under a Gamma defAKgynatively, we could estimate

jointly the parameters by using a Gamma densitjaogpg the scale parameteywith

the scale parametef(t)ct, and therefore using the following log-likelihofwhction:

L(8)=3(-ais(t) -dn (&) ~In( (8)) -& 7 +(d -1)in(x)), (15)

t=1

where 6 contains the parameters in (2), (13) and (14).eNhbat in this last case, the

Gamma parameters, its mean and variance follow:

2 0-2 S S|
g2t =%, E[x]=uet, andvar,[x]= o (16)
t t

highlighting that the same periodic component affdmoth the mean and the standard
deviation.

The simulation of the Gamma process in (11)-(14¢sgthrough the generation of
random numbers from a two-parameter Gamma densitgre parameters are time-

varying.

2.2.3 Auto Regressive Gamma (ARG) models
Gourieroux and Jasiak (2006) (GJ henceforth) pregoan alternative conditional
Gamma process, called Auto Regressive Gamma (ARK®ir proposal builds on the

three parameters Non-central Gamma density, repetas:

—_ i __1 i—
eﬂ'@ ec xtxt6+| 1

f(x‘;c’a’ﬁ):izo it ¢ (o+i)

17)

where c is the scale parametdfs, is the non-centrality parameter afds the shape
parameter (or degree of freedom). All parametees raon-negative, and the random
variable assumes values on the positive real [l Non-centred Gamma arises as

combination of centred two-parameter Gamma dessitith weights given by a Poisson

11



process driving the non-centrality. The first ordement and the variance of the density
in (17) are given byE[x] =cd+cB andVar [x] =c’d+2c’3, respectively.

GJ suggest expressing the non-centrality paramaster function of past observations of

P
the modelled variable, thus replacing with Z,Bjxt_j. This makes the density
j=1

conditional to the information set at time t-1, ahd one-step-ahead first order moment

and variance becomes:

Ea[X] =c5+c(iﬂ,-x[-,-j, Var,, [x]=c*0+ Z:Z[iﬁ,-x[-jj- (18)

GJ also discuss the stationarity of the model, WhiE associated with parameter

p
combinations satisfying the nonlinear constrajEE,Bij <1. Furthermore, they present
i=1
alternative approaches for the parameter estimatiahthe model simulation. In their
work, GJ allow for a time varying scale parametauf do not discuss in detail its

possible forms and interpretation. If the wind speg follows the Non-centred Gamma
density in (17), denoted ag, ~)(Jd,5,c), then, the ratioxc™ follows the two-

parameter Non-centred Gamma densikg ™ ~ )(J,) (the density function can be

easily obtained from 17). The scale parameter #ffiests the density in a multiplicative
way, similarly to the periodic component in (1). \Wete that we may interpret the scale
parameter as the periodic component of wind speedact, we may assume a time

varying scale parameter equal to:
Ct = es(t) , (19)

where the periodic component is that of equation (& principle, we could have

introduced periodic elements in the time-varyingoentrality parameters, for instance,
making it a function of harmonics. However, we wbuilave required appropriate
constraints to ensure positivity. Alternatively, weuld use a representation similar to

(19) to introduce time dependence in the non-cktyt@arameter in (18). However, we

12



do not consider this extension here, as some prelimy estimates (not reported here to
save space) show that this approach does not grewig improvement over the previous

models.

Given that we can interpret the scale parameténeaperiodic component of wind speed

series, we suggest filtering out the periodic congmd as in (1)-(3) and model the

residual series with a conditional two-parameter central Gamma process. The density

we consider fory,, the seasonally adjusted wind speed, is a speasad of that in GJ,

and has the following structure:

exp(_iﬁi Yi-i j(zplﬁl Yi-i j eV y5+i_l
fWidf)=2 ———— r(o+i) =0)

(o]
i=0

As a result, the time-varying nature of both theamand the variance of , the wind

speed, will depend on two elements: the Auto Regredehaviour of the non-centrality
parameter, and the dynamic evolution of the scalameter. We can show the two

moments by:
E.[x]=cd+q [Zﬂﬁ; x_jj, Var, [x]=co+ Z:E[Zzlﬂj X, j (21)

Note that we know the scale parameter at tirsence it is a function of deterministic

components only. Finally, we highlight that the ARGdel is consistent with a long-
P

memory behaviour of the modelled series when tharpeters satisf;c(Zﬁ;j =1, see
i=1

GJ for details.

We can also use the ARG model in (1)-(3) and (20fodelling intertrade durations, as

in GJ, since intraday durations may show periodibaviours. We also highlight the

close relationship between the ARG model and thoegressive Conditional Duration

model of Engle and Russell (1998) (see Pacura, 200 a survey of duration models).

In fact, we may specify an ACD model with a permdionditional duration as in

13



equation (19), where only the time-varying scaleapweter governs the dynamic

behaviour and the innovation density is a two-pat@mnon-central Gamma.

The estimation of ARG in (1), (2) and (20) couldidar the QML approach suggested by
GJ. They propose using the normal likelihood fumectior wind speed intensity, with the

expected mean and variances reported in (21). rdteely, again as suggested by GJ,
we could estimate the model by maximizing the tated log-likelihood:

T K ~B pi 46 %o+ -1
L(H)IZ(h]ze I;B( qea'HI—(Xta_l_l)'J (22)

t=1 i=0

wherek should not be too small (we verified through siatigins that reasonable values
of k should be chosen between 10 and 20; higher valuetimprove the evaluation of
the likelihood function and are less efficient francomputational point of view).

Note that we can also estimate the model usingoastep procedure similar to that of
GAR: i) filter out the periodic component by OLSpéipd to (3); and ii) estimate the
remaining parameters with QML using the normallik@od and setting to 1 the scale
parameter. To simulate the ARG process, we adambroach of GJ, by sampling from

Gamma and Poisson random variables. In particwkugeneratey, values from:
Z,

Yo =2 W, +¢ (23)
i=1

where W, are standard Gamma random variables extracted fhemwo-parameter

centred Gamma density(l,]), & follows a two-parameter centred Gamma density

=1

P
¥(3,1), and Z, is extracted from a Poisson dens@{Zﬁj yt_jj. Given a simulated

trajectory of y, we obtain the corresponding simulated pathoby multiplication with

the deterministic path of the scale parametethat we generate using (2).

14



2.3. Model comparison

In the previous subsections we introduced thresrradtive models that we could use for
fitting wind speed intensity series. The modelgediin the distributional hypothesis, and
we should adapt the traditional diagnostic checkaags to this framework. For instance,
using the expected conditional mean and variancéhef models, we can compute
standardized wind speed series. In turn, we congdlyae these for serial correlation and
heteroskedasticity for a first comparison of thedels. However, given that the main
purpose of our study is to forecast wind speedchase to compare the models on the
basis of their one-step-ahead point forecasts amsity forecasts, as well as in their
ability to simulate wind speed sequences.

We assume, in the following, that the researcheuipose is to comparma alternative
wind speed models ovérone-step-ahead forecasts. We will estimate thestsagith an

expanding window approach from the starting sampden 1 to T. We denote modeh
time T+i one-step-ahead forecast bs(;’i“=g(67;l”i‘1), where 8 is the vector of
estimated parameters entering the conditional tertdi x.,, (estimated using the
information set up to timéd+i-1). In contrast, we indicate one step-ahead density
forecasts asfm(xm |9,IT*"1), where the density could be a Gamma, Non-centred
Gamma, or Log-Normal.

We can draw a preliminary comparison of the modaetdast from the analysis of
standard quantities, such as the Root Mean Squ&mécast Error (RMSFE):

h
RMSFE(h,m):\/Z(xM—xﬁ;’i“)z,and the Mean Absolute Deviation (MAD)

i=1

. We also implement more formal approaches propased

MAD () = > [, -t

i=1
the statistical literature. We compute the Weightékklihood Ratio (WLR) test of
Amisano and Giacomini (2007), since we can focus tn the tail of the forecast
density. In fact, the following will clarify thabb low or too high wind speed values are
associated with an absence of power productionima farms, with a relevant impact on

the wind risk management process. The WLR test enesptwo models by contrasting

15



over a given horizon their density forecast. Giveodelsm andm, and their density

forecastsf, (Xm |é,|“i‘1) and f,, (x,r+i |9,IT”‘1), the test is based on the quantity

WLR.., =w(x.,) 10g( fs, (.. 18.17)) = log( 1, (.., 16472))]. (24)

where W(xm) is a weighting function which can be calibratedsédect specific regions
of the distribution ofx;,,. For the purposes of this paper, we consider ¢lewiing

cases: i)W(xHi) =1, which correspond to a test considering the enlis&ibution; and

iy wix. )=1- XT+i_E[Xl]
)T T

focuses the test on the tails of the distributidnwind speed intensity. The null

}0(0)1, where ¢(.) is the Normal PDF. The second case

hypothesis of model equivalence is associated mémonditionE[MR+i] =0, and the

test statistic isV\/LRmx/Eagl, where WLRr+ is the sample mean oMR,,;, over the
forecast horizonh, and o;,' is the heteroskedasticity and autocorrelation isterst
estimation ofVar [\/E\NLRHJ; see Amisano and Giacomini (2007) for further deta

Note that density forecasts could be defined uaicgmmon function across all models,
such as the normal density where the first and rek@vder conditional moments are
determined in accordance with the alternative $igations. In this case, we compare
only mean and variance forecasts, with a minor chpé the shape of the distribution
and of higher order moments.

Furthermore, following the contribution of Dieboéd al. (1998), we evaluate density
forecasts using the inverse probability transforppraach of Rosenblatt (1952).
Campbell and Diebold (2005) used similar methodthen context of weather forecasts
for weather derivative pricing, as did Allen et 009) for the evaluation of density
forecast of financial durations, which, similarlp twind speed intensities, they

characterized by distributions with a positive supp

Given the one-step-ahead density forecr:isr,l(sxr+i |9,IT“‘1) , we compute the cumulated

density forecasts as:
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If a model is correctly specified, the sequer{(b'em’m(xr+i )}h should distribute as a

i=1
Uniform in the interval [0,1]. Following Campbelhd Diebold (2005), and Allen et al.
(2009), we suggest analyzing the histograms of, @&well as its ACF, and to test for

the null hypothesis of a Uniform distribution.

3. Empirical analysis

In this section, we fit and compare the previousdet® on a set of three wind speed
intensity series. The data, available in the ratib@anuary 1986 to 31December 2008,
refer to three meteorological stations located atad at Wielun (WMO 12455), Lodz
(WMO 12465), and Sulejow (WMO 12469). Within patezdes, we report the World
Meteorological Organization (WMOQO) code for eachtista We use the historical time
series of daily average wind speed provided byadwali Climatic Data Centre, measured
at 10 meters above the ground level (10 magl). $&ees have been checked for
homogeneity and coherency, see Boissonade et @02)2 The series do not allow
capturing the intra-daily periodicities, and wilequire some assumptions for the
evaluation of power production at turbine heighte Will discuss these last elements in a
subsequent section. We estimate the models ustagugato the 31 of December 2007,
while 2008 data will serve for out-of-sample modeiparison.

Strong periodic components characterize thesedgenes. These are evident in the graph
of the original series, and clearly appear botthecorrelogram and in the periodogram
(which peaks at zero and annual frequencies). Teead distribution of the data could
suggest Gamma, Weibull, and Log-Normal densitieguré 1 reports an example for

Wielun station. Similar graphs are obtainable far dther time series.

[FIGURE 1]
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3.1. Periodic components estimation

We estimate the periodic components following thpraaches described in Section 2.1.
If we consider a multiplicative model as in equasig1)-(2), all series have a strong
yearly pattern, and some other minor periodic camepts. If we also add a second
periodic function, and thus following model (2){&)), we note this has a minor impact.
Table 1 summarizes the coefficients associated thighestimated periodic components,
while Figure 2 plots the deterministic periodic gwnents of Wielun time series.

Once periodic components are filtered out with aelyu multiplicative approach
(equations (1) and (2)), the seasonally adjustddssevidences serial correlation, which
might be associated with mild long-memory behawouin fact, the GPH and Whittle
tests for fractional integration suggest, but oatythe 5% level, the presence of long-
memory, with estimated integration coefficientsseldo 0.1 (we have not reported these
tests for brevity). Figure 3 reports the graphi@madlysis of Wielun seasonally adjusted
series after the estimation of a multiplicativeipdic component. Results for the other
stations are similar, as well as for the case dfita@ and multiplicative periodic

components, apart the obvious difference in theédledensity.

[FIGURES 2 AND 3]
[TABLE 1]

3.2. ARG, GAR and ARFIMA model estimation

On the seasonally adjusted series, we fit the dymanodels presented in section 2.2.
Tables 2, 3 and 4 report the estimates for ARG, GARFIMA-GARCH and ARFIMA-
FIGARCH (GARCH variances have been introduced tofywehe advantages of long-
memory in variances), respectively.

With respect to the GAR estimates, we note thasehequire the inclusion of higher
order lags. In fact, we have included lags up teprlO (selected using a general to
specific approach), suggesting that the presenceildflong-memory effects (however,
standardized GAR residuals do not show serial @iro®, supporting the estimate of
short-memory GAR specifications). Parameters ewuohgn a relevant persistence

characterize the conditional variances providedhHsy GAR model, similar to what is
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observed for financial assets. The ARG model dossrequire lags higher than 5.
Notably, the parameters of ARG are far from theglamemory limit (thes should sum to
1).

In contrast, ARFIMA mean models return estimatednmig/ coefficients ranging from
0.17 (Wielun) to 0.2 (Sulejow), while only an MA(18rm is needed to capture short-
memory behaviours. In the variances, GARCH and RRGA specifications are close
one to the other, with a clear preference for shmmory structures for Wielun and
long-memory for Lodz, while Sulejow suggests thedhéor long-memory, but only at
the 5% level (on the basis of Likelihood RatiortgesFor ARFIMA models, we also test
the normality hypothesis over residual. Severdktase all concordant and rejecting the
null (not reported).

In Figures 4 and 5, we graphically compare theditnean and variances of wind speed
intensity (thus also including periodic componenpspvided by the four alternative
specifications for Wielun data. It clearly appefisn the scatter plots that the models
provide extremely close fit for the mean, while soifferences appear for the fitted
conditional second order moment. In particular, MR& specifications have the closer
fitted variances, and they sensibly differ fromdb@f ARG and GAR models. These last
two models also have different variance patternse. dbtain similar results for Sulejow
and Lodz. This fact could have relevant impacttha pricing of contracts based on the

wind power production.

[TABLES 2, 3 AND 4]
[FIGURES 4 AND 5]

3.3. One-step-ahead model for ecast

We now evaluate the one-step-ahead model forecHstsevaluation sample consists of
366 days, i.e., the entire year 2008. In Table&yaport the MAE and RMSFE measures
for the wind speed intensity point forecasts acralbsmodels and stations. The two
indices are concordant in suggesting a preferefcARG model for Wielun and
Sulejow, while ARFIMA-FIGARCH is preferred for LodxVe note that the models are
all very close to one another. Within ARFIMA-GARCihd ARFIMA-FIGARCH, the

two closest specifications, there is always a nmalgireference for the second.
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We search for confirmation of this result by evéilugthe density forecasts produced by
the different models. In this case, we consideh ltheé Amisano-Giacomini test, and the
inverse probability transform. We stress that thelwation of density forecast assumes a
central role, given the subsequent use of modelsvilod risk management, as we will
discuss in the following section.

Table 6 reports the Amisano-Giacomini robust téstistic for all pairs of models with
weights focusing on the tails, and using, as f@edeansity, the normal calibrated with
conditional mean and variance forecasts producedthiey four alternative models.
Amisano-Giacomini results confirm the previous firgs with respect to density
forecasts: in most cases, the models provide defwiécasts that are not statistically
different. We observe few pairs of models with naadly different forecasting ability,

in particular for Sulejow. We obtained substanyigiimilar results with weights set all to
1 (not reported to save space).

If we consider the inverse probability transforroatithe outcomes are different. In fact,
as shown in Table 7, ARG provide the worst resuwdts;epting the null of Uniform
distribution only in a few cases. The other mod®iks almost equivalent for Sulejow,
while Wielun and Sulejow show a preference for G the fewer rejections of the
null). The result for ARG depends on the overcotregion of the forecasts around the
mean. Summarizing, the results based on the opeabtead forecasts suggest that the
models are quite close to one another, with theegh@n of ARG, whose density

forecasts are unsatisfactory.

[TABLES 5, 6 AND 7]
4. Wind risk management

Wind farms represent long-term investment projdotstheir owners. Guaranteeing a
profit in the medium/long-term requires careful eoof locations. In fact, one of the
most relevant features of wind is its large voaiigtibver both intensity and direction, and
the interdependence of these quantities with tlealiwation and structure of the land
(roughness). As a result, before wind farm installg locations are analysed and

monitored for at least one year, using weatherostatthat measure wind speed intensity
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and direction at different heights. The collectemtadallow the development of an
appropriate budget, including the expected wind groproduction. Alternatively, when
historical data for specific locations are not &atae, close WMO stations can be
potential proxies. However, wind speed is not a etary quantity and we need to
transform it into electricity, for which the mark@tovides prices.

The process of transforming wind kinetic energy ietectric energy is nonlinear and
stochastic, due to the combined effect of wind dpeéensity, wind direction, and the
time taken for turbines to rotate to follow the didirection. As an example, Figure 6
shows the observed wind speed and energy produfdioan already existing turbine.
The empirical power production oscillates aroundoa-linear path that represents the
theoretical power curve, i.e., the non-linear fimctthat maps wind speed intensity into
produced power (power curves are turbine-specifitd gorovided by turbine
manufacturers). Power production starts above anmim wind speed cut-off level
(generally 2 meters-per-second, m/s), graduallgemees up to a maximum level (turbine
full production is reached), and then stops at @peu wind speed cut-off value
(depending on turbines, but generally between 2b3nm/s) in order to avoid damage

to the turbine from excessive wind speeds (in ex¢reveather conditions).
[FIGURE 6]

We must consider an additional aspect in the mopetaaluation of wind power:
historical data are not generally available atttirbine height (it could vary between 50
and 110 magl), but at lower heights (in most cat@smagl for WMO stations).
Therefore, we must convert the wind speed histbdata into wind speed time series at
the desired turbine height. One approach availebtee meteorological literature is the

so-called Hellman’s formula:
a
X = X (—j (26)

where X, is the wind speed at the desired heightX,, is the observed wind speed at

heightm, anda is a coefficient associated with the land rougen&his parameter can be
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either calibrated or estimated using closer or laimiocations for which data are
available at two different heights. Note that titer&ture contains alternative approaches;
see Leroy (2004) for an example.

Given the wind speed at a desired height, we dateritihe (theoretical or historical)
power production through the power curve. Howewlre to the several elements
affecting power production (changes in the direcand intensity over the day, hitting of
the upper or lower cut-off values...) cumulativend/speed indices (CWSI) are preferred
instead of power productions to price wind derivesi We determine the CWSI as
simple sums of average daily wind speed intensdies the target period, filtered from
values below the lower cut-off and above the uppgtoff. For instance, with observed

average daily wind speed intensitigsfrom 1 to T, we can obtain the CWSI for the last

year by:

.
CWSp_sen= 2, X1 (1<% <U) (27)

t=T-364

where | (.) is the indicator function, whileandu are the lower and upper cut-off values,

respectively. Despite the non-linear correlatiotween average daily wind speed and
effective power production, as evidenced by Brixaket(2005), we generally base wind
contracts on wind indices determined in accordavite (27).

Wind indices represent the most relevant elementdhie assessment of the economic
value of a new wind farm, or to price wind relatdetivative contracts and insurances.
Owners of wind farms may consider buying theserumsénts in order to offset part of
the risks associated with the large variabilitywohd speed. From a different point of
view, determination of the future theoretical wipdbduction for specific locations could
use wind indices.

Recently, the introduction of green certificatestiy EU introduced a second significant
source of revenues for wind farms. In fact, eveggawatt of energy produced by a wind
farm provides one green certificate that has assa#ue in the market. Given the
purposes of the actual work, we will not consider éffects of green certificates on the

risk evaluation of wind farm, but will focus onlydhe wind energy production.
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We can apply the models proposed in this papeh@simulation of the future evolution
of wind speed intensities, and thus simulate tharéudensity of wind speed indices.
Before presenting some empirical evidence, we lgriafroduce the approaches used to

price a contract based on a wind index.

4.1. Pricing wind-r elated contracts

The market for weather derivatives that depend md wdices is highly illiquid, due to
the location-specific features of the contracts #redlimited number of subjects trading
them (the main operators are reinsurance comparisesy result, the basis of the pricing
process should arise from a suitable model, folgwihe approach of VanderMarck
(2003). The standard Black and Scholes (1973)ragstfree pricing is unfeasible given,
in that the underlying stochastic variables dofoéow the geometric Brownian motion,
they strongly deviate from normality, and they ao¢ directly tradable in the market, see
Dischel (2002). Pricing generally follows an actabapproach based on the simulated
distribution of contract outcomes. Simulations eoaditional on historical data and, if
available, on short and medium term weather fotecage Cao and Wei (2000, 2003),
Zeng (2000), Davis (2001), and Brix et al. (20G&yong others. The actuarial price is
thus the discounted expected payoff of a ‘neuwalfair’ value plus some margin that
includes fixed costs and risk loading factor fae tontract writer, see Henderson (2002).
The simulations may follow two alternative appraashthe direct generation of wind
indices, as done by Historical Burn Analysis (HB#)d Index Modelling, the simulation
of the underlying wind speed intensity, as advatdig Daily Modelling. The latter
method avoids some of the drawbacks of index-baggmoaches, as pointed out by
Nelken (2000). In fact, Daily Modelling is consistevith the features of the underlying
variables, such as serial correlation, long-memaapd non-normal distribution.
Moreover, it is much more flexible, and can easiigorporate short-term forecasts.
Finally, its basis comes from higher frequency datempared to HBA and Index
Modelling, and thus it could reduce the impact sfireation errors. In this paper, we
clearly follow the Daily Modelling approach and ubke proposed models to simulate the
future evolution of wind speed intensity. We these uhe simulations to construct the

simulated density of a wind index, and to priceresurance contract.

4.2. Smulating wind speed intensitiesand CW S|
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The ARG, GAR, ARFIMA-GARCH, and ARFIMA-FIGARCH motke represent a

selection of alternative methods for the simulatioin future paths of wind speed
intensity. Before using them out-of-sample, to gateethe CWSI for the year 2008, we
assess their performances in-sample, followingagroach of Campbell and Diebold
(2005), which employs the probability inverse tfan® approach similar to that
presented in Section 2.3. In this case, the faswithe simulated distribution of CSWI

over a target period of lengthconditionally to the information set at tinfe We denote
this simulated distribution a§TS(CV\/SIT+h). The CWSl 4y, is also directly observable

(we are in-sample), and thus we define the Rosdtrttdasform as:

Fon(CWa,,, )= J'C\/\Gnh

£5(v)av (28)
Given that our out-of-sample target is the year,seethe in-samplé equal tol year
(either 365 or 366 days). We thus split the time series into sevérgkar periods, and

evaluate (28) for each year excluding the first ,onsing every timen=10,000

simulations to recover fTS(C\/\lST+h). Under the assumption of correct model

specification,{Fyiar (cwsl ., )}2007 is distributed as a Uniform in [0,1]. This test

year 1987
allows comparison of models for daily wind speethwespect to their ability to simulate
the distribution of wind speed indices.

For the simulation of CWSI, we assume that theimerlotor is at 82 magl. We obtain
the 82 magl wind speed by the Hellman’s formulahwoughness coefficiera=0.305,
which we estimated using the empirical daily datend speed at 82 magl) from one
Polish wind farm, which is in the middle of thegbrWMO stations we are considering.
Table 8 reports the p-values for the Uniformitytsesver the 21 points in the sample. The
tests show evidence of a preference of ARFIMA dmetions over GAR and ARG
models. The Gamma-based models are substantialiyaent, while the introduction of
variance long-memory does not improve over the EmARFIMA-GARCH model for
the logarithms of wind speed intensity. We thenlys®a the ACF of the series defined
using (28), but found no significant serial cortigla (results not reported), a further
result supporting model adequacy. The differenfgoerances of the models strongly
depend on the very different shapes of the simiil&@®/S| densities. As an example,
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Figure 7 shows the CWSI densities for the year 2@08ilar results are obtained in-
sample). The densities differ for the mean and ghape: ARFIMA models provide
CWSI with lower mean and fatter tails. This is adrgduct of the overconcentration of
ARG models around the mean (thus, less simulated wpeed intensities below and
above the cut-off values for energy production, #ng larger CWSI); while for GAR,
the effect is due to the inappropriateness of tloelehin capturing tail events. Finally,
there is a strong difference in the conditionaliaraces of the models, as evidenced in
section 3; a fact that plays a relevant role in tbastruction of CWSI. All models
provide densities far from being normal, as condéidby several tests (not reported for
brevity). Table 9 reports the expected mean anudata deviations of 2008 CWSI for
the three weather stations. Notably, the averagdsstandard deviations of ARFIMA
models are closer in mean and variance to therfdatonoments. Summarizing, all the
previous differences have a relevant impact inatimel risk management framework, and
we thus conclude that ARFIMA specifications aref@med over ARG and GAR.

4.3. Wind risk management

In order to examine the pricing abilities of theggnted wind models , we apply them for
pricing a protective capped put option, a standamdtract in the weather derivatives
market. This type of contract would be of interesta wind farm owner who wants to

hedge the risk of a low power production over agiperiod (in our case, the year 2008).
The underlying instrument of the put is the CWSle Wepresent the payout of the

contract as follows:
P=min(max((K—C\NSl)r,() pap) (29)

where CWSI is the observed wind speed index overtainget period, K is the strike
value of the CWSIy is the tick value (monetary value of one pointlted CWSI), and
cap is the cap value of the contract. In the example wset r=10,000%,
cap =1,000,000¢%, and K at the average yearly CWSI of the last 4@ry. The contract
premium is determined as follows: First, we deteenthe expected payoff of (29),
evaluated using the simulated CWSI densities @820 his quantity is then increased
by a risk loading factor set at 6% of the ReturAv@ue-at-Risk (RoVaR) of the CWSI
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density at the 95% confidence level, by a 3% mamagé and transaction costs and by
fixed margin of 10,000 €. Finally, we discount tiogal future premium with a 3% risk-
free rate. We then compare the theoretical pri¢daimed from the simulated CWSI to
those obtained by HBA, which we apply following 3®n et al. (2005). Note that HBA,
by using a limited number of data (in our case 2keovations), contains a huge
estimation error, an element we try to minimizedayly modelling. We prefer HBA to
index modelling as it is much more diffused amoragptioners.

Table 9 contains all contract prices for the thseaions. For all localizations, the put
options, with strikes fixed as 10-year averageqeaped to be deeply out-of-money.
ARG or GAR models always gave the lowest pricesabse their simulated densities of
CWSI indices overestimated the mean and underestihthe variance. As a result, by
using these models to price wind options, we haeeived a final price that is slightly
higher than the discounted value of the brokeragegm. ARFIMA models with short
and long memory in conditional variances providegs higher than ARG and GAR
models, and lower than the HBA approach. The omigeption was Sulejow, where
considerably lower values in the mean of the sitedl& WSI index, coupled with higher
variances, made this option more expensive. Ex-pgostparing the realized 2008 CWSI

with the simulated densities, we note how all cacts were not exercised.

5. Conclusion

In this paper, we compared three alternative amghesmfor the estimation and simulation
of wind speed intensities for the pricing of wingtions. We show how we could fit the
models over real data and we compared them frontaistgcal point of view by
contrasting their density forecasts. We also tatkhe point of view of a weather risk
manager and considered the models as tools fopribmg of wind options. Our study
provides a framework for the comparison of theserahtive models and, for the series
we used, ARFIMA-based specifications provided letsults.
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Figure 1. Wielun graphical analysis: Wielun dataCF Periodogram (selected
frequencies up ta/10), and kernel density estimate.
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Figure 2. Periodic components for Wielun: left danadditive (upper line) and
multiplicative (lower line) components of Wielunghktransformed data; right panel,
Wielun data (grey) superimposed to the exponenfizhe additive periodic component

of the left panel.
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Figure 3. Wielun graphical analysis of "seasonaltijusted” series after removing a
multiplicative periodic component: Wielun "seasdynadjusted” series, ACF (straight
lines denotes the 5% confidence interval), Perioglmg and kernel density estimate.
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Figure 4. scatter plot of the in sample fitted atindal mean for Wielun wind speed
intensity provided by the ARFIMA-FIGARCH, ARFIMA-GRCH, ARG and GAR
models
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Figure 5: scatter plot of the in sample fitted dtindal variances for Wielun wind speed
intensity provided by the ARFIMA-FIGARCH, ARFIMA-GRCH, ARG and GAR
models
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Figure 6: Empirical power curve extracted from llhwmes observations for a turbine
located in Poland.
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Figure 7: Simulated CWSI kernel density estimate2008 from ARFIMA-GARCH
(AG), ARFIMA-FIGARCH (AF), ARG, and GAR models
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Table 1: Parameter estimates of periodic components

Wielun Sulejow Lodz

Coeffs. T-stat Coeffs T-stat Coeffs T-stat
Coefficients ofs(t)

B, 1.525 39.563 1.387 28.281 1.544 33.255
B -0.174 -9.501 -0.104 -4.611 -0.200 -9.145
5, 0.014 7.745 0.009 4.183 0.018 8.274
¢ 0.213 16.731 0.153 9.710 0.157 9.499
[V 0.024 2.051

W, 0.071 5971 0.074 4952 0.086 5.985
¥, -0.024 -2.165 -0.035 -2.604 -0.027 -2.081
/8 -0.021 -1.968 -0.031 -2.392 -0.026 -2.091
Coefficients ofv (t)

a, -2.815 -58.441 -2.643 -54.648 -2.747 -47.482
a, -0.007 -5.888 -0.002 -1.902 -0.003 -2.320
) 0.226 5453 0.296 7.044 0.169 3.761

The table reports the significant coefficients #melcorresponding robust T-statistics.

Table 2: ARG estimation output

Wielun Sulejow Lodz

Coeffs. T-stat. Coeffs T-stat Coeffs  T-stat
o 5633 37.033 4.116 32.758 4.689 31.342
B 0.447 37.893 0.490 41.157 0.460 39.620
Bs 0.034 2.725 0.049 3.956 0.034 2.722
B, 0.038 3.061 0.027 1.997
Bs 0.031 2.690 0.035 2.943
(o 0.093 46.543 0.105 48.638 0.117 46.076

The table reports the estimated coefficients andhitaximum likelihood t-statistics.



Table 3: GAR estimation output

Wielun Sulejow Lodz

Coeffs. T-stat. Coeffs T-stat Coeffs T-stat
Yo 0.550 28.726 0.528 30.173 0517 24.762
n 0.389 36.759 0.406 41.821 0.402 37.390
Vs 0.031 2.847 0.042 4.451 0.038 3.991
Va 0.034 3.301 0.029 3418 0.033 3.340
Yz 0.017 2.067
Ve 0.019 1911 0.025 2.398
Yo 0.024 2.748
V1o 0.028 2.978 0.033 3.288
w 0.003 0.743 0.023 3.187 0.028 1.818
a, 0.024 1.377 0.061 5347 0.064 3.442
B 0.956 21.721 0.824 18.047 0.793 8.235

The table reports the estimated coefficients andhtaximum likelihood t-statistics.

Table 4: ARFIMA-FIGARCH and ARFIMA-GARCH estimatioputput

Wielun Sulejow Lodz

Coeffs. T-stat. Coeffs T-stat Coeffs T-stat
ARFIMA
d 0.170 13.391 0.201 15.601 0.179 14.939
g -0.266 -18.090 -0.255 -17.298 -0.261 -18.015
GARCH
w 0.010 1408 0.051 1.314 0.049 1.186
a, 0.008 3.770 0.014 2.477 0.020 2.102
B 0.989 246.906 0.967 50.803 0.964 43.119
FIGARCH
w 0.343 3377 0.368 3.611 0.333 2.824
Y, 0.719 10.502 0.694 11.533 0.677 8.063
A 0.153 5.718 0.147 4519 0.183 5.090
B 0.616 8.816 0585 8.913 0.560 6.380
LR test 0.381 0.025 <10*

The table reports the estimated coefficients arel naximum likelihood t-statistics. The estimated
GARCH(1,1) conditional variances foIIO\ED't2 =wt ,80}2_1 +0’£ﬁl. The last row report the p-value of

the likelihood ratio test for the null hypothesfsno long-memory in conditional variances. Undes ttull,
the estimated FIGARCH models collapse on GARCH iipations with @ = — . The test statistic

has a Chi-square distribution with one degreeeddom.
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Table 5: MAE and RMSFE

Weather Model/ ARFIMA ARFIMA ARG GAR
Station Indicator GARCH FIGARCH
Wielun MAE 0.911 0.910 0.909 0.912
RMSFE 1.174 1.171 1.170 1.175
Sulejow MAE 1.115 1.113 1.097 1.181
RMSFE 1.473 1471 1.431 1.550
Lodz MAE 1.097 1.096 1.116 1.156
RMSFE 1.440 1.437 1.465 1.492

Bold values identify the preferred model.

Table 6: Amisano-Giacomini test statistics

Weather Model ARG GAR ARFIMA
Station GARCH
Lodz ARFIMA-FIGARCH -0.721 0.571 1.474
ARFIMA-GARCH -1.231 0.029
GAR -1.393
Sulejow ARFIMA-FIGARCH 0.388 1.923 2.099
ARFIMA-GARCH 0.469 1.630
GAR -1.641
Wielun ARFIMA-FIGARCH -0.654 -0.117 2.898
ARFIMA-GARCH -1.752 -1.077
GAR -0.582

Amisano-Giacomini robust test statistic for equaletasing ability. The test statistic is distrilmligs a
standardized normal. The test is based on thedoef the row model minus the log-score of thieim
model. Positive (negative) statistically signifitd@st statistics should be interpreted as a peater for the
row (column) model. In bold we report non signifitéest statistics at the 1% confidence level (gided).

Table 7: testing Uniform distribution of inverseopability transform
Lodz  Sulejow Wielun Lodz Sulejow  Wielun
ARFIMA-FIGARCH ARFIMA-GARCH
Kolmogorov-Smirnov (D+) 0.542 0.474 0.126 0.573 0.461 0.160
Kolmogorov-Smirnov (D-) 0.054 0.208 0.053 0.054 0.206 0.053
Kolmogorov-Smirnov (D)  0.107 0.411 0.105 0.107 0.409 0.106

Kuiper (V) 0.045 0.177 0.002 0.052 0.166  0.003

Cramer-von Mises (W2) 0.160 0.554 0.117 0.156 0.577 0.156

Watson (U2) 0.020 0.244 0.004 0.019 0.269 0.009

Anderson-Darling (A2) 0.141 0.426 0.015 0.150 0.473  0.038
GAR ARG

Kolmogorov-Smirnov (D+) 0.412 0.293 0.299 0.142 0.331 0.283
Kolmogorov-Smirnov (D-) 0.137 0.741 0.805 0.011 0.028 0.016
Kolmogorov-Smirnov (D)  0.274 0.570 0.583 0.021 0.056 0.032

Kuiper (V) 0.078 0.575 0.673 0.000 0.005 0.002
Cramer-von Mises (W2) 0.322 0.570 0.367 0.020 0.059 0.038
Watson (U2) 0.116 0.373 0.544 0.001 0.002 0.000
Anderson-Darling (A2) 0.421 0.569 0.157 0.001 0.003 0.006

The table reports the p-values of the various testisided in the first column. We report in boldsea
where the null hypothesis of uniform distributieréejected at the 5% level.
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Table 8: testing Uniform distribution of inverseopability transform for CWSI
Lodz Sulejow  Wielun Lodz Sulejow  Wielun
ARFIMA-FIGARCH ARFIMA-GARCH

Kolmogorov-Smirnov (D+)0.854 0.295 0.772 0.579 0.13- 0.340
Kolmogorov-Smirnov (D-) 0.477 0.610 0.301 0.843 0.84« 0.636
Kolmogorov-Smirnov (D) 0.854 0.574 0.58¢ 0.948 0.26¢ 0.654
Kuiper (V) 0.923 0.399 0.61- 0.968 0.37¢ 0.497
Cramer-von Mises (W2)  0.949 0.753 0.86¢ 0.818 0.48: 0.654
Watson (U2) 0.929 0.502 0.70: 0.884 0.41:2 0.669
Anderson-Darling (A2) 0.961 0.666 0.83] 0.907 0.437 0.775
GAR ARG
Kolmogorov-Smirnov (D+)0.278 0.241 0.064 0.391 0.56z 0.104
Kolmogorov-Smirnov (D-) 0.138 0.173 0.082 0.261 0.10¢ 0.073
Kolmogorov-Smirnov (D) 0.275 0.344 0.12¢ 0.514 0.20¢ 0.146
Kuiper (V) 0.033 0.036 0.001 0.160 0.098 0.002
Cramer-von Mises (W2) 0.263 0.256 0.088 0.392 0.28¢ 0.085
Watson (U2) 0.035 0.035 0.001 0.102 0.098 0.001
Anderson-Darling (A2)  0.000 0.110 0.027 0.000 0.15¢ 0.000

The table reports the p-values of the various testisided in the first column. We report in boldsea
where the null hypothesis of uniform distributios iejected at the 10% level (we chose a more
conservative confidence level with respect to tifatable 7 given the limited number of observatiams
our sample (the sample includes 21 observations)).

Table 9: Estimated contract prices

Wielun Sulejow Lodz
Historical CSWI average 2238.1 2404.6 2271.5
Historical CWSI standard deviation 262.9 189.7 294.5
Strike price (CWSI points) 2097 2353 2128
<  [Historical Burn Analysis 2255.7 2534.1 2510.2
% c ARG model 2313.1 2548.2 2557.4
L GEJ GAR model 2307.0 2520.7 2525.2
0 AG model 2226.5 2448.6 2456.1
AF model 2231.2 2457.1 2467.1
5 Historical Burn Analysis 120.1 150.5 199.6
g .S ARG model 87.9 114.4 107.1
-c% -g GAR model 81.9 103.1 105.2
N 3 IAG model 116.6 1734 157.4
AF model 122.1 182.4 167.4
S |Historical Burn Analysis 142,088 € 47,856 € 21,233
S ARG model 11,377 € 26,271 € 9,746 €
§ GAR model 10,757 € 31,222 € 9,723 €
g AG model 108,111 € 272,727 € 16,575 €
O |AF model 114,166 € 271,004 € 18,425 €
Realized CWSI 2205.1 2556.6 2625.3

The table reports the simulated CWSI mean and atdndkeviations and the price for a capped put aptio
with the strike value reported in the first row.
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