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Abstract In this paper, we estimate, model and forecast Realized Range Volatility,
a new realized measure and estimator of the quadratic variation of financial prices.
This estimator was early introduced in the literature and it is based on the high-low
range observed at high frequency during the day. We consider the impact of the
microstructure noise in high frequency data and correct our estimations, following
a known procedure. Then, we model the Realized Range accounting for the well-
known stylized effects present in financial data. We consider an HAR model with
asymmetric effects with respect to the volatility and the return, and GARCH and
GJR-GARCH specifications for the variance equation. Moreover, we also consider
a non Gaussian distribution for the innovations. The analysis of the forecast perfor-
mance during the different periods suggests that including the HAR components in
the model improve the point forecasting accuracy while the introduction of asym-
metric effects only leads to minor improvements.
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1 Introduction

In the last years, realized volatility measures, constructed from high frequency finan-
cial data and modeled with standard time series techniques, have shown to perform
much better than traditional generalized autoregressive conditional heteroskedastic-
ity (GARCH) and stochastic volatility models, when forecasting conditional second
order moments. Most of the works that forecast volatility through realized measure,
have concentrated on the Realized Variance (RV ) introduced by Andersen et al.
(2001) and Barndorff-Nielsen and Shephard (2002). The RV is based on the contin-
uous time price theory and it is defined as a function of the sum of squared intra-
day returns. Basically, the RV is a highly efficient and unbiased estimator of the
quadratic variation and converges to it when the intraday period goes to zero. Later
on, Martens and van Dijk (2007) and Christensen and Podolskij (2007) introduced
the Realized Range Volatility (RRV ), another realized estimator consistent for the
quadratic variation. The RRV is based on the difference between the minimum and
maximum prices observed during a certain time interval. This new estimator tries
to exploit the higher efficiency of the range relatively to that of the squared daily
close-to-close return in the estimation of quadratic variation.

When dealing with high frequency financial market data, the asymptotic prop-
erties of the simple estimators are highly affected by the microstructure noise (non
continuous trading, infrequent trade, bid ask bounce). As a result, an important part
of the literature has presented different corrections to restore the efficiency of re-
alized estimators for the volatility. These studies aimed at improving over the first
generation of models, whose purpose was to construct estimates of realized vari-
ances by using series at a moderate frequency (see Andersen et al. (2003)). Some
of the corrections presented to the RV are the Two Time Scale Estimator (TTSE),
the sub-sampling method of Zhang et al. (2005), the generalization introduced by
Zhang (2006). We also mention the approach for identifying the optimal sampling
frequency by Bandi and Russell (2008), through a minimization of the MSE. Fur-
thermore, kernel estimation was introduced by Hansen and Lunde (2006), while
Barndorff-Nielsen et al. (2008) provide a generalization of this approach. Differ-
ently, Martens and van Dijk (2007) proposed a correction for the RRV based on
scaling the range with the daily range and Christensen et al. (2009) presented an-
other approach based on an adjustment by a constant which has to be estimated by
simulation methods.

With the availability of new observable series for the volatility, many authors
have applied traditional discrete time series models for their forecast (and implicitly
for the forecast of returns volatility). Financial data are characterized by a series of
well-known stylized facts. Being able to capture them, will result in a more accu-
rate prevision of our variable of interest. These stylized facts are also observable
over realized variance series and require appropriate modeling strategies. The pres-
ence of long-memory in volatility, documented in several studies, has been mod-
eled through different specification: Andersen et al. (2003) introduced an ARFIMA
model, and their forecasts for the RV generally dominate those obtained through
GARCH models; Corsi (2009) presented the Heterogenous autoregressive (HAR)
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model, that reproduces the hyperbolic decay of the autocorrelation function by in-
cluding the sums of RV over different horizons in order to capture the time strategies
of the agents in the market. The second model has the advantage to be much sim-
pler to estimate. Additionally, asymmetric, leverage effects, and fat tails should also
be taken into account. Martens et al. (2009) specified a flexible unrestricted high-
order AR model. They also considered leverage effects, days of the week effects and
macroeconomics announcement. Differently, Corsi et al. (2008) presented a HAR
model and they introduced two important extensions specifying a GARCH compo-
nent modeling the volatility of volatility and assuming non Gaussian errors. Their
results suggested an improvement in the accuracy in the point forecasting and a
better density forecast.

In this work, we model and forecast volatility through the Realized Range
Volatility. Our main objective is to study the prediction performance of the range
as a proxy of the volatility. An accurate forecast of financial variability should have
important implication in asset and derivative pricing, asset allocation, and risk man-
agement. Moreover, we try to fill a gap in the literature comparing the performance
of the realized range with the more common realized volatility. In the first part of
this paper we construct and analyze the realized range series, correct it from the
microstructure noise following Martens and van Dijk (2007). In the second part, we
implement time series techniques to model and capture the stylized facts within the
volatility equation to gain in forecasting accuracy. In details, we consider an HAR
model, we introduce leverage effects with respect to the return and the volatility, and
a GARCH a GJR-GARCH specification for the volatility of volatility. Furthermore,
in order to capture the statistical feature of the residuals of our model, we also con-
sider a Normal Inverse Gaussian (NIG) distribution. The remainder of this paper is
structured as follows. In section 2, we present the data and the correction procedure.
In section 3, we present the model and we discuss the results for the estimation and
forecast in section 4. Finally, section 5 presents the results and futures steps.

2 Data and correction procedure

Under the assumption that there are no market frictions and there is continuous trad-
ing, the RRV is five time more efficient than RV . In the reality, there are evidences
against these assumptions and realized estimator became inconsistent and unbiased.
Hence, a corrected version for the RRV should restore the efficiency of this estima-
tor over the RV . In this paper, we follow Martens and van Dijk (2007) that proposed
a correction based on scaling the range with the daily range. Basically, the scal-
ing bias correction is not difficult to implement it does not require the availability
of tick by tick data. The idea of Martens and van Dijk (2007) is based on the fact
that the daily range is almost not contaminated by market frictions. The simulation
results of Martens and van Dijk (2007) confirm the theory that the range is more
efficient than the RV and in the presence of market frictions the scaling correction
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removes the bias and restores the efficiency of the Realized Range estimator over
the Realized Volatility. The RRV is defined as

RRV ∆
t =

1
λ 2

n

∑
i=1

(ln phg
t,∆ − ln plo

t,∆ )2

where phg
t,∆ and plo

t,∆ are the high and low prices for day t, λ is a scaling factor
and ∆ indicates the sampling frequency. Therefore, the scaled RRV is defined as:

RRV ∆
scaled,t = (

∑
q
l=1 RRVt−l

∑
q
l=1 RRV ∆

t−l
)RRV ∆

t

where q is the number of previous trading days used to compute the scaling fac-
tor. If the trading intensity and the spread do not change, q must be set as large as
possible. However, in the reality only recent history should be taking into consider-
ation.

Our database consists in more than seven year of 1 minute high, low, open and
close prices for 16 stocks quoted on the NYSE. Because of space limitation, we
concentrate on the analysis and present the detailed results for Procter & Gamble
Company. However, similar conclusions emerge from the other series. The original
sample covers the period from January 2, 2003 to March 30, 2010, from 09:30
trough 16:00 and a total of 1887 trading days. We constructed the series for the
range for the one, five, thirty minutes and daily sampling frequency. We correct
them on one, two and three previous months (i.e. 22, 44 or 66 days). The results of
the corrections show that, after scaling, the volatility stabilized across the different
sampling frequencies and scaled factors. Finally, we choose to sample every five
minutes and to correct with the 66 previous days, the same election of the authors.
A statistical analysis of the return and volatility series confirms the presence of the
stylized facts vastly documented in the literature. The distribution of the returns
exhibit excess of kurtosis while the square returns presents a slow decay in the
autocorrelation function. The long-memory pattern in the hyperbolic and slowly
decay of the ACF is much more pronounced for the RRV series.

3 Models for the observed volatility sequences

Different models have been presented to capture the stylized facts that financial se-
ries exhibit. Based on the statistical features briefly mentioned before, we consider
the HAR model of Corsi (2009) to capture the long-memory pattern. We account for
asymmetric effects with respect to the volatility and the returns. Moreover, follow-
ing Corsi et al. (2008) we also include a GARCH specification to account for het-
eroskedasticity in observed volatility sequences and a standardized Normal Inverse
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Gaussian (NIG) distribution to deal with the observed skewness of the residuals.
Finally, to account for asymmetric effects in the variance equation or Volatility of
the Volatility we consider a GJR specification.

We thus estimate the following model:

ht = α +δsIs(ht−1)ht−1 +βdht−1 +βwh(t−1:t−5) +βmh(t−1:t−22) +
+γRRt−1 + γIRI(Rt−1)Rt−1 +

√
σtεt

σt = ω +β1σt−1 +α1u2
t−1 +φ1u2

t−1I(ut−1)
εt |Ωt−1 ∼ d(0,1)

where ht is the log RRVscaled,t , h(t−1:t− j) is the HAR component defined as

h(t−1:t− j) =
1
j

j

∑
k=1

ht−k

with j = 5 and 22 in order to capture the weekly and monthly component.
Is(ht−1) is an indicator for RRVscaled,t−1 bigger than the mean over s = 5,10,22,44
and 66 previous days and the unconditional mean (um) up to t− 1.These variables
capture the asymmetric effects with respect to the volatility. R = ln(pcl

t /pcl
t−1) is the

return, with pcl the closure price for the day t and I(Rt−1) is an indicator for nega-
tive returns in t− 1, that captures the asymmetric effects with regard to the lagged
return. ut =

√
σtεt is the error term. The full specification for σt is a GJR-GARCH

to account for the asymmetric effect in the volatility of the volatility, where I(ut−1)
is an indicator for ut−1 < 0. Finally, we have 21 model specifications for the mean
equation, three variance equations and two distributions for the residuals. In total,
126 models are considered. The estimation and forecast analysis is carried out for
different horizons.

4 Estimation and forecast results

Firstly, we estimate the model for the entire sample from January 2003 to March
2010. The aim is to assess the impact and significance of our different variables
in our models. Secondly, we compute one-day-ahead out-of-sample rolling forecast
from January 3, 2006 to March 30, 2010 for a total of 1067 periods. We have es-
timated the models until December 30, 2005 and then, we re-estimate each model
at each recursion. To evaluate the performance, we compute the Root mean square
error (RMSE) and the Mean absolute error (MAE). We compare the different per-
formances of the models with the Diebold Mariano Test based on the RMSE, on the
MAE and on the Qlike, that is a robust loss function introduced by Patton (2008).
Besides, we consider the Model Confidence Set approach of Hansen et al. (2010)



6 Massimiliano Caporin and Gabriel G. Velo

Table 1 Estimation results for the 2003-2010

Normal dist. NIG dist.
Constant var. GARCH Constant var. GJR

II VII XIV II VII XIV II VII XIV II VII XIV

α -0.281 *** -0.492 *** -0.465 *** -0.343 *** -0.490 *** -0.478 *** -0.299 *** -0.501 *** -0.430 *** -0.264 *** -0.447 *** -0.390 ***

(0.070) (0.091) (0.079) (0.087) (0.106) (0.090) (0.069) (0.091) (0.075) (0.076) (0.096) (0.078)
βd 0.363 *** 0.329 *** 0.281 *** 0.350 *** 0.327 *** 0.274 *** 0.342 *** 0.313 *** 0.284 *** 0.342 *** 0.318 *** 0.291 ***

(0.024) (0.026) (0.031) (0.031) (0.033) (0.041) (0.023) (0.026) (0.030) (0.028) (0.031) (0.039)
βw 0.460 *** 0.469 *** 0.522 *** 0.476 *** 0.482 *** 0.538 *** 0.437 *** 0.443 *** 0.483 *** 0.459 *** 0.464 *** 0.498 ***

(0.042) (0.042) (0.049) (0.048) (0.048) (0.058) (0.036) (0.036) (0.043) (0.042) (0.041) (0.052)
βm 0.119 *** 0.109 *** 0.114 *** 0.104 *** 0.096 ** 0.101 *** 0.159 *** 0.151 *** 0.154 *** 0.144 *** 0.134 *** 0.139 ***

(0.035) (0.035) (0.035) (0.038) (0.038) (0.037) (0.030) (0.031) (0.030) (0.034) (0.033) (0.033)
δ f ull - 0.003 - - 0.003 - - 0.000 - - 0.000 -

(0.005) (0.005) (0.005) (0.005)
δ5 - - -0.011 * - - -0.010 * - - -0.007 - - -0.006

(0.006) (0.006) (0.005) (0.005)
γRT - 1.630 - - 1.291 - - 2.441 * - - 2.045 -

(1.670) (1.827) (1.485) (1.608)
γIRT - -11.861 *** -9.598 *** - -9.872 *** -8.073 *** - -12.122 *** -8.532 *** - -10.762 *** -7.738 ***

(2.472) (1.141) (2.792) (1.365) (2.449) (1.277) (2.597) (1.319)

ω 0.182 *** 0.177 *** 0.177 *** 0.009 *** 0.010 *** 0.010 *** 0.179 *** 0.174 *** 0.174 *** 0.011 *** 0.014 *** 0.012 ***

(0.004) (0.004) (0.004) (0.002) (0.003) (0.003) (0.008) (0.008) (0.008) (0.004) (0.005) (0.005)
β1 - - - 0.901 *** 0.897 *** 0.901 *** - - - 0.893 *** 0.873 *** 0.887 ***

(0.018) (0.021) (0.020) (0.031) (0.039) (0.035)
α1 - - - 0.047 *** 0.046 *** 0.044 *** - - - 0.065 *** 0.071 *** 0.066 ***

(0.008) (0.009) (0.008) (0.018) (0.021) (0.019)
φ1 - - - - - - - - - -0.040 * -0.050 * -0.045 *

(0.023) (0.026) (0.024)

αNIG - - - - - - 1.470 *** 1.440 *** 1.449 *** 1.662 *** 1.613 *** 1.620 ***

(0.167) (0.160) (0.162) (0.198) (0.187) (0.188)
βNIG - - - - - - 0.379 *** 0.329 *** 0.329 *** 0.483 *** 0.426 *** 0.425 ***

(0.106) (0.099) (0.099) (0.125) (0.116) (0.116)

LLF -982.5 -960.6 -959.8 -950.0 -933.8 -933.0 -907.0 -888.8 -889.2 -881.6 -866.3 -866.6
AIC 1975.1 1937.3 1933.5 1914.0 1887.7 1883.9 1827.9 1797.5 1796.5 1783.1 1758.6 1757.3
BIC 2002.4 1980.9 1971.8 1952.2 1942.3 1933.0 1866.2 1852.1 1845.6 1837.7 1829.6 1822.8
L j30 0.328 0.467 0.399 0.518 0.634 0.583 0.198 0.362 0.320 0.312 0.430 0.405
L j40 0.577 0.752 0.704 0.743 0.864 0.836 0.423 0.664 0.628 0.585 0.735 0.715

JB t 0.001 0.001 0.001 0.001 0.001 0.001 - - - - - -
KS t 0.000 0.000 0.000 0.000 0.000 0.000 - - - - - -
LL t 0.001 0.001 0.001 0.001 0.001 0.001 - - - - - -

Note: Estimation results for the whole sample from January 2003 to May 2010. In this short version, we only present
some of the results. LLF is the Log-likelihood function, AIC is the Akaike Information Criteria and BIC is the Bayesian
information criterion . Standard errors in bracket. LJ30 and LJ40 are the Ljung Box test for 30 and 40 lags. JB− t is the
Jarque-Bera test for Normality, KS− t is the Kolmogorov-Smirnov and LL− t is the Lilliefors test. ”*”, ”**” and ”***”
indicates significance at the 10%, 5% and 1%.

based on the same three loss function2. Table 1 presents the result for the 2003-
2010 estimation, whereas table 2 and 3 present the forecast performance evaluation.

Estimation results for the full sample period (2003-2010) suggest that HAR com-
ponents are significant for the three variance specifications and the two different
distributions. The asymmetric effects with respect to the return and the volatility
improve the goodness of fit of the model. The first one is highly significant and
it increases the volatility after a negative return. On the contrary, when consider-
ing the full specification in the mean equation, the asymmetric effects with respect
to the volatility, in the different horizons, are not significant. The asymmetric ef-

2 In this version, we only present the results based on the Qlike loss function. Similar results are
obtained with the other two loss functions.
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Table 2 Out-of-sample forecast evaluation Diebold Mariano test based on the Qlike

Full sample
I II VII XIV I II VII XIV I II VII XIV I II VII XIV

Model NI NI NI NI NI NI NI NI NO NO NO NO NO NO NO NO
Co Co Co Co Gj Gj Gj Gj Co Co Co Co Ga Ga Ga Ga

I - NI - Co -
II - NI - Co 2.98 * -
VII - NI - Co 2.69 * 1.65 -
XIV - NI - Co 2.75 * 1.76 -0.11 -
I - NI - Gj 2.43 * -3.09 * -2.70 * -2.77 * -
II - NI - Gj 2.97 * 1.10 -1.63 -1.75 3.08 * -
VII - NI - Gj 2.68 * 1.68 1.67 0.85 2.69 * 1.67 -
XIV - NI - Gj 2.74 * 1.78 0.55 1.44 2.77 * 1.78 -0.45 -
I - NO - Co 2.11 * -3.16 * -2.72 * -2.78 * 0.98 -3.14 * -2.70 * -2.77 * -
II - NO - Co 2.86 * 1.47 -1.38 -1.42 2.95 * 1.32 -1.45 -1.48 3.02 * -
VII - NO - Co 2.67 * 1.59 0.10 0.12 2.69 * 1.57 -0.33 -0.11 2.73 * 1.51 -
XIV - NO - Co 2.66 * 1.65 0.91 0.81 2.67 * 1.64 0.24 0.50 2.68 * 1.49 0.54 -
I - NO - Ga -1.86 -3.02 * -2.74 * -2.81 * -2.55 * -3.01 * -2.74 * -2.81 * -2.19 * -2.90 * -2.72 * -2.72 * -
II - NO - Ga 2.97 * 0.57 -1.66 -1.78 3.08 * -0.65 -1.70 -1.81 3.13 * -1.35 -1.59 -1.67 3.01 * -
VII - NO - Ga 2.71 * 1.70 0.06 0.12 2.73 * 1.69 -0.95 -0.37 2.76 * 1.51 -0.10 -1.00 2.76 * 1.72 -
XIV - NO - Ga 2.71 * 1.67 -0.08 0.04 2.73 * 1.66 -0.96 -1.48 2.73 * 1.34 -0.11 -0.95 2.78 * 1.69 -0.10 -

Crisis
I II VII XIV I II VII XIV I II VII XIV I II VII XIV

Model NI NI NI NI NI NI NI NI NO NO NO NO NO NO NO NO
Co Co Co Co Gj Gj Gj Gj Co Co Co Co Ga Ga Ga Ga

I - NI - Co -
II - NI - Co 3.68 * -
VII - NI - Co 3.32 * 2.06 * -
XIV - NI - Co 3.37 * 2.03 * -0.80 -
I - NI - Gj 3.20 * -3.67 * -3.24 * -3.28 * -
II - NI - Gj 3.66 * 0.73 -2.09 * -2.06 * 3.65 * -
VII - NI - Gj 3.30 * 2.05 * 1.54 1.31 3.22 * 2.08 * -
XIV - NI - Gj 3.36 * 2.02 * -0.37 1.06 3.27 * 2.05 * -1.17 -
I - NO - Co 2.66 * -3.69 * -3.21 * -3.22 * 1.22 -3.66 * -3.18 * -3.21 * -
II - NO - Co 3.40 * 1.19 -1.68 -1.50 3.36 * 1.10 -1.74 -1.54 3.43 * -
VII - NO - Co 3.19 * 1.69 -0.10 0.13 3.13 * 1.69 -0.37 0.01 3.15 * 1.71 -
XIV - NO - Co 3.19 * 1.83 0.23 0.58 3.10 * 1.84 -0.26 0.41 3.07 * 1.67 0.34 -
I - NO - Ga -2.77 * -3.84 * -3.48 * -3.54 * -3.57 * -3.83 * -3.46 * -3.53 * -2.91 * -3.55 * -3.33 * -3.35 * -
II - NO - Ga 3.65 * 0.10 -2.15 * -2.13 * 3.64 * -1.12 -2.15 * -2.12 * 3.64 * -1.17 -1.74 -1.89 3.82 * -
VII - NO - Ga 3.30 * 1.96 * -0.45 0.16 3.24 * 2.00 * -1.19 -0.12 3.22 * 1.73 -0.09 -0.74 3.46 * 2.06 * -
XIV - NO - Ga 3.31 * 1.89 -0.96 -0.31 3.20 * 1.92 -1.66 -1.60 3.14 * 1.40 -0.18 -0.74 3.48 * 1.99 * -0.29 -

Note: Forecast performance for the full out-of-sample period (1067 observation) and the financial crisis period (200
observations). Model I is a AR(1) specification, II is an AR(1) + HAR, V II is an AR(1) + HAR + Ium(ht−1)ht−1 +
Rt−1 + I(Rt−1)Rt−1, V III is an AR(1) + HAR + Rt−1 + I(Rt−1)Rt−1, IX is an AR(1) + HAR + I(Rt−1)Rt−1 and XIV
is an AR(1) + HAR + I5(ht−1)ht−1 + I(Rt−1)Rt−1. NI indicates Normal Inverse Gaussian distribution, NO is Normal
distribution and Co is a constant variance specification, Ga is a GARCH and G j is a GJR variance specification. The
Diebold Mariano is a test for equal predictive accuracy between two models based on the Qlike loss function. Under
Ho, both models have the same performance. T-statistic in the table. ”*” rejects Ho at the 5%. Positive T-statistic favors
the column model.

fect on the previous five days is marginally significant for some models. The sign
and significance of the coefficients in the mean equation remain stable for the dif-
ferent specifications in the variance equation. The inclusion of the GARCH and
GJR specifications improve the fitting of the models. The models that best fit the
series are the ones that include the HAR and leverage effects, with GARCH and
GJR variances. Diagnostic tests for the residuals present different results. Only for
the models that include the HAR components we cannot reject the null hypothesis
of no serial correlation in the residual, implying a good performance. Normality
Tests for the residuals are rejected for all the models, which is an argument to in-
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Table 3 Out-of-sample forecast evaluation Model Confidence set based on the Qlike
Full Sample Crisis

Model MAE RMSE QlikeR QlikeSQ MAE RMSE QlikeR QlikeSQ

I - NI - Co 0.370 0.253 0.35 0.16 0.499 0.480 0.19 0.09
II - NI - Co 0.325 0.198 0.48 0.32 0.341 0.267 0.43 0.29
VII - NI - Co 0.322 0.192 0.48 0.70 0.328 0.236 0.67 0.66
VIII - NI - Co 0.322 0.191 0.63 0.82 0.327 0.235 0.67 0.79
IX - NI - Co 0.321 0.191 0.48 0.70 0.329 0.237 0.43 0.45
XIV - NI - Co 0.321 0.191 0.62 0.71 0.328 0.237 0.67 0.65
I - NI - Gj 0.363 0.241 0.30 0.11 0.461 0.421 0.19 0.13
II - NI - Gj 0.325 0.197 0.48 0.46 0.341 0.266 0.43 0.22
VII - NI - Gj 0.321 0.191 0.72 0.92 0.326 0.232 0.98 0.99
VIII - NI - Gj 0.322 0.190 0.98 0.99 0.326 0.232 1.00 1.00
IX - NI - Gj 0.321 0.190 0.63 0.82 0.328 0.234 0.67 0.57
XIV - NI - Gj 0.321 0.190 0.72 0.92 0.327 0.234 0.67 0.66
I - NO - Co 0.362 0.240 0.28 0.10 0.458 0.414 0.16 0.07
II - NO - Co 0.323 0.194 0.48 0.58 0.332 0.252 0.43 0.35
VII - NO - Co 0.320 0.190 0.72 0.84 0.321 0.228 0.67 0.68
VIII - NO - Co 0.320 0.189 1.00 1.00 0.322 0.228 0.98 0.99
IX - NO - Co 0.320 0.189 0.97 0.99 0.323 0.229 0.67 0.71
XIV - NO - Co 0.321 0.190 0.98 0.99 0.326 0.232 0.94 0.93
I - NO - Ga 0.373 0.257 0.35 0.13 0.518 0.503 0.13 0.05
II - NO - Ga 0.325 0.197 0.48 0.38 0.344 0.267 0.43 0.19
VII - NO - Ga 0.322 0.191 0.62 0.71 0.327 0.234 0.67 0.57
VIII - NO - Ga 0.322 0.191 0.62 0.71 0.328 0.235 0.43 0.45
IX - NO - Ga 0.321 0.190 0.62 0.71 0.329 0.237 0.43 0.41
XIV -NO - Ga 0.322 0.191 0.62 0.71 0.332 0.239 0.43 0.49

Note: Forecast performance for the full out-of-sample period (1067 observation) and the financial crisis period (200
observations). Model I is a AR(1) specification, II is an AR(1) + HAR, V II is an AR(1) + HAR + Ium(ht−1)ht−1 +
Rt−1 + I(Rt−1)Rt−1, V III is an AR(1) + HAR + Rt−1 + I(Rt−1)Rt−1, IX is an AR(1) + HAR + I(Rt−1)Rt−1 and XIV
is an AR(1) + HAR + I5(ht−1)ht−1 + I(Rt−1)Rt−1. NI indicates Normal Inverse Gaussian distribution, NO is Normal
distribution and Co is a constant variance specification, Ga is a GARCH and G j is a GJR variance specification. MAE is
the Mean Absolute Error. RMSE is the Root Mean Square Error. The Model Con f idence Set is a procedure to determine
the ”best” models from a collection of models. It recursively eliminates the models that worst perform. Based on the
Qlike loss function. QlikeR and QlikeSQ are the p-value for the range and the semi−qadratic deviation method.

troduce a non Gaussian distribution. As we said, the estimated parameters of the
mean equation for the models with NIG distribution are similar to the models with
Normal distribution. However, the introduction of this flexible distribution results in
an improvement of the fitness of the models compared to the Gaussian distribution.
The estimated parameters of the NIG distribution (αNIG and βNIG) capture the right
skewness and excess of kurtosis displayed in the residuals.

We have analyzed the results for the out-of-sample forecast in two different peri-
ods. In particular, we study the accuracy of the our models for the full sample (1067
observations) and during the financial crisis, from September 15, 2008 to July 30,
2009 (200 observation).

For the full sample forecast, the model that performs better, based on the MAE
and RMSE, is the autoregressive with HAR components, lagged and asymmetry
over the return, with constant variance and Normal distribution. Other models that
include asymmetric effects with respect to the volatility over the five previous days
and the unconditional mean perform similarly. Models with different specifications
for the variance and distribution for the innovation perform as the models with con-
stant variance. Although, GARCH and GJR improve the goodness of fitness in the
estimation, they do not have impact in the forecast. The Diebold-Mariano tests sug-
gest that models with symmetric effects with respect to the volatility and the returns
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perform as HAR models. For the full sample the introduction of the HAR compo-
nents seem to be the most important variable. Statistically, there is no difference be-
tween the performance of models with alternative variables, variance specifications
or distributions. This result is confirmed by the Model confidence set, an approach
to recursively eliminate the models that worst perform. In particular, only the AR(1)
models (with different variance specification and distribution) are excluded for the
set of best models.

During the financial crisis, the model that perform better is the autoregressive
with HAR component with lagged return and asymmetric effect over the returns and
the unconditional mean volatility. The results of the Diebold Mariano Test, based on
the Qlike loss function, display some evidence in favor of models with asymmetric
effects with respect to the volatility and the returns. However, the results of the
Model confidence set approach are similar to the ones of the full sample. The set of
best models include the HAR component of Corsi (2009) with different distribution
and variance specifications.

5 Conclusions and future steps

In this paper, we have modeled and forecasted price variation through the Realized
Range Volatility introduced by Martens and van Dijk (2007) and Christensen and
Podolskij (2007). We have estimated the series for different sampling frequencies
and corrected them with the scaling procedure of Martens and van Dijk (2007).
After the corrections, the volatility stabilizes across different sampling frequencies
and scaling factors which suggest that the bias caused by the microstructure fric-
tion was removed, restoring the efficiency of the estimator. We have considered a
model which approximates long memory, has asymmetric effects with respect to
the return and the volatility in the mean equation, and includes GARCH and GJR-
GARCH specifications for the variance equation (which models the volatility of the
volatility). A non Gaussian distribution was also considered for the innovations.

The results suggest that the HAR model with the asymmetric effect with re-
spect to the volatility and returns is the one that better fit the data. The analysis of
the forecast performances of the different models provides similar results for the
two considered periods, the full sample and the financial crisis. The introduction of
asymmetric effects improves the point forecasting performance. However, following
the different evaluation approaches adopted, there is no evidence to state that these
models perform statistically better than the simple HAR. As we expected, models
with GARCH and GJR-GARCH specifications and different distributions for the
innovations do not lead to more accurate point forecasts than models with constant
variance.

In our opinion, the HAR components are able to capture most of the variability
during the out-of-sample prevision. Then, in order to improve this performance,
the introduction of financial and macroeconomics variables should be considered.
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Other future steps are the possible correction for jumps in the volatility series and
an economic analysis of the performances of the models forecast.
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