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Abstract. The modelling of wind speed is a traditional topic in meteorological research, 
where the main interest is on the short-term forecast of wind speed intensity and 
direction. More recently, this theme has received some interest in the quantitative finance 
literature for its relationship with electricity production by wind farms. In fact, electricity 
producers are interested in long-range forecasts and simulation of wind speed for two 
main reasons: to evaluate the profitability of building a wind farm in a given location and 
to offset the risks associated with the variability of wind speed for an already operating 
wind farm. In this paper, we contribute to the increasing literature regarding 
environmental finance by comparing three approaches that are capable of forecasting and 
simulating the long run evolution of wind speed intensity (direction is not a concern, 
given that the recent turbines can rotate to follow wind direction): the Auto Regressive 
Gamma process, the Gamma Auto Regressive process, and the ARFIMA-FIGARCH 
model. We provide both in-sample and out-of-sample comparisons of the models, as well 
as some examples for the pricing of wind speed derivatives using a model-based Monte 
Carlo simulation approach. 
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1. Introduction 

 

Wind conditions represent a relevant source of risk for every wind farm. The risk 

exposure can be associated with two elements that characterize the wind: the overall 

wind speed, or wind speed intensity, and the wind direction. However, most turbines 

currently built have mechanisms for automatic rotation of blades in the appropriate wind 

direction. Therefore, in practice, the most relevant weather exposure of wind farms can 

be measured by analyzing only the wind speed intensity (an approximation is included 

since blade rotation is not immediate). In order to mitigate this wind risk, we often use 

insurance contracts or wind derivatives, making a direct connection between atmospheric 

elements, financial markets, and economic implications. For a survey of the literature on 

wind risk evaluation and modelling, see Brix et al. (2005). 

From a meteorological point of view, wind speed intensity is just one of the variables 

generally modelled to provide robust short-term weather forecasts. However, for the 

purpose of wind risk evaluation, on the one hand, we need long-term forecasts and 

simulations, while, on the other hand, the interest in weather variables other than wind 

may be limited. As a result, meteorological models are not appropriate for long-range 

wind speed intensity forecast and simulation, while statistical approaches are viable. The 

scientific literature includes some contributions on that topic, for example, Brown et al. 

(1984), Castino et al. (1998), and Aillot et al. (2006), among others. However, few 

authors have yet considered the economic and financial point of view; that is, studying 

problems associated with the modelling of wind speed intensity for evaluating wind 

risks, and for the pricing of wind derivatives (see, for instance, Leroy (2004) and Yamada 

(2008)). 

In this framework, the main interest is in the evaluation (even by simulated methods) of a 

wind index, which is a transformation of wind speed intensity into a quantity 

proportional to the energy power potentially produced by a turbine over a given period. 

Simple and naïve approaches focus on low frequency (from monthly to yearly, usually) 

wind data time series. These data are fitted with an unconditional density, which we then 

use to simulate wind speed paths. In turn, these paths determine simulated wind indices. 

However, these unconditional approaches fail to consider the periodic evolution of wind 

speed intensity, or the presence of serial correlation. We can capture both of these 
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features by alternative methods based on higher frequency data. Moreover, the normality 

assumption of wind indices is questionable. 

Our present paper contributes to the weather derivatives and environmental finance 

literature in several ways. First, we consider a set of models that capture serial 

correlation; these have already appeared in scientific contributions, but generally in 

different contexts. We consider the ARFIMA-FIGARCH model of Beine and Laurent 

(2003), as used in many frameworks including financial time series analysis, as well as 

for the study of average temperature sequences, see Caporin and Prés (2009). We adapt 

the ARFIMA-FIGARCH model to the logarithms of wind speed intensities, adding 

periodic deterministic components to capture the yearly seasonal cycle. We then consider 

two competing approaches that introduce serial correlation in Gamma densities: the 

Gamma Auto Regressive (GAR) model of Tol (1997) (already used by the author to 

model wind speed intensity) and the Auto Regressive Gamma (ARG) of Gourieroux and 

Jasiak (2006), which has been proposed for modelling intertrade durations. 

Our second contribution is to provide a methodology for comparing wind speed models 

by focusing on both in-sample and out-of-sample model performances. In-sample, we 

compare the model fit with traditional statistical methods. Out-of-sample, we compare 

the alternative models and specifications using both one-step-ahead wind speed point and 

density forecasts, as well as in terms of the model’s ability to simulate the evolution of 

wind indices. This last element will provide fundamental results, given that wind indices 

are the relevant element for the pricing of contracts covering wind risks. From a different 

point of view, the ability to simulate wind indices will also be interesting for the 

identification of optimal locations for wind farm construction. All of the considered 

models, approaches, and methods we will compare using a number of daily wind speed 

intensity time series obtained from meteorological stations based in Poland. By 

simulation based methods we will verify the model performance, and we will provide 

theoretical prices of wind derivatives, comparing these to the ones provided by simpler 

unconditional methods. 

This paper differs from other contributions on wind speed modelling in a number of 

ways. Firstly, we do not base the models on data transformations, such as the Box-Cox in 

Brown et al. (1984), but on actual original data, for which we postulate a specific 

stochastic structure whose components have a direct interpretation. In detail, we assume 

that wind speed intensities are function of periodic deterministic components and of 
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stochastic components. As a result, we incorporate serial correlation in stochastic 

processes, defined over a positive support. Secondly, the models we propose are able to 

capture the yearly seasonal evolution of wind speed and, with generalization, can capture 

intra-daily periodicity created, for instance, by the differences between day and night 

wind speed intensities. However, the dataset we consider in the empirical analysis 

contains only average daily wind speed intensities, and thus we are not able to recover 

intra-daily patterns. The empirical results of our work show how alternative models 

appropriately fit historical data, while their forecasting performances may differ. 

The paper proceeds as follows: Section 2 introduces the modelling approaches and the 

techniques we consider for model comparison. Section 3 presents the empirical estimates 

of the models and a first comparison across these. Section 4 compares the fitted model 

within a wind risk management framework. Section 5 concludes the paper. 

 

 

2. Modelling wind speed intensity 

 

Meteorological stations measure wind speed intensities and direction at regular 

frequencies, typically in minutes. These data present a superimposition of several 

elements: the stochastic nature of the series evolution, the intra-daily periodic evolution 

governed by the alternation of day and night and the long-term seasonal component 

driven by the sequence of seasons. The models we propose in this paper appropriately 

capture these components. All of the models we consider presume that the periodic 

components are purely deterministic and we could filter these out a priori, before 

modelling the underlying stochastic process. We note that we could follow alternative 

approaches; for instance, by assuming a stochastic nature of the periodic components, we 

could specify a GARMA processes as in Guégan and Diongue (2009). In the following 

section, we describe the structure of the periodic evolution of wind speed intensities and 

show possible ways to estimate and filter out this component. The subsequent sections 

will then introduce the alternative models (dealing with their structure, estimation and 

simulation), and the approaches for their comparison. 
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2.1. Periodic component 

We consider two alternative specifications of the periodic deterministic component: the 

first is multiplicative and we apply it to wind speed levels (we can also recast it into an 

additive periodic function using logs); the second models the wind speed logarithm with 

additive and multiplicative periodic effects. Note that the purely additive approach 

provides a filtered series with support over +ℝ  as an output, while the additive and 

multiplicative method gives a filtered series with support over ℝ . 

If tx  denotes the positively valued random variable measuring the average wind speed 

over a relatively short time period (say 1 hour), the multiplicative periodic component 

( )s t  affects tx  as follows: 

 

( )s t
t tx e y=  .           (1) 

 

where ty  is the “seasonally adjusted” series. We assume that the function ( )s t  is 

deterministic, as we previously stated, and has the following structure: 

 

( ) ( )( ) ( )( )( )0
1 1

cos 2 sin 2
qw

i
i j j

i j

s t t jf t jf tβ β ϕ π ψ π
= =

= + + +∑ ∑ ,   (2) 

 

where ( )f t  is a yearly periodic sequence adapted to the data frequency. For instance, 

when daily data are used, it has the following form 
1 2 364 1 2

, ,..., ,1, , ,...
365 365 365 365 365
 
 
 

, 

assuming values 
1 2 365

, ,..., ,1
366 366 366

 for leap years. Similarly, for hourly data, we would 

have 
365 24

1365 24 j

j
×

=

 
 × 

 for regular years and 
366 24

1366 24 j

j
×

=

 
 × 

 for leap years. 

The periodic component is formed by a constant, a polynomial trend, and a combination 

of harmonics. Note that the multiplicative periodic component affects the wind speed 

levels through an exponential transformation, which ensures that it has a positive value, 

and its interpretation is as a multiplicative seasonal factor. 
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The standard least squares approaches on the log-transformation ideally estimate the 

parameters in equation (2) (we assume that the probability of having zero average wind 

speed over a not too short period is zero or negligible): 

 

( ) ( ) ( )ln lnt tx s t y= +  .       (3) 

 

We then identify the orders w and q, as well as of the significant coefficients, based on 

information criteria and using Heteroskedastic and Autocorrelation Consistent (HAC) 

standard errors, due to the possible presence of serial correlation and heteroskedasticity 

over the ( )ln ty  series. Note that the multiplicative representation in (1) allows modelling 

ty  with positive-valued stochastic processes. 

As previously stated, we also consider an alternative approach for removing the periodic 

component. In this case we replace (1) with the following equation 

 

( ) ( ) ts t t y
tx e ν+=  ,           (4) 

 

which adds a second periodic function ( )tν . Taking the logarithms of (4), we obtain:  

 

( ) ( ) ( )ln t tx s t t yν= + .        (5) 

 

In equation (5), ( )s t  follows (2) and we estimate this by OLS, as in the previous case. In 

contrast, the extraction of ( )tν  requires a preliminary transformation. Given the fitted 

( )ŝ t  values, we can compute the residuals ( ) ( )ˆln tx s t− , square them and take the 

logarithms. Theoretically, the resulting quantity obeys: 

 

( ) ( )( ) ( )( ) ( )2 2 2ln ln ln lnt tx s t t yν− = +   .      (6) 

 

Therefore, we could recover ( )tν  by assuming a representation similar to that of ( )s t : 
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( )( ) ( )( ) ( )( )( )2

0
1 1

ln cos 2 sin 2
pm

i
i j j

i j

t t jf t jf tν α α δ π γ π
= =

= + + +∑ ∑ .   (7) 

 

We could estimate the parameters in (7) by OLS using HAC standard errors. Removal of 

both periodic components allows modelling of the ty  series using stochastic processes 

with support over the real line. Note that under an assumption of Gaussianity for ty , the 

wind speed intensity tx  follows a Log-Normal distribution. For this reason, we could 

recover parameter estimates for the periodic components by maximum likelihood 

methods. 

Note that we do not consider the estimation of both additive and multiplicative periodic 

components over the wind speed levels, as this approach could create problems in the 

simulation of wind speed trajectories. In fact, use of an additive component over the wind 

speed mean results in the residuals having support over the real line, and the simulation 

of wind speed patterns cannot be easily constrained to assume only positive values. 

Summarizing, we will consider two alternative specifications for the periodic 

components affecting wind speed time series. We represent the first by equations (1)-(2) 

and the second by (4), (2) and (7). Note that if the estimated periodic component in (7) 

collapses to a constant, the specification in (4) becomes equivalent to that in (1). 

 

2.2. Modelling wind speed intensity 

This section presents a set of competing models that are usable for capturing the dynamic 

evolution of wind speed. We will compare these models over real data in the subsequent 

sections. We describe here the model structure, the estimation approaches as well as the 

simulation methods that are fundamental for generating the simulated distribution of 

wind speed series and for pricing wind speed derivatives. We will propose all of the 

models for series filtered from the periodic deterministic component, which we denote by 

ty , independently from the approach used for recovering the periodic component. As a 

result, the support for the ty  densities could be different and will be clear in the context 

of each proposed model. 
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2.2.1 ARFIMA-FIGARCH 

If we remove period components following equation (4), the residual series ty  could be 

modelled with an ARFIMA-FIGARCH process (see Beine and Laurent, 2003), allowing 

for the possible presence of long-memory both in the mean and in the variance. We 

consider this double long-memory model since preliminary analyses we verified that 

“seasonally adjusted” wind speed series could present mild long-memory behaviours. In 

the empirical applications, we estimate the ARFIMA-FIGARCH process, and when the 

data do not support the presence of long-memory in mean and/or in variance, we could 

consider short-memory specifications. In fact, the ARFIMA-FIGARCH model nests both 

ARMA mean specifications as well as GARCH structures in the conditional variances. 

The following equations characterize an ARFIMA-FIGARCH process for the seriesty : 

 

( )( ) ( ) ( )
( ) ( ) ( )( )

1 2

2 2 2

1      | ~ 0, ,

1 1 ,

d t
t t t t

t t t

L L y L I D

L L L L
λ

ε ε σ

σ ω β σ β ε

−Φ − = Θ

 = + + − − Ψ −
 

     (8) 

 

where 1tI −  is the information set up to time t-1, L is the lag operator, D is an un-specified 

conditional density, 0≤d≤0. an, 0≤λ≤1 are the long-memory coefficients for mean and 

variance, respectively, ω>0, ( )
1

1
p

i
i

i

L Lφ
=

Φ = +∑ , ( )
1

1
q

i
i

i

L Lθ
=

Θ = +∑ , ( )
1

m
i

i
i

L Lβ β
=

=∑ , 

( )
1

1
n

i
i

i

L Lψ
=

Ψ = +∑ , and all polynomials satisfy the constraints ensuring stationarity, 

invertibility, and positivity of conditional variances. The ARFIMA model in (8) does not 

include an intercept since it must be equal to zero by construction, as we filter the wind 

speed logarithms following (5). 

Under an assumption of normality, we derive the one-step-ahead conditional mean and 

variance of wind speed as follows. At first, we determine the one-step-ahead conditional 

mean and variance of the ty  series: 

 

[ ] [ ] 2
1 1

1 1

,     ,
qM

t t i t i i t i t t t
i i

E y y Var yπ θ ε σ− − − −
= =

= + =∑ ∑      (9) 
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where [ ]1 .tE −

 

and [ ]1 .tVar −  are the expectation and the variance conditional to time t-1 

information set, respectively, and ( ) ( )
1

1 1
d i

i
i

L L Lπ
∞

=

Φ − = −∑ . The conditional mean 

depends on the past values of ty  with a truncation lag M, which is normally set to one 

thousand (or to all the available information if the sample dimension is lower). We then 

obtain the mean and variance of wind speed logarithms by: 

 

( ) ( ) ( ) [ ] ( ) ( )2 2
1 1 1ln ,      ln .t t t t t t tE x s t v t E y Var x v t σ− − −= + =          (10) 

 

Finally, the normality assumption of yt translates into a log-normality assumption of wind 

speed intensity xt whose conditional mean and variance follows from standard formulae. 

We suggest the use of Maximum likelihood (ML) approaches or Quasi Maximum 

Likelihood (QML) methods to estimate the parameters of the ARFIMA-FIGARCH 

model in equations (4), (2), (7) and (8). The estimation of the entire model could be 

performed by a three-step procedure as follows: i) estimate the parameters of the additive 

periodic component by OLS over equation (5) when the periodic component follows (2); 

ii) estimate the parameters of the multiplicative periodic component by OLS in equation 

(6) when the periodic component is that in (7); iii) estimate the ARFIMA-FIGARCH 

parameters in (8) using a normal likelihood function. Alternatively, we may estimate the 

full model using a normal likelihood function over the wind speed logarithms and using 

the expected mean and variances reported in (10). 

We could perform the simulation of wind speed under the model in (4), (2), (7) and (8) 

by extracting the standardized normal residuals 1
t t tz σ ε−=  from a normal density or by 

resampling them from the in-sample residuals. Use of (9)-(10) allows easy derivation of 

the recursion for the simulation of wind speed patterns. 

 

2.2.2 Gamma Auto Regressive (GAR) models 

The statistical literature includes a number of works combining autoregressive 

behaviours and Gamma distributions. The Gamma Auto Regressive model of Gaver and 

Lewis (1980) provides a relevant example (see also Lawrence and Lewis, 1981, and 
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Smith and Miller, 1986). However, the approach of Gaver and Lewis (1980) is not 

appropriate in our setup since it assumes homoscedasticity and a probability mass at zero 

which is not necessarily present in wind speed data. 

Tol (1997) used a different approach to model wind speed data, proposing the following 

two-parameter conditional Gamma process for the modelling of series ty : 

 

( ) ( )

1 1

,
t t t

t

c y
t

t
t t

e y
f y

c

δ

δ δ

−− −

=
Γ

         (11) 

 

where ( ).Γ  is the Gamma function, ct>0 is the scale parameters and δt>0 is the shape 

parameter. The two time-varying parameters have the following dynamic representation: 

 

2 2

2
,      ,t t

t t
t t

c
µ σδ
σ µ

= =          (12) 

( )0t tL yµ γ γ= + ,         (13) 

( ) ( )( )22 2
t t t tL L yσ ω β σ α µ= + + − .       (14) 

 

where ( )
1

m
i

i
i

L Lγ γ
=

=∑ , ( )
1

p
i

i
i

L Lβ β
=

=∑ , and ( )
1

q
i

i
i

L Lα α
=

=∑ . The conditional first order 

moment, and the conditional variance of ty  are then equal to [ ]1t t t t tE y cδ µ− = =  and 

[ ] 2 2
1t t t t tVar y cδ σ− = = , respectively. Note that (13) represents the conditional mean of the 

Gamma process, while (14) is a conditional variance in the spirit of the GARCH process 

of Engle (1982) and Bollerslev (1986). The GAR model structure previously outlined 

does not include long-range persistence, neither in the mean nor in the variances. In 

principle, we could generalize both (13) and (14) by introducing long-memory 

polynomials, but we will not pursue this objective in the current paper, since the 

empirical analyses we will present show that the simple GAR model could appropriately 

capture the dynamic structure of wind speed intensity. 

We can estimate the complete model in (1)-(3), (11)-(14) by a two-step procedure: i) 

estimate the multiplicative periodic component in (3) by OLS; and ii) estimate by ML 
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methods the other parameters under a Gamma density. Alternatively, we could estimate 

jointly the parameters by using a Gamma density replacing the scale parameter tc with 

the scale parameter ( )s t
te c , and therefore using the following log-likelihood function: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1

1

ln ln 1 ln ,
T

s t
t t t t t t t t

t

L s t c e c x xθ δ δ δ δ− −

=

= − − − Γ − + −∑   (15) 

 

where θ contains the parameters in (2), (13) and (14). Note that in this last case, the 

Gamma parameters, its mean and variance follow: 

 

( ) [ ] ( ) [ ] ( )
2 2

22
1 12

,      ,      ,   and   ,s t s t s tt t
t t t t t t t t

t t

c e E x e Var x e
µ σδ µ σ
σ µ − −= = = =   (16) 

 

highlighting that the same periodic component affects both the mean and the standard 

deviation. 

The simulation of the Gamma process in (11)-(14) goes through the generation of 

random numbers from a two-parameter Gamma density, where parameters are time-

varying. 

 

2.2.3 Auto Regressive Gamma (ARG) models 

Gourieroux and Jasiak (2006) (GJ henceforth) proposed an alternative conditional 

Gamma process, called Auto Regressive Gamma (ARG). Their proposal builds on the 

three parameters Non-central Gamma density, represented as: 

 

( ) ( )

1 1

0

; , , ,
!

tc x ii
t

t i
i

e xe
f x c

i c i

δβ

δ
βδ β

δ

−− + −−∞

+
=

=
Γ +∑       (17) 

 

where c is the scale parameter, β is the non-centrality parameter and δ is the shape 

parameter (or degree of freedom). All parameters are non-negative, and the random 

variable assumes values on the positive real line. The Non-centred Gamma arises as 

combination of centred two-parameter Gamma densities with weights given by a Poisson 
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process driving the non-centrality. The first order moment and the variance of the density 

in (17) are given by [ ]tE x c cδ β= +  and [ ] 2 22tVar x c cδ β= + , respectively.  

GJ suggest expressing the non-centrality parameter as a function of past observations of 

the modelled variable, thus replacing β  with 
1

p

j t j
j

xβ −
=
∑ . This makes the density 

conditional to the information set at time t-1, and the one-step-ahead first order moment 

and variance becomes: 

 

[ ] [ ] 2 2
1 1

1 1

,     2
p p

t t j t j t t j t j
j j

E x c c x Var x c c xδ β δ β− − − −
= =

   
= + = +   

   
∑ ∑ .   (18) 

 

GJ also discuss the stationarity of the model, which is associated with parameter 

combinations satisfying the nonlinear constraint 
1

1
p

i
i

c β
=

 
< 

 
∑ . Furthermore, they present 

alternative approaches for the parameter estimation and the model simulation. In their 

work, GJ allow for a time varying scale parameter, but do not discuss in detail its 

possible forms and interpretation. If the wind speed tx  follows the Non-centred Gamma 

density in (17), denoted as ( )~ , ,tx cγ δ β , then, the ratio 1
tx c−  follows the two-

parameter Non-centred Gamma density ( )1 ~ ,tx c γ δ β−  (the density function can be 

easily obtained from 17). The scale parameter thus affects the density in a multiplicative 

way, similarly to the periodic component in (1). We note that we may interpret the scale 

parameter as the periodic component of wind speed; in fact, we may assume a time 

varying scale parameter equal to: 

 

( )s t
tc e= ,          (19) 

 

where the periodic component is that of equation (2). In principle, we could have 

introduced periodic elements in the time-varying non-centrality parameters, for instance, 

making it a function of harmonics. However, we would have required appropriate 

constraints to ensure positivity. Alternatively, we could use a representation similar to 

(19) to introduce time dependence in the non-centrality parameter in (18). However, we 
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do not consider this extension here, as some preliminary estimates (not reported here to 

save space) show that this approach does not provide any improvement over the previous 

models. 

Given that we can interpret the scale parameter as the periodic component of wind speed 

series, we suggest filtering out the periodic component as in (1)-(3) and model the 

residual series with a conditional two-parameter non central Gamma process. The density 

we consider for ty , the seasonally adjusted wind speed, is a special case of that in GJ, 

and has the following structure: 

 

( ) ( )
1

1 1

0

exp

; ,
!

t

ip p

i t i i t i y i
i i t

t
i

y y
e y

f y
i i

δβ β
δ β

δ

− − − + −∞
= =

=

  −  
  =

Γ +

∑ ∑
∑ .    (20) 

 

As a result, the time-varying nature of both the mean and the variance of tx , the wind 

speed, will depend on two elements: the Auto Regressive behaviour of the non-centrality 

parameter, and the dynamic evolution of the scale parameter. We can show the two 

moments by: 

 

[ ] [ ] 2 2
1 1

1 1

,     2
p p

t t t t j t j t t t t j t j
j j

E x c c x Var x c c xδ β δ β− − − −
= =

   
= + = +   

   
∑ ∑ .  (21) 

 

Note that we know the scale parameter at time t since it is a function of deterministic 

components only. Finally, we highlight that the ARG model is consistent with a long-

memory behaviour of the modelled series when the parameters satisfy 
1

1
p

i
i

c β
=

 
= 

 
∑ , see 

GJ for details.  

We can also use the ARG model in (1)-(3) and (20) for modelling intertrade durations, as 

in GJ, since intraday durations may show periodic behaviours. We also highlight the 

close relationship between the ARG model and the Autoregressive Conditional Duration 

model of Engle and Russell (1998) (see Pacurar, 2008, for a survey of duration models). 

In fact, we may specify an ACD model with a periodic conditional duration as in 
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equation (19), where only the time-varying scale parameter governs the dynamic 

behaviour and the innovation density is a two-parameter non-central Gamma. 

The estimation of ARG in (1), (2) and (20) could follow the QML approach suggested by 

GJ. They propose using the normal likelihood function for wind speed intensity, with the 

expected mean and variances reported in (21). Alternatively, again as suggested by GJ, 

we could estimate the model by maximizing the truncated log-likelihood: 

 

( ) ( )

1 1

1 0

ln ,
!

t t tc xi iT k
t t

i
t i t

e e x
L

i c i

β δ

δ
βθ

δ

−− − + −

+
= =

 
=   Γ + 
∑ ∑       (22) 

 

where k should not be too small (we verified through simulations that reasonable values 

of k should be chosen between 10 and 20; higher value do not improve the evaluation of 

the likelihood function and are less efficient from a computational point of view). 

Note that we can also estimate the model using a two-step procedure similar to that of 

GAR: i) filter out the periodic component by OLS applied to (3); and ii) estimate the 

remaining parameters with QML using the normal likelihood and setting to 1 the scale 

parameter. To simulate the ARG process, we adapt the approach of GJ, by sampling from 

Gamma and Poisson random variables. In particular, we generate ty  values from: 

 

,
1

tZ

t j t t
j

y W ε
=

= +∑          (23) 

 

where ,j tW  are standard Gamma random variables extracted from the two-parameter 

centred Gamma density ( )1,1γ , tε  follows a two-parameter centred Gamma density 

( ),1γ δ , and tZ  is extracted from a Poisson density 
1

p

j t j
j

yβ −
=

 
Ρ 
 
∑ . Given a simulated 

trajectory of ty  we obtain the corresponding simulated path of tx  by multiplication with 

the deterministic path of the scale parameter tc  that we generate using (2). 
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2.3. Model comparison 

In the previous subsections we introduced three alternative models that we could use for 

fitting wind speed intensity series. The models differ in the distributional hypothesis, and 

we should adapt the traditional diagnostic checking tools to this framework. For instance, 

using the expected conditional mean and variance of the models, we can compute 

standardized wind speed series. In turn, we could analyze these for serial correlation and 

heteroskedasticity for a first comparison of the models. However, given that the main 

purpose of our study is to forecast wind speed, we chose to compare the models on the 

basis of their one-step-ahead point forecasts and density forecasts, as well as in their 

ability to simulate wind speed sequences. 

We assume, in the following, that the researcher’s purpose is to compare m alternative 

wind speed models over h one-step-ahead forecasts. We will estimate the models with an 

expanding window approach from the starting sample, from 1 to T. We denote model m 

time T+i one-step-ahead forecast by ( ), 1ˆ;f m T i
T ix g Iθ + −

+ = , where θ̂  is the vector of 

estimated parameters entering the conditional density of T ix +  (estimated using the 

information set up to time T+i-1). In contrast, we indicate one step-ahead density 

forecasts as ( )1ˆ| , T i
m T if x Iθ + −

+ , where the density could be a Gamma, Non-centred 

Gamma, or Log-Normal. 

We can draw a preliminary comparison of the model forecast from the analysis of 

standard quantities, such as the Root Mean Squared Forecast Error (RMSFE): 

( ) ( )2,

1

, ,
h

f m
T i T i

i

RMSFE h m x x+ +
=

= −∑ and the Mean Absolute Deviation (MAD) 

( ) ,

1

,
h

f m
T i T i

i

MAD h m x x+ +
=

= −∑ . We also implement more formal approaches proposed in 

the statistical literature. We compute the Weighted Likelihood Ratio (WLR) test of 

Amisano and Giacomini (2007), since we can focus this on the tail of the forecast 

density. In fact, the following will clarify that too low or too high wind speed values are 

associated with an absence of power production in wind farms, with a relevant impact on 

the wind risk management process. The WLR test compares two models by contrasting 
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over a given horizon their density forecast. Given models ml and mj, and their density 

forecasts ( )1ˆ| ,
l

T i
m T if x Iθ + −

+  and ( )1ˆ| ,
j

T i
m T if x Iθ + −

+ , the test is based on the quantity 

 

( ) ( )( ) ( )( )1 1ˆ ˆlog | , log | ,
l j

T i T i
T i T i m T i m T iWLR w x f x I f x Iθ θ+ − + −

+ + + +
 = −  

,   (24) 

 

where ( )T iw x +  is a weighting function which can be calibrated to select specific regions 

of the distribution of T ix + . For the purposes of this paper, we consider the following 

cases: i) ( ) 1T iw x + = , which correspond to a test considering the entire distribution; and 

ii) ( ) [ ]
[ ]

( ) 1
1 0T i t

T i

t

x E x
w x

Var x
φ φ −+

+

 −
 = −
 
 

, where ( ).φ  is the Normal PDF. The second case 

focuses the test on the tails of the distribution of wind speed intensity. The null 

hypothesis of model equivalence is associated with the condition [ ] 0T iE WLR + = , and the 

test statistic is 1
T i hWLR hσ −

+ , where T iWLR +  is the sample mean of T iWLR +  over the 

forecast horizon h, and 1
hσ −  is the heteroskedasticity and autocorrelation consistent 

estimation of T iVar hWLR +
 
  ; see Amisano and Giacomini (2007) for further details. 

Note that density forecasts could be defined using a common function across all models, 

such as the normal density where the first and second order conditional moments are 

determined in accordance with the alternative specifications. In this case, we compare 

only mean and variance forecasts, with a minor impact of the shape of the distribution 

and of higher order moments. 

Furthermore, following the contribution of Diebold et al. (1998), we evaluate density 

forecasts using the inverse probability transform approach of Rosenblatt (1952). 

Campbell and Diebold (2005) used similar methods in the context of weather forecasts 

for weather derivative pricing, as did Allen et al. (2009) for the evaluation of density 

forecast of financial durations, which, similarly to wind speed intensities, they 

characterized by distributions with a positive support. 

Given the one-step-ahead density forecasts ( )1ˆ| , T i
m T if x Iθ + −

+ , we compute the cumulated 

density forecasts as: 
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( ) ( )1
,

ˆ| ,
T ix T i

T i m T i mF x f v I dvθ+ + −
+ + −∞

= ∫        (25) 

 

If a model is correctly specified, the sequence ( ){ }, 1

h

T i m T i i
F x+ + =

 should distribute as a 

Uniform in the interval [0,1]. Following Campbell and Diebold (2005), and Allen et al. 

(2009), we suggest analyzing the histograms of (25), as well as its ACF, and to test for 

the null hypothesis of a Uniform distribution. 

 

 

3. Empirical analysis 

 

In this section, we fit and compare the previous models on a set of three wind speed 

intensity series. The data, available in the range 1st January 1986 to 31st December 2008, 

refer to three meteorological stations located in Poland at Wielun (WMO 12455), Lodz 

(WMO 12465), and Sulejow (WMO 12469). Within parentheses, we report the World 

Meteorological Organization (WMO) code for each station. We use the historical time 

series of daily average wind speed provided by National Climatic Data Centre, measured 

at 10 meters above the ground level (10 magl). The series have been checked for 

homogeneity and coherency, see Boissonade et al. (2002). The series do not allow 

capturing the intra-daily periodicities, and will require some assumptions for the 

evaluation of power production at turbine height. We will discuss these last elements in a 

subsequent section. We estimate the models using data up to the 31st of December 2007, 

while 2008 data will serve for out-of-sample model comparison. 

Strong periodic components characterize these time series. These are evident in the graph 

of the original series, and clearly appear both in the correlogram and in the periodogram 

(which peaks at zero and annual frequencies). The overall distribution of the data could 

suggest Gamma, Weibull, and Log-Normal densities. Figure 1 reports an example for 

Wielun station. Similar graphs are obtainable for the other time series. 

 

[FIGURE 1] 
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3.1. Periodic components estimation 

We estimate the periodic components following the approaches described in Section 2.1. 

If we consider a multiplicative model as in equations (1)-(2), all series have a strong 

yearly pattern, and some other minor periodic components. If we also add a second 

periodic function, and thus following model (2)-(4)-(7), we note this has a minor impact. 

Table 1 summarizes the coefficients associated with the estimated periodic components, 

while Figure 2 plots the deterministic periodic components of Wielun time series. 

Once periodic components are filtered out with a purely multiplicative approach 

(equations (1) and (2)), the seasonally adjusted series evidences serial correlation, which 

might be associated with mild long-memory behaviours. In fact, the GPH and Whittle 

tests for fractional integration suggest, but only at the 5% level, the presence of long-

memory, with estimated integration coefficients close to 0.1 (we have not reported these 

tests for brevity). Figure 3 reports the graphical analysis of Wielun seasonally adjusted 

series after the estimation of a multiplicative periodic component. Results for the other 

stations are similar, as well as for the case of additive and multiplicative periodic 

components, apart the obvious difference in the kernel density. 

 

[FIGURES 2 AND 3] 

[TABLE 1] 

 

3.2. ARG, GAR and ARFIMA model estimation 

On the seasonally adjusted series, we fit the dynamic models presented in section 2.2. 

Tables 2, 3 and 4 report the estimates for ARG, GAR, ARFIMA-GARCH and ARFIMA-

FIGARCH (GARCH variances have been introduced to verify the advantages of long-

memory in variances), respectively. 

With respect to the GAR estimates, we note that these require the inclusion of higher 

order lags. In fact, we have included lags up to order 10 (selected using a general to 

specific approach), suggesting that the presence of mild long-memory effects (however, 

standardized GAR residuals do not show serial correlation, supporting the estimate of 

short-memory GAR specifications). Parameters evidencing a relevant persistence 

characterize the conditional variances provided by the GAR model, similar to what is 
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observed for financial assets. The ARG model does not require lags higher than 5. 

Notably, the parameters of ARG are far from the long-memory limit (the β should sum to 

1). 

In contrast, ARFIMA mean models return estimated memory coefficients ranging from 

0.17 (Wielun) to 0.2 (Sulejow), while only an MA(1) term is needed to capture short-

memory behaviours. In the variances, GARCH and FIGARCH specifications are close 

one to the other, with a clear preference for short-memory structures for Wielun and 

long-memory for Lodz, while Sulejow suggests the need for long-memory, but only at 

the 5% level (on the basis of Likelihood Ration tests). For ARFIMA models, we also test 

the normality hypothesis over residual. Several tests are all concordant and rejecting the 

null (not reported). 

In Figures 4 and 5, we graphically compare the fitted mean and variances of wind speed 

intensity (thus also including periodic components) provided by the four alternative 

specifications for Wielun data. It clearly appears from the scatter plots that the models 

provide extremely close fit for the mean, while some differences appear for the fitted 

conditional second order moment. In particular, ARFIMA specifications have the closer 

fitted variances, and they sensibly differ from those of ARG and GAR models. These last 

two models also have different variance patterns. We obtain similar results for Sulejow 

and Lodz. This fact could have relevant impact for the pricing of contracts based on the 

wind power production. 

 

[TABLES 2, 3 AND 4] 

[FIGURES 4 AND 5] 

 

3.3. One-step-ahead model forecast 

We now evaluate the one-step-ahead model forecasts. The evaluation sample consists of 

366 days, i.e., the entire year 2008. In Table 5, we report the MAE and RMSFE measures 

for the wind speed intensity point forecasts across all models and stations. The two 

indices are concordant in suggesting a preference of ARG model for Wielun and 

Sulejow, while ARFIMA-FIGARCH is preferred for Lodz. We note that the models are 

all very close to one another. Within ARFIMA-GARCH and ARFIMA-FIGARCH, the 

two closest specifications, there is always a marginal preference for the second. 
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We search for confirmation of this result by evaluating the density forecasts produced by 

the different models. In this case, we consider both the Amisano-Giacomini test, and the 

inverse probability transform. We stress that the evaluation of density forecast assumes a 

central role, given the subsequent use of models for wind risk management, as we will 

discuss in the following section. 

Table 6 reports the Amisano-Giacomini robust test statistic for all pairs of models with 

weights focusing on the tails, and using, as forecast density, the normal calibrated with 

conditional mean and variance forecasts produced by the four alternative models. 

Amisano-Giacomini results confirm the previous findings with respect to density 

forecasts: in most cases, the models provide density forecasts that are not statistically 

different. We observe few pairs of models with marginally different forecasting ability, 

in particular for Sulejow. We obtained substantially similar results with weights set all to 

1 (not reported to save space). 

If we consider the inverse probability transformation, the outcomes are different. In fact, 

as shown in Table 7, ARG provide the worst results, accepting the null of Uniform 

distribution only in a few cases. The other models are almost equivalent for Sulejow, 

while Wielun and Sulejow show a preference for GAR (by the fewer rejections of the 

null). The result for ARG depends on the overconcentration of the forecasts around the 

mean. Summarizing, the results based on the one-step-ahead forecasts suggest that the 

models are quite close to one another, with the exception of ARG, whose density 

forecasts are unsatisfactory. 

 

[TABLES 5, 6 AND 7] 

 

4. Wind risk management 

 

Wind farms represent long-term investment projects for their owners. Guaranteeing a 

profit in the medium/long-term requires careful choice of locations. In fact, one of the 

most relevant features of wind is its large volatility over both intensity and direction, and 

the interdependence of these quantities with the localization and structure of the land 

(roughness). As a result, before wind farm installation, locations are analysed and 

monitored for at least one year, using weather stations that measure wind speed intensity 
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and direction at different heights. The collected data allow the development of an 

appropriate budget, including the expected wind power production. Alternatively, when 

historical data for specific locations are not available, close WMO stations can be 

potential proxies. However, wind speed is not a monetary quantity and we need to 

transform it into electricity, for which the market provides prices. 

The process of transforming wind kinetic energy into electric energy is nonlinear and 

stochastic, due to the combined effect of wind speed intensity, wind direction, and the 

time taken for turbines to rotate to follow the wind direction. As an example, Figure 6 

shows the observed wind speed and energy production for an already existing turbine. 

The empirical power production oscillates around a non-linear path that represents the 

theoretical power curve, i.e., the non-linear function that maps wind speed intensity into 

produced power (power curves are turbine-specific and provided by turbine 

manufacturers). Power production starts above a minimum wind speed cut-off level 

(generally 2 meters-per-second, m/s), gradually increases up to a maximum level (turbine 

full production is reached), and then stops at an upper wind speed cut-off value 

(depending on turbines, but generally between 25 and 35 m/s) in order to avoid damage 

to the turbine from excessive wind speeds (in extreme weather conditions). 

 

[FIGURE 6] 

 

We must consider an additional aspect in the monetary evaluation of wind power: 

historical data are not generally available at the turbine height (it could vary between 50 

and 110 magl), but at lower heights (in most cases 10 magl for WMO stations). 

Therefore, we must convert the wind speed historical data into wind speed time series at 

the desired turbine height. One approach available in the meteorological literature is the 

so-called Hellman’s formula: 

 

a

h m

h
x x

m
 =  
 

         (26) 

 

where hx  is the wind speed at the desired height h, mx  is the observed wind speed at 

height m, and a is a coefficient associated with the land roughness. This parameter can be 
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either calibrated or estimated using closer or similar locations for which data are 

available at two different heights. Note that the literature contains alternative approaches; 

see Leroy (2004) for an example. 

Given the wind speed at a desired height, we determine the (theoretical or historical) 

power production through the power curve. However, due to the several elements 

affecting power production (changes in the direction and intensity over the day, hitting of 

the upper or lower cut-off values...) cumulative wind speed indices (CWSI) are preferred 

instead of power productions to price wind derivatives. We determine the CWSI as 

simple sums of average daily wind speed intensities over the target period, filtered from 

values below the lower cut-off and above the upper cut-off. For instance, with observed 

average daily wind speed intensities tx  from 1 to T, we can obtain the CWSI for the last 

year by: 

 

( )| 364
364

T

T T t t
t T

CWSI x I l x u−
= −

= ≤ ≤∑       (27) 

 

where ( ).I  is the indicator function, while l and u are the lower and upper cut-off values, 

respectively. Despite the non-linear correlation between average daily wind speed and 

effective power production, as evidenced by Brix et al. (2005), we generally base wind 

contracts on wind indices determined in accordance with (27). 

Wind indices represent the most relevant elements for the assessment of the economic 

value of a new wind farm, or to price wind related derivative contracts and insurances. 

Owners of wind farms may consider buying these instruments in order to offset part of 

the risks associated with the large variability of wind speed. From a different point of 

view, determination of the future theoretical wind production for specific locations could 

use wind indices. 

Recently, the introduction of green certificates by the EU introduced a second significant 

source of revenues for wind farms. In fact, every megawatt of energy produced by a wind 

farm provides one green certificate that has a sales value in the market. Given the 

purposes of the actual work, we will not consider the effects of green certificates on the 

risk evaluation of wind farm, but will focus only on the wind energy production. 



23 

 

We can apply the models proposed in this paper for the simulation of the future evolution 

of wind speed intensities, and thus simulate the future density of wind speed indices. 

Before presenting some empirical evidence, we briefly introduce the approaches used to 

price a contract based on a wind index. 

 

4.1. Pricing wind-related contracts 

The market for weather derivatives that depend on wind indices is highly illiquid, due to 

the location-specific features of the contracts and the limited number of subjects trading 

them (the main operators are reinsurance companies). As a result, the basis of the pricing 

process should arise from a suitable model, following the approach of VanderMarck 

(2003). The standard Black and Scholes (1973) arbitrage-free pricing is unfeasible given, 

in that the underlying stochastic variables do not follow the geometric Brownian motion, 

they strongly deviate from normality, and they are not directly tradable in the market, see 

Dischel (2002). Pricing generally follows an actuarial approach based on the simulated 

distribution of contract outcomes. Simulations are conditional on historical data and, if 

available, on short and medium term weather forecasts, see Cao and Wei (2000, 2003), 

Zeng (2000), Davis (2001), and Brix et al. (2005), among others. The actuarial price is 

thus the discounted expected payoff of a ‘neutral’ or ‘fair’ value plus some margin that 

includes fixed costs and risk loading factor for the contract writer, see Henderson (2002). 

The simulations may follow two alternative approaches: the direct generation of wind 

indices, as done by Historical Burn Analysis (HBA) and Index Modelling, the simulation 

of the underlying wind speed intensity, as advocated by Daily Modelling. The latter 

method avoids some of the drawbacks of index-based approaches, as pointed out by 

Nelken (2000). In fact, Daily Modelling is consistent with the features of the underlying 

variables, such as serial correlation, long-memory, and non-normal distribution. 

Moreover, it is much more flexible, and can easily incorporate short-term forecasts. 

Finally, its basis comes from higher frequency data compared to HBA and Index 

Modelling, and thus it could reduce the impact of estimation errors. In this paper, we 

clearly follow the Daily Modelling approach and use the proposed models to simulate the 

future evolution of wind speed intensity. We then use the simulations to construct the 

simulated density of a wind index, and to price an insurance contract. 

4.2. Simulating wind speed intensities and CWSI 
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The ARG, GAR, ARFIMA-GARCH, and ARFIMA-FIGARCH models represent a 

selection of alternative methods for the simulation of future paths of wind speed 

intensity. Before using them out-of-sample, to generate the CWSI for the year 2008, we 

assess their performances in-sample, following the approach of Campbell and Diebold 

(2005), which employs the probability inverse transform approach similar to that 

presented in Section 2.3. In this case, the focus is on the simulated distribution of CSWI 

over a target period of length h conditionally to the information set at time T. We denote 

this simulated distribution as ( )S
T T hf CWSI + . The CWSIT+h is also directly observable 

(we are in-sample), and thus we define the Rosemblatt transform as: 

 

( ) ( )T hCWSIS S
T h T h TF CWSI f v dv

+

+ + −∞
= ∫        (28) 

 

Given that our out-of-sample target is the year, we set the in-sample h equal to 1 year 

(either 365 or 366 days). We thus split the time series into several 1-year periods, and 

evaluate (28) for each year excluding the first one, using every time n=10,000 

simulations to recover ( )S
T T hf CWSI + . Under the assumption of correct model 

specification, ( ){ }2007

1987

S
year year

year
F CWSI

=
 is distributed as a Uniform in [0,1]. This test 

allows comparison of models for daily wind speed with respect to their ability to simulate 

the distribution of wind speed indices. 

For the simulation of CWSI, we assume that the turbine rotor is at 82 magl.  We obtain 

the 82 magl wind speed by the Hellman’s formula, with roughness coefficient a=0.305, 

which we estimated using the empirical daily data (wind speed at 82 magl) from one 

Polish wind farm, which is in the middle of the three WMO stations we are considering. 

Table 8 reports the p-values for the Uniformity tests over the 21 points in the sample. The 

tests show evidence of a preference of ARFIMA specifications over GAR and ARG 

models. The Gamma-based models are substantially equivalent, while the introduction of 

variance long-memory does not improve over the simpler ARFIMA-GARCH model for 

the logarithms of wind speed intensity. We then analysed the ACF of the series defined 

using (28), but found no significant serial correlation (results not reported), a further 

result supporting model adequacy. The different performances of the models strongly 

depend on the very different shapes of the simulated CWSI densities. As an example, 
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Figure 7 shows the CWSI densities for the year 2008 (similar results are obtained in-

sample). The densities differ for the mean and the shape: ARFIMA models provide 

CWSI with lower mean and fatter tails. This is a by-product of the overconcentration of 

ARG models around the mean (thus, less simulated wind speed intensities below and 

above the cut-off values for energy production, and thus larger CWSI); while for GAR, 

the effect is due to the inappropriateness of the model in capturing tail events. Finally, 

there is a strong difference in the conditional variances of the models, as evidenced in 

section 3; a fact that plays a relevant role in the construction of CWSI. All models 

provide densities far from being normal, as confirmed by several tests (not reported for 

brevity). Table 9 reports the expected mean and standard deviations of 2008 CWSI for 

the three weather stations. Notably, the averages and standard deviations of ARFIMA 

models are closer in mean and variance to the historical moments. Summarizing, all the 

previous differences have a relevant impact in the wind risk management framework, and 

we thus conclude that ARFIMA specifications are preferred over ARG and GAR. 

 

4.3. Wind risk management 

In order to examine the pricing abilities of the presented wind models , we apply them for 

pricing a protective capped put option, a standard contract in the weather derivatives 

market. This type of contract would be of interest to a wind farm owner who wants to 

hedge the risk of a low power production over a given period (in our case, the year 2008). 

The underlying instrument of the put is the CWSI. We represent the payout of the 

contract as follows: 

 

( )( )( )min max ,0 ,P K CWSI capτ= −       (29) 

 

where CWSI is the observed wind speed index over the target period, K is the strike 

value of the CWSI, τ  is the tick value (monetary value of one point of the CWSI), and 

cap is the cap value of the contract. In the example we set 10,000€τ = , 

1,000,000€cap = , and K at the average yearly CWSI of the last 10 years. The contract 

premium is determined as follows: First, we determine the expected payoff of (29), 

evaluated using the simulated CWSI densities for 2008. This quantity is then increased 

by a risk loading factor set at 6% of the Return-on-Value-at-Risk (RoVaR) of the CWSI 
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density at the 95% confidence level, by a 3% management and transaction costs and by 

fixed margin of 10,000 €. Finally, we discount the total future premium with a 3% risk-

free rate. We then compare the theoretical prices obtained from the simulated CWSI to 

those obtained by HBA, which we apply following Jewson et al. (2005). Note that HBA, 

by using a limited number of data (in our case 21 observations), contains a huge 

estimation error, an element we try to minimize by daily modelling. We prefer HBA to 

index modelling as it is much more diffused among practitioners. 

Table 9 contains all contract prices for the three stations. For all localizations, the put 

options, with strikes fixed as 10-year averages, appeared to be deeply out-of-money. 

ARG or GAR models always gave the lowest prices, because their simulated densities of 

CWSI indices overestimated the mean and underestimated the variance. As a result, by 

using these models to price wind options, we have received a final price that is slightly 

higher than the discounted value of the brokerage margin. ARFIMA models with short 

and long memory in conditional variances provide prices higher than ARG and GAR 

models, and lower than the HBA approach. The only exception was Sulejow, where 

considerably lower values in the mean of the simulated CWSI index, coupled with higher 

variances, made this option more expensive. Ex-post, comparing the realized 2008 CWSI 

with the simulated densities, we note how all contracts were not exercised. 

 

 

5. Conclusion 

In this paper, we compared three alternative approaches for the estimation and simulation 

of wind speed intensities for the pricing of wind options. We show how we could fit the 

models over real data and we compared them from a statistical point of view by 

contrasting their density forecasts. We also tackled the point of view of a weather risk 

manager and considered the models as tools for the pricing of wind options. Our study 

provides a framework for the comparison of these alternative models and, for the series 

we used, ARFIMA-based specifications provided better results.   
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Figure 1. Wielun graphical analysis: Wielun data, ACF, Periodogram (selected 
frequencies up to π/10), and kernel density estimate. 

 

  
Figure 2. Periodic components for Wielun: left panel, additive (upper line) and 
multiplicative (lower line) components of Wielun log-transformed data; right panel, 
Wielun data (grey) superimposed to the exponential of the additive periodic component 
of the left panel. 
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Figure 3. Wielun graphical analysis of ”seasonally adjusted” series after removing a 
multiplicative periodic component: Wielun ”seasonally adjusted” series, ACF (straight 
lines denotes the 5% confidence interval), Periodogram, and kernel density estimate. 
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Figure 4: scatter plot of the in sample fitted conditional mean for Wielun wind speed 
intensity provided by the ARFIMA-FIGARCH, ARFIMA-GARCH, ARG and GAR 
models 
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Figure 5: scatter plot of the in sample fitted conditional variances for Wielun wind speed 
intensity provided by the ARFIMA-FIGARCH, ARFIMA-GARCH, ARG and GAR 
models 
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Figure 6: Empirical power curve extracted from 10 minutes observations for a turbine 
located in Poland. 
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Figure 7: Simulated CWSI kernel density estimates for 2008 from ARFIMA-GARCH 
(AG), ARFIMA-FIGARCH (AF), ARG, and GAR models 
  

.0000

.0005

.0010

.0015

.0020

.0025

.0030

.0035

.0040

1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200

AF AG ARG GAR

D
en

si
ty

.000

.001

.002

.003

.004

1,600 2,000 2,400 2,800 3,200 3,600

AF AG ARG GAR

D
en

si
ty

.000

.001

.002

.003

.004

.005

1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

AF AG ARG GAR

D
en

si
ty



34 

 

Table 1: Parameter estimates of periodic components 
Wielun Sulejow Lodz 
Coeffs. T-stat Coeffs T-stat Coeffs T-stat 

Coefficients of ( )s t  

0β  1.525 39.563 1.387 28.281 1.544 33.255 

1β  -0.174 -9.501 -0.104 -4.611 -0.200 -9.145 

2β  0.014 7.745 0.009 4.183 0.018 8.274 

1ϕ  0.213 16.731 0.153 9.710 0.157 9.499 

6ϕ  0.024 2.051 

1ψ  0.071 5.971 0.074 4.952 0.086 5.985 

7ψ  -0.024 -2.165 -0.035 -2.604 -0.027 -2.081 

8ψ  -0.021 -1.968 -0.031 -2.392 -0.026 -2.091 

Coefficients of ( )tν  

0α  -2.815 -58.441 -2.643 -54.648 -2.747 -47.482 

2α  -0.007 -5.888 -0.002 -1.902 -0.003 -2.320 

1δ  0.226 5.453 0.296 7.044 0.169 3.761 
The table reports the significant coefficients and the corresponding robust T-statistics. 
 
 
Table 2: ARG estimation output 

Wielun Sulejow Lodz 
Coeffs. T-stat. Coeffs T-stat Coeffs T-stat 

δ  5.633 37.033 4.116 32.758 4.689 31.342 

1β  0.447 37.893 0.490 41.157 0.460 39.620 

3β  0.034 2.725 0.049 3.956 0.034 2.722 

4β  0.038 3.061 0.027 1.997 

5β  0.031 2.690 0.035 2.943 
c  0.093 46.543 0.105 48.638 0.117 46.076 

The table reports the estimated coefficients and the maximum likelihood t-statistics. 
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Table 3: GAR estimation output 
Wielun Sulejow Lodz 
Coeffs. T-stat. Coeffs T-stat Coeffs T-stat 

0γ  0.550 28.726 0.528 30.173 0.517 24.762 

1γ  0.389 36.759 0.406 41.821 0.402 37.390 

3γ  0.031 2.847 0.042 4.451 0.038 3.991 

4γ  0.034 3.301 0.029 3.418 0.033 3.340 

7γ  0.017 2.067 

8γ  0.019 1.911 0.025 2.398 

9γ  0.024 2.748 

10γ  0.028 2.978 0.033 3.288 
ω  0.003 0.743 0.023 3.187 0.028 1.818 

1α  0.024 1.377 0.061 5.347 0.064 3.442 

1β  0.956 21.721 0.824 18.047 0.793 8.235 
The table reports the estimated coefficients and the maximum likelihood t-statistics. 
 
 
 
Table 4: ARFIMA-FIGARCH and ARFIMA-GARCH estimation output 

Wielun Sulejow Lodz 
Coeffs. T-stat. Coeffs T-stat Coeffs T-stat 

ARFIMA 
d  0.170 13.391 0.201 15.601 0.179 14.939 

1θ  -0.266 -18.090 -0.255 -17.298 -0.261 -18.015 
GARCH 
ω  0.010 1.408 0.051 1.314 0.049 1.186 

1α  0.008 3.770 0.014 2.477 0.020 2.102 

1β  0.989 246.906 0.967 50.803 0.964 43.119 
FIGARCH 
ω  0.343 3.377 0.368 3.611 0.333 2.824 

1ψ  0.719 10.502 0.694 11.533 0.677 8.063 
λ  0.153 5.718 0.147 4.519 0.183 5.090 

1β  0.616 8.816 0.585 8.913 0.560 6.380 
LR test 0.381  0.025  <10-4  
The table reports the estimated coefficients and the maximum likelihood t-statistics. The estimated 

GARCH(1,1) conditional variances follow 
2 2 2

1 1t t tσ ω βσ αε− −= + + . The last row report the p-value of 

the likelihood ratio test for the null hypothesis of no long-memory in conditional variances. Under the null, 
the estimated FIGARCH models collapse on GARCH specifications with α ψ β= − . The test statistic 

has a Chi-square distribution with one degree of freedom. 
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Table 5: MAE and RMSFE  
Weather 
Station 

Model/ 
Indicator 

ARFIMA 
GARCH 

ARFIMA 
FIGARCH 

ARG GAR 

Wielun MAE 0.911 0.910 0.909 0.912 
 RMSFE 1.174 1.171 1.170 1.175 

Sulejow MAE 1.115 1.113 1.097 1.181 
 RMSFE 1.473 1.471 1.431 1.550 

Lodz MAE 1.097 1.096 1.116 1.156 
 RMSFE 1.440 1.437 1.465 1.492 

Bold values identify the preferred model. 
 
Table 6: Amisano-Giacomini test statistics 
Weather 
Station 

Model 
 

ARG 
 

GAR 
 

ARFIMA 
GARCH 

Lodz ARFIMA-FIGARCH -0.721 0.571 1.474 
ARFIMA-GARCH -1.231 0.029 

GAR -1.393 
Sulejow ARFIMA-FIGARCH 0.388 1.923 2.099 

ARFIMA-GARCH 0.469 1.630 
GAR -1.641 

Wielun ARFIMA-FIGARCH -0.654 -0.117 2.898 
ARFIMA-GARCH -1.752 -1.077 

GAR -0.582 
Amisano-Giacomini robust test statistic for equal forecasing ability. The test statistic is distributed as a 
standardized normal. The test is based on the log-score of the row model minus the log-score of the column 
model. Positive (negative) statistically significant test statistics should be interpreted as a preference for the 
row (column) model. In bold we report non significant test statistics at the 1% confidence level (one sided). 
 
 
Table 7: testing Uniform distribution of inverse probability transform 

 Lodz Sulejow Wielun Lodz Sulejow Wielun 
 ARFIMA-FIGARCH ARFIMA-GARCH 

Kolmogorov-Smirnov (D+)  0.542  0.474  0.126  0.573  0.461  0.160 
Kolmogorov-Smirnov (D-)  0.054  0.208  0.053  0.054  0.206  0.053 
Kolmogorov-Smirnov (D)  0.107  0.411  0.105  0.107  0.409  0.106 
Kuiper (V)  0.045  0.177  0.002  0.052  0.166  0.003 
Cramer-von Mises (W2)  0.160  0.554  0.117  0.156  0.577  0.156 
Watson (U2)  0.020  0.244  0.004  0.019  0.269  0.009 
Anderson-Darling (A2)  0.141  0.426  0.015  0.150  0.473  0.038 

 GAR ARG 
Kolmogorov-Smirnov (D+)  0.412  0.293  0.299  0.142  0.331  0.283 
Kolmogorov-Smirnov (D-)  0.137  0.741  0.805  0.011  0.028  0.016 
Kolmogorov-Smirnov (D)  0.274  0.570  0.583  0.021  0.056  0.032 
Kuiper (V)  0.078  0.575  0.673  0.000  0.005  0.002 
Cramer-von Mises (W2)  0.322  0.570  0.367  0.020  0.059  0.038 
Watson (U2)  0.116  0.373  0.544  0.001  0.002  0.000 
Anderson-Darling (A2)  0.421  0.569  0.157  0.001  0.003  0.006 
The table reports the p-values of the various tests included in the first column. We report in bold cases 
where the null hypothesis of uniform distribution is rejected at the 5% level. 
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Table 8: testing Uniform distribution of inverse probability transform for CWSI 
 Lodz Sulejow Wielun Lodz Sulejow Wielun 
 ARFIMA-FIGARCH ARFIMA-GARCH 

Kolmogorov-Smirnov (D+) 0.854 0.295 0.772 0.579 0.132 0.340
Kolmogorov-Smirnov (D-) 0.477 0.610 0.301 0.843 0.844 0.636
Kolmogorov-Smirnov (D) 0.854 0.574 0.586 0.948 0.264 0.654
Kuiper (V) 0.923 0.399 0.612 0.968 0.375 0.497
Cramer-von Mises (W2) 0.949 0.753 0.865 0.818 0.482 0.654
Watson (U2) 0.929 0.502 0.703 0.884 0.412 0.669
Anderson-Darling (A2) 0.961 0.666 0.837 0.907 0.437 0.775

 GAR ARG 
Kolmogorov-Smirnov (D+) 0.278 0.241 0.064 0.391 0.562 0.104
Kolmogorov-Smirnov (D-) 0.138 0.173 0.082 0.261 0.103 0.073
Kolmogorov-Smirnov (D) 0.275 0.344 0.128 0.514 0.206 0.146
Kuiper (V) 0.033 0.036 0.001 0.160 0.098 0.002
Cramer-von Mises (W2) 0.263 0.256 0.088 0.392 0.284 0.085
Watson (U2) 0.035 0.035 0.001 0.102 0.098 0.001
Anderson-Darling (A2) 0.000 0.110 0.027 0.000 0.155 0.000
The table reports the p-values of the various tests included in the first column. We report in bold cases 
where the null hypothesis of uniform distribution is rejected at the 10% level (we chose a more 
conservative confidence level with respect to that of Table 7 given the limited number of observations in 
our sample (the sample includes 21 observations)). 
 
 
Table 9: Estimated contract prices 
 Wielun Sulejow Lodz 

Historical CSWI average 
Historical CWSI standard deviation 

2238.1 
262.9 

2404.6 
189.7 

2271.5 
294.5 

Strike price (CWSI points) 2097 2353 2128 

E
xp

ec
te

d 
m

ea
n

 

Historical Burn Analysis 2255.7 2534.1 2510.2 
ARG model 2313.1 2548.2 2557.4 
GAR model 2307.0 2520.7 2525.2 
AG model 2226.5 2448.6 2456.1 
AF model 2231.2 2457.1 2467.1 

S
ta

nd
ar

d 
de

vi
at

io
n 

Historical Burn Analysis 120.1 150.5 199.6 
ARG model 87.9 114.4 107.1 
GAR model 81.9 103.1 105.2 
AG model 116.6 173.4 157.4 
AF model 122.1 182.4 167.4 

C
on

tr
ac

t p
ric

e Historical Burn Analysis 142,088 € 47,856 € 21,233 € 
ARG model 11,377 € 26,271 € 9,746 € 
GAR model 10,757 € 31,222 € 9,723 € 
AG model 108,111 € 272,727 € 16,575 € 
AF model 114,166 € 271,004 € 18,425 € 

Realized CWSI 2205.1 2556.6 2625.3 
The table reports the simulated CWSI mean and standard deviations and the price for a capped put option 
with the strike value reported in the first row. 
 


