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Technical Appendix

1 MCMC methodology

In the following, we describe our inferential solution for the model

it = (1− ρS1,t)[r̄ + πt + αS1,tzt + βS1,tyt] + ρS1,tit−1 + εS2,t (1)

π∗t = (1− ρπ)πLR + ρππ∗t−1 + ξS2,t (2)

πt = π∗t + zt (3)

zt = φS1,tzt−1 + ηS2,t (4)

εS2,t ∼ N (0,σ2
εS2,t), ξS2,t ∼ N (0,σ2

ξS2,t), ηS2,t ∼ N (0, σ2
ηS2,t) (5)

In particular S1,t, S2,t are the unobservable two-state first order Markov

chains with transition probability matrix Π = {pk,ij} , k ∈ {1, 2} , i, j ∈

{0, 1}.

The goal of the inferential procedure is to estimate the latent switch-

ing regimes processes Sk = {Sk,t, t = 1, . . . , T}, the unobservable inflation

target π∗ = {π∗t , t = 1, . . . , T} and the parameters θ. The observed in-

terest rate is denoted by I = {it, t = 1, . . . , T}, while X = (π,y), where

π = {πt, t = 1, . . . , T} is the inflation rate and y = {yt, t = 1, . . . , T} is the

output gap.

Since for non-linear latent factor models the likelihood function is not

available in closed form, inference has to be based on approximations or
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numerical evaluations. Markov Chain Monte Carlo (MCMC) basically avoids

the need to directly computing the likelihood function that is expressed in

terms of a highly multivariate integral. The basic idea behind MCMC is

to build a Markov chain transition kernel starting from a given initial point

and with limiting invariant distribution equal to the posterior distribution of

the quantities of interest. Under suitable conditions (see Robert and Casella,

1999, ch. 6-7), such a transition kernel converges in distribution to the target

posterior density. In practice, the chain is updated to a new position by first

simulating from a given proposal distribution, then by eventually accepting

the move.

In our framework, given the starting vector (θ(0),S(0)
1 ,S(0)

2 ,π∗ (0)) we sim-

ulate through MCMC the trajectory of the Markov chain {θ(j),S(j),S(j)
2 ,π∗ (j), j =

1, . . . , n} whose draws converge to the posterior distribution p(θ,S1,S2,π∗|I,X).

Once convergence is achieved, inference can be based on the serially depen-

dent sample generated. More precisely, estimates of the latent factors and of

the posterior mean of θ are given respectively by averaging over the realiza-

tion of the chain, i.e., P̂ r[Sk,t = 1|I,X] = n−1
∑n

j=1 S(j)
k,t , π̂∗t = n−1

∑n
j=1 π∗(j)t

and θ̂ = n−1
∑n

j=1 θ(j). To account for serial correlation in the draws, we

estimated the numerical standard error of the sample posterior mean using

the approach implemented in Kim, Shephard, and Chib (1998). MCMC for

switching regime ARMA models have been introduced in Albert and Chib

(1993) and in McCulloch and Tsay (1993) whereas their inferential approach

have been successively generalized in Billio, Monfort, and Robert (1999)

and in Kim and Nelson (1999). In particular Frühwirth-Schnatter (2001)

proposed an MCMC based solution to address for the parameters identifi-
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cation problems related to the switching regime models (see also Frühwirth-

Schnatter, 2006 for a comprehensive treatment of this topic).

Moving the whole vector (θ,S1,S2, π∗) in block can be inefficient, since

it is highly multivariate. We implement our MCMC strategy through the

Gibbs sampler, an algorithm that efficiently simulates each element or block

of (θ,S1,S2,π∗) in turn from its full conditional distribution, i.e., the distri-

bution conditioned on the data and the remaining components of the vector.

In this case the acceptance probability of moving each sub-block of the vec-

tor is 1. As suggested in Shephard (1994) and Carter and Kohn (1994)

amongst others, updating the whole latent process Sk in block from its joint

distribution given the data and the other parameters should reduce the au-

tocorrelation between states and then speed up the convergence of the chain

to its invariant distribution.

To take care of the regime switches, we provide an efficient algorithm

based on the multi-move Gibbs sampler proposed in Chib (1996) to update

the states S1,t and S2,t, t = 1, . . . , T , whereas we update the parameters and

the latent process π∗t one component at a time.

To simplify the notation, in the following we call θj the generic j -th

block1 of the vector θ = {θj, j = 1, . . . , J}, θ−j− = (θ1, . . . , θj−1) and θ−j+ =

(θj+1, . . . , θJ). We summarize the algorithm as follows:

1It is worth noting that a block of parameters can be a sub-vector of parameters or a
singleton.
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MCMC algorithm

• Initialize the chain at (θ(0),S(0)
1 ,S(0)

2 ,π∗ (0))

• At step j = 1, . . . , n

– Update θ one-at-a-time from the full conditional

p(θi|S(j−1)
1 , S(j−1)

2 , π(j−1),θ(j)
−i− , θ(j−1)

−i+ , I,X) through the Gibbs

sampler algorithm;

– Draw (S(j)
1,1, . . . , S

(j)
1,T ) in block from p(S1|S(j−1)

2 , θ(j),π(j−1), I, X);

– Draw (S(j)
2,1, . . . , S

(j)
2,T ) in block from p(S2|π(j−1),θ(j),S(j)

1 , I,X);

– Draw (π∗ (j)
1 , . . . , π∗ (j)

T ) one-at-a-time from the conditional

p(π∗t |S
(j)
1 ,S(j)

2 ,π∗ (j)
t−1 ,π∗ (j−1)

t+1 ,θ(j), I,X), through Gibbs sampler.

• j = j + 1

In the next subsections we describe the details of the algorithm.

1.1 Updating the parameters

The use of conjugate priors makes it straightforward to update θ. It is easy to

show that the conditional posteriors of σ2
ε,i,σ

2
ξ,i and σ2

η,i are Inverse Gamma,

pk,ij are Beta, whereas all the remaining parameters are Gaussian. Since the

full conditional distribution can be simulated directly, each sub-movement of

the chain is accepted with probability 1.

The main issue when estimating regime switching models is identifica-

tion, since the labeling of the states can be permuted without modifying

iv



the marginal likelihood. It is thus common in the literature to impose some

constraints on the parameters’ space. In particular, we find it useful to iden-

tify S2,t by imposing σ2
εS2=0 > σ2

εS2=1 and we implement it in our algorithm

through the permutation sampler of Frühwirth-Schnatter (2001). Further-

more, to identify the first regime S1,t we hypothesize:

(i) 0 < αS1=0 < 5 and −1 < αS1=1 < 0;

(ii) φS1=0 ∼ N (0.4, 0.1) and φS1=1 ∼ N (0.6, 0.1)

We notice that (i)-(ii) are informative to identify the two states. If for

instance we reverse the constraint, i.e. 0 < αS1=1 < 5 and −1 < αS1=0 < 0

we obtain the exact reverse labeling of the probability of being in S1.

1.2 Updating Sk

We update Sk = (Sk,1, . . . , Sk,T ) in block, moving the two vectors according

to the algorithm proposed in Chib (1996). In the following we focus on S1

since the procedure for S2 is in principle the same. To keep the notation

concise, we define a generic vector Sk,t1:t2 = (St1 , . . . , St2). The method

exploits the following decomposition

p(S1|π∗, I,X,S2,θ) = p(S1,T |π∗, I, X,S2, θ)
T−1∏

t=1

p(S1,t|π∗, I,X, S2,S1,t+1:T ,θ),

(6)

in which the generic term of the product is

p(S1,t|π∗, I,X,S1,t+1:T , S2, θ) ∝ p(S1,t|I1:t,π
∗
1:t,X1:t, S2,1:t, θ)p(S1,t+1|S1,t,θ).

(7)
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In particular p(S1,t|I1:t,π∗
1:t,X1:t, S2,1:t, θ) can be written as

p(S1,t|I1:t, π
∗
1:t, X1:t,S2,1:t,θ) ∝

p(S1,t|I1:t−1,π
∗
1:t−1,X1:t−1,S2,1:t−1,θ)p(it,πt,π

∗
t , S2,t|π∗

1:t−1, X1:t−1, S2,1:t−1,θ)

(8)

where

p(S1,t|I1:t−1, π
∗
1:t−1, X1:t−1, S2,1:t−1,θ) =

=
1∑

j=0

p(S1,t|S1,t−1 = j, θ)p(S1,t−1 = j|I1:t−1,π
∗
1:t−1,X1:t−1,S2,1:t−1,θ)

(9)

These two latter distributions can be numerically evaluated in a recursive

fashion by setting the distribution of the initial state S1,1 as the station-

ary distribution of the Markov chain, p(S1,1|θ). Once computed all these

quantities, S1,T is sampled from p(S1,T |π∗, I, X,S2, θ), that is a Binomial

random variable, while the remaining states can be directly simulated from

p(S1,t|π∗, I,X,S2, S1,t+1:T , θ), starting from S1,T−1 until S1,1.

2 Marginal Likelihood computation

In Bayesian statistics it is common practice to use the marginal likelihood to

measure the goodness-of-fit. This quantity is defined as

m(I,X|M) =

=

∫
p(I,X|π∗,S1,S2, θ,M)p(π∗, S1,S2|θ,M)p(θ|M)dθdπ∗dS1dS2,

(10)
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where (M, θ) indicate a given model M and its parameters and p(θ|M)

are the prior distributions. In the following we suppress the model index

M for conciseness. Many techniques have been proposed in the literature to

evaluate the marginal likelihood. A review on some Monte Carlo alternatives

is given in Han and Carlin (2001). In many cases it is useful to recur to the

following decomposition

m(I, X) =
p(I,X|θ)p(θ)

p(θ|I,X)
, (11)

that is valid for each point θ on the parameter’ space. Since this ratio is not

dependent on the specific choice of θ, to compute the marginal likelihood is

sufficient to estimate the posterior p(θ|I,X) and the likelihood p(I, X|θ) at

a fixed point θ∗.

2.1 Computing the posterior distribution of θ at θ∗

The first problem is to estimate the posterior p(θ∗|I,X), that is computed

through the method proposed in Chib and Jeliazkov (2001) and is based on a

sequence of reduced run of the same MCMC algorithm used for the inference.

The method consists in dividing the parameters vector θ in blocks, and at

each step of the algorithm associate to the i -th block, a given value θ∗i . In

this way we split the vector into two parts, θ∗−i− and θ−i+ . The estimate of

the posterior at θ∗ is then given by

p̂(θ∗|I,X) =
J∏

i=1

p̂(θ∗i |I,X,θ∗−i−), (12)

where each factor p̂(θ∗i |I,X,θ∗−i−) can be computed as

p̂(θ∗i |I,X,θ∗−i−) =
1

M

M∑

j=1

p(θ∗i |I,X, π∗(j), S(j)
1 , S(j)

2 ,θ∗−i− ,θ(j)
−i+) (13)
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in which θ(j)
−i+ , S(j)

k and π∗(j) are M draws from the same MCMC algorithm

used for the inference but with (θ1, . . . , θi) fixed to (θ∗1, . . . , θ
∗
i ).

2.2 Computing the likelihood

The second issue is to compute p(I,X|θ∗). In fact, the likelihood function is

not known in closed form due to the presence of latent factors, and has to be

evaluated by integrating their effects out. Integration has been performed by

a particle filtering procedure (see Doucet, de Freitas, and Gordon, 2001 for a

detailed description on this topic). Particle filter algorithms provide a sub-

optimal but feasible solution to the Bayesian filtering problem. Consider the

general state-space model defined by the density p(xt|xt−1, θ) that describes

the evolution of the latent states xt and by p(wt|xt, θ) that specifies the

observable wt. Our goal is to estimate the distribution p(xt+1|w1:t+1,θ)

given p(xt|w1:t, θ) in which, as before, w1:t = (w1, . . . , wt) is the past history

of the observable process up to time t. We also require the knowledge of the

initial distribution p(x0|θ), of the transition distribution p(xt+1|xt, θ) t ≥ 0,

and of the measurement distribution p(wt+1|xt+1, θ), t ≥ 1. The key idea

is to approximate the filtering density p(xt+1|w1:t+1,θ) by a discrete cloud

of points called particles, x(j)
t+1, j = 1, . . . , N , and a set of weights ω(j)

t+1 as

follows

p̂(xt+1|w1:t+1, θ) =
N∑

j=1

ω(j)
t+1δ(xt+1 − x(j)

t+1), (14)

where δ(·) is the Dirac delta measure. The cloud of points at time t + 1 are

chosen by using the importance sampling principle, in which the importance
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density is q(xt+1|x(j)
t , wt) and the weights are

ω(j)
t+1 ∝ ω(j)

t

p(wt+1|xt+1, θ)p(x(j)
t+1|x

(j)
t ,θ)

q(x(j)
t+1|x

(j)
t , yt)

j = 1, . . . , N. (15)

In our context xt = (π∗t , S1,t, S2,t), whereas the observable vector at t is

wt = (it, πt, yt). The algorithm can be summarized as follows:

Particle filter algorithm

• At time t, given a weighted sample (π∗t , S1,t, S2,t,ωt)
(j) , j = 1, . . . , N

from p(π∗t , S1,t, S2,t|I1:t, X1:t,θ
∗)

– Draw (π∗t+1, S1,t+1, S2,t+1)(j), j = 1, . . . , N from the importance

density, that in our case is p(π∗t+1, S1,t+1, S2,t+1|π∗ (j)
t , S(j)

1,t , S
(j)
2,t ,θ

∗).

– Compute ω(j)
t+1 using eq. (15).

– Store
(
π∗t+1, S1,t+1, S2,t+1,ωt+1

)(j)
, j = 1 . . . , N that provide an

approximation of p(π∗t+1, S1,t+1, S2,t+1|I1:t+1,X1:t+1,θ
∗);

• t=t+1

Once the states are filtered, it is easy to evaluate the likelihood by

p(I, X|θ∗) =
T∏

t=1

p̂(it,πt, yt|I1:t−1,X1:t−1,θ
∗) (16)

where p(it,πt, yt|I1:t−1,π1:t−1,θ
∗) can be estimated by integrating out the

latent processes through a Monte Carlo procedure, for instance by simu-

lating the state (S1,t, S2,t,π∗t ) from p(S1,t, S2,t,π∗t |(S1,t−1, S2,t−1,π∗t−1)
(j),θ∗),

j = 1, . . . , N and in which (S1,t−1, S2,t−1,π∗t−1)
(j) is the outcome of the filter-

ing procedure at time t− 1.
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