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Abstract

We address some issues that arise with the Dynamic Conditional Correlation (DCC) model. We prove that

the DCC large system estimator (DCC estimator) can be inconsistent, and that the traditional interpretation

of the DCC correlation parameters can lead to misleading conclusions. We then suggest a more tractable

dynamic conditional correlation model (cDCC model). A related large system estimator (cDCC estimator)

is described and heuristically proven to be consistent. Sufficient stationarity conditions for cDCC processes

of interest, including the covariance-return process, are established. The DCC and cDCC estimators are

compared by means of applications to simulated and real data.

KEYWORDS: Multivariate GARCH Model, Quasi-Maximum-Likelihood, Two-step Estimation, Integrated

Correlation, Generalized Profile Likelihood.

JEL CODES: C13, C32, C51, C52, C53.

1 . INTRODUCTION

During the last decade, the focus on the variance-correlation decomposition of the asset conditional covari-

ance matrix has become one of the most popular approaches to the modeling of multivariate volatility. Seminal

works in this area are the Constant Conditional Correlation (CCC) model of Bollerslev (1990), the Dynamic

Conditional Correlation (DCC) model of Engle (2002), and the Varying Correlation (VC) model of Tse and

Tsui (2002). Extensions of the DCC model have been proposed, among others, by Cappiello, Engle, and Shep-

pard (2006), Billio, Caporin, and Gobbo (2006), Pesaran and Pesaran (2007), and Franses and Hafner (2009).

Related examples are the models of Silvennoinen and Teräsvirta (2005), Pelletier (2006), McAleer, Chan, Hoti,

and Lieberman (2008), and Kwan, Li, and Ng (in press).

In the DCC model, the conditional variances are modeled as univariate GARCH models; the conditional

correlations are then modeled as peculiar functions of the past GARCH standardized returns. In its original

intentions, such a modeling approach should have been capable of providing two major advantages. First, thanks

to the modular structure of the DCC conditional covariance matrix, a consistent large system estimator (DCC

estimator) should have been available as a three-step procedure. Second, thanks to the peculiar parametrization

of the DCC conditional correlation process, testing for correlation hypotheses, such as whether or not the

correlation process is integrated, should have been easier than with other models. Aielli (2006) pointed out that

the DCC model is a partial solution to the aims of the DCC modeling approach. The author demonstrated

that the DCC model is less tractable than expected and that the conjecture on the consistency of the DCC
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estimator is not substantiated. He then suggested reformulating the DCC correlation driving process as a linear

multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) process (cDCC model). The

resulting model allows for an ad hoc profile quasi-log-likelihood estimator (cDCC estimator) which is feasible

with large systems. Compared with the DCC estimator, the cDCC estimator only requires a minor additional

computational effort.

This paper extends the paper of Aielli (2006) with new theoretical and empirical results. We prove — no

longer only conjecture — that the DCC estimator of the location correlation parameter can be inconsistent (sec.

3.1.1). Regarding the testing of correlation hypotheses, we point out that the test of DCC integrated correlations

is an inconclusive procedure because of the unknown meaning of the alternative hypothesis (sec. 2.1.3). More

generally, we show that the traditional GARCH-like interpretation of the DCC correlation parameters can

lead to paradoxical conclusions (sec. 2.1.1). For example, in spite of the presence of a “unit root”, the DCC

correlation driving process is weakly stationary.

As for the cDCC model, relying on a recent result of Boussama, Fuchs and Stelzer (in press), sufficient

stationarity conditions for cDCC processes of interest are established. Such stationarity conditions are stated

as a flexible stationarity principle (cDCC stationarity principle), which is capable of encompassing a wide range

of possible variance specifications (sec. 2.2.1). A consistency property of the cDCC estimator of the location

correlation parameter is proved, relying on which a heuristic consistency proof for the cDCC estimator as a

whole is provided (sec. 3.2.1). The meaning of the test of cDCC integrated correlations is also established (sec.

2.2.3). Under the null hypothesis of integrated correlation, the squared conditional correlation is expected to

increase with the forecast horizon; under the alternative hypothesis, it is expected to revert to the stationary

state.

The finite sample performances of the cDCC and DCC estimators are compared by means of applications

to simulated and real data. Under correctly specified model, for parameter values that are common in financial

applications, the bias of the DCC location correlation parameter estimator is negligible (sec. 4.1). For less

common parameter values, it can be substantial. In general, such a bias is an increasing function of the

persistence of the correlation process and of the impact of the news. Such a bias disappears when the cDCC

estimator is used. Some simulation experiments under misspecification are discussed (sec. 4.2), where the DCC

and cDCC estimators prove to perform very similarly. For the applications to the real data (sec. 4.3), two

datasets are considered, namely, a small dataset of ten equity indices, and a large dataset of 100 equities. On

both datasets, the cDCC correlation forecasts perform as well as or significantly better than the DCC correlation

forecasts. The remainder of the paper is organized as follows: section 2 illustrates a theoretical comparison

of the DCC and cDCC models; section 3 discusses the DCC and cDCC estimators; section 4 compares the

empirical performances of the two estimators, and section 5 concludes the paper. The proofs of the propositions

are compiled in the Appendix.

2 . STRUCTURAL PROPERTIES

2.1 The DCC model

Let yt ≡ [y1,t, . . . , yN,t]� denote the vector of excess returns at time t = 0,±1,±2, . . . We assume that yt is

a martingale difference, or Et−1[yt] = 0, where Et−1[ · ] denotes expectations conditional on yt−1, yt−2, . . . The
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conditional covariance matrix of the excess returns, Ht ≡ Et−1[yty�t], can be written as

Ht = D1/2
t RtD

1/2
t , (1)

where Rt ≡ [ρij,t] is the asset conditional correlation matrix and Dt ≡ diag(h1,t, . . . , hN,t) is a diagonal matrix,

with the asset conditional variances as diagonal elements. By construction, Rt is the conditional covariance

matrix of the vector of the standardized returns, εt ≡ [ε1,t, ε2,t, . . . , εN,t]�, where εi,t = yi,t/
�
hi,t.

In the DCC model, the variance processes are modeled as univariate GARCH models,

hi,t = hi(θi; yi,t−1, yi,t−2, . . .), (2)

where hi( · ; · , · , . . .) is a known function and θi is a vector of parameters, i = 1, 2, . . . , N , . The conditional

correlation process is modeled as

Rt = Q∗−1/2
t QtQ

∗−1/2
t , (3)

where

Qt = (1− α − β)S + α εt−1ε
�
t−1 + β Qt−1, (4)

where Qt ≡ [qij,t], S ≡ [sij ], Q
∗
t ≡ diag(q11,t, . . . , qNN,t), and α and β are scalars. If Qt is positive definite (pd),

Rt is pd with unit diagonal elements, as required for Rt to be a pd correlation matrix. To ensure that Qt is pd,

it is assumed that α ≥ 0, β ≥ 0, α + β < 1, and S is pd. It is common (though unnecessary — see sec. 2.2) to

also assume that sii = 1 for i = 1, 2, . . . , N .

Some simulated series of ρij,t are plotted in Fig. (1). Coeteris paribus, the persistence of ρij,t increases with

α + β , the dispersion of ρij,t is an increasing function of α, and sij is essentially a location parameter for ρij,t.

In the financial applications, a common estimation output is α̂+ β̂ ≥ .96, with α̂ ≤ .04.

More general models can be obtained by replacing (4) with more general equations, such as

Qt = (ιι� −A−B)⊙ S +A⊙ εt−1ε
�
t−1 +B ⊙Qt−1, (5)

(Engle 2002, eq. 24), where A ≡ [αij ], B ≡ [βij ], ι denotes the N×1 vector with unit entries, and ⊙ denotes the

element-wise (Hadamard) matrix product. With this model, Qt is pd provided that A is positive semi definite

(psd), B is psd, and (ιι� −A−B)⊙ S is pd (Ding and Engle 2001).

For illustrative purposes, it is useful to also consider the VC model of Tse and Tsui (2002),

Rt = (1− α− β)S + αRM,t−1 + βRt−1, (6)

where RM,t is the sample correlation matrix of εt, εt−1, . . . , εt−M+1, and M ≥ N is fixed arbitrary. If α ≥ 0,

β ≥ 0, α+ β < 1, and S is unit-diagonal pd, Rt is unit-diagonal pd.

2.1.1 GARCH-like interpretation of the dynamic correlation parameters.

The DCC correlation driving process, Qt, is often treated as a linear MGARCH process (see, e.g., Engle

2002, eq. (18)). The way α, β, and S affect the dynamics of Qt is then interpreted accordingly. Since the

conditional covariance matrix of εt is Rt (not Qt), the process Qt is not linear MGARCH. In fact, treating Qt

as a linear MGARCH process can lead to misleading conclusions. For example, for α + β = 1, the process qij,t,
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which is thought of as an integrated GARCH process (Engle 2002, eq. (17)), is weakly stationary. To see why,

rewrite qij,t for i = j as

qii,t = (1− β) + βqii,t−1 + α(ε2it−1 − 1), (7)

where we applied sii = 1. Since α(ε2it−1 − 1) is a martingale difference, qii,t is AR(1) with autoregressive

parameter β. For α + β ≤ 1 and α > 0, qii,t is weakly stationary. Since |qij,t| ≤ √
qii,tqjj,t, it follows that, for

α + β ≤ 1 and α > 0, the second moment of qij,t exists finite, in which case, if qij,t is strictly stationary, it is

weakly stationary.

After recognizing that Qt is not linear MGARCH, finding a tractable representation of Qt proves to be

difficult. Specifically, the dynamic properties of Rt(= Q∗−1/2
t QtQ

∗−1/2
t ) turn out to be hard to study. Similar

problems also arise with the VC model (see eq. (6)), in that Rt is generally not the conditional expectation of

RM,t.

2.1.2 Formula and interpretation of S.

Applying a standard result on linear MGARCH processes, S is treated as the second moment of εt (Engle

2002, eq. (18), (23) and (24)). Accordingly, during the fitting of large systems, S is replaced by the sample

second moment of the estimated standardized returns (Engle and Sheppard 2001; Cappiello et al. 2006; Billio

et al. 2006; Pesaran and Pesaran 2007; Franses and Hafner 2009). Unfortunately, the equality S = E[εtε
�
t] does

not hold in general. As an example, consider the model in (5), with N = 2, α11 > 0, α22 = α12 = β11 = β22 =

β12 = 0, and 0 < s12 <
�
1− α11. As required, A is psd, B is psd, and (ιι� − A − B) ⊙ S is pd. By Jensen’s

inequality and E[ε21,t] = 1, we get

E[ε1,t ε2,t] = E[ρ12,t] = E
�
s12/

�
(1− α11) + α11ε

2
1,t−1

�

= s12E
�
1/
�
(1− α11) + α11ε

2
1,t−1

�
> s12/

�
(1− α11) + α11E[ε21,t−1]

= s12

= E[q12,t].

Noting that s12 = E[ε1,tε2,t] if and only if E[ε1,tε2,t] = E[q12,t] (see eq. 5), it follows that s12 �= E[ε1,tε2,t].

Proposition 2.1. Suppose that α+ β < 1 and that E[Qt] and E[εtε
�
t] are independent of t. Then,

S =
1− β

1− α− β
E[Q∗1/2

t εt ε
�
tQ

∗1/2
t ]− α

1− α− β
E[εt ε

�
t]. (8)

Proof. All proofs are reported in the Appendix.

Prop. 2.1 shows that the interpretation of S is not immediate. Specifically, replacing S with the sample

second moment of εt is not an obvious estimation device. Indeed, the only case in which the equality S = E[εtε
�
t]

holds seems to be the case of constant conditional correlations (α = β = 0). As theoretical evidence in favor

of this, consider the following argument. From eq. (4), under stationarity it follows that S = E[εtε
�
t] if

and only if E[εtε
�
t] = E[Qt]. But the DCC defining equations imply that E[εtε

�
t] = E[Et−1[εtε

�
t]] = E[Rt] =

E[Q∗−1/2
t QtQ

∗−1/2
t ], where, apart from the case of constant conditional correlations, a.s. Q∗−1/2

t QtQ
∗−1/2
t �= Qt.
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Regarding the VC model, taking the expectations of both members of (6) under stationarity yields

S =
1− β

1− α− β
E[εtε

�
t]−

α

1− α− β
E[RM,t]. (9)

Again, S is neither easy to interpret, nor easy to estimate.

2.1.3 Testing for integrated correlations.

In analogy with qij,t, for α + β = 1 the process ρij,t is purported to exhibit “integrated” dynamics (Engle

and Sheppard 2001; Pesaran and Pesaran 2007). The sense in which ρij,t should be considered as integrated is

left unclear. The next proposition provides an answer to such a question.

Proposition 2.2. Suppose that α > 0 and α+ β = 1. Then, for i �= j, it holds

ρ2ij,t+1 = Et

�
ρ2ij,t+1

�
< Et

�
ρ2ij,t+2

�
< Et

�
ρ2ij,t+3

�
< · · · < lim

m−→∞
Et

�
ρ2ij,t+m

�
.

Thus, for α + β = 1, the asset cross-dependence is expected to increase with the forecast horizon. Unfor-

tunately, the behavior of ρij,t for α + β < 1 is unknown. Therefore, at least from a theoretical point of view,

testing for DCC integrated correlations should be considered as inconclusive.

2.2 The cDCC model

The tractability of the DCC model can be substantially improved by reformulating the correlation driving

process as

Qt = (1− α− β)S + α
�
Q∗1/2

t−1 εt−1ε
�
t−1Q

∗1/2
t−1

�
+ βQt−1 (10)

(Aielli 2006). The resulting model is called cDCC model, where c stands for corrected. Pre- and post-multiplying

both members of (10) by a diagonal matrix Z yields an analogous formula, where S, Qt and Q∗
t are replaced

by S̄ ≡ ZSZ, Q̄t ≡ ZQtZ, and Q̄∗
t ≡ ZQ∗

tZ, respectively. Since Rt = Q∗−1/2
t QtQ

∗−1/2
t = Q̄∗−1/2

t Q̄t Q̄
∗−1/2
t , the

parameters (S,α,β) and (S̄,α,β) are indistinguishable from εt. The identifiability of (S,α,β) is guaranteed

by the assumption that S is unit-diagonal. We notice that, with the cDCC model, such an assumption is an

innocuous identification condition, whereas, with the DCC model, it is an overidentifying restriction.

Some simulated series of conditional correlations are plotted in Fig. (1). The response of the cDCC ρij,t to

the variations of α and β is analogous to the response of the DCC ρij,t.

One might argue that the cDCC model is not really a correlation model in that Rt is modeled implicitly,

as a byproduct of the model of Qt. Indeed, this is not the case. An explicit representation of ρij,t can in fact

be obtained by dividing the numerator and denominator of the right hand side of ρij,t = qij,t/
√
qii,tqjj,t by

√
qii,t−1qjj,t−1. This yields

ρij,t =
ωij,t−1 + α εi,t−1εj,t−1 + βρij,t−1��

ωii,t−1 + α ε2i,t−1 + βρii,t−1

��
ωjj,t−1 + α ε2j,t−1 + βρjj,t−1

� , (11)

where ωij,t ≡ (1− α− β)sij/
√
qii,t qjj,t. Since Et−1[εi,tεj,t] = ρij,t, the formula of ρij,t proves to combine a sort

of GARCH devices for the relevant past values and innovations into a correlation-like ratio. The parameters α
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and β, originally related to Qt, prove to be the dynamic parameters of the correlation GARCH devices. The

time-varying intercept, ωij,t, can be seen as an ad hoc correction required for purposes of tractability.

The DCC analog of (11) is

ρij,t =
ωij,t−1 + αt−1εi,t−1εj,t−1 + βρij,t−1��

ωii,t−1 + αt−1ε
2
i,t−1 + βρii,t−1

��
ωjj,t−1 + αt−1ε

2
j,t−1 + βρjj,t−1

� ,

where ωij,t ≡ (1 − α − β) sij/
√
qii,t qjj,t and αt ≡ α/

√
qii,t qjj,t. Compared with the cDCC formula, the DCC

formula involves more time-varying parameters, none of them being supported by any apparent motivation.

Regarding the VC model (see eq. (6)), ρij,t is actually modeled explicitly, but at the cost of an ad hoc innovation

term, RM,t, which makes the model difficult to deal with (see sec. 2.1.1, 2.1.2, and 3.2).

Setting ε∗t ≡ Q∗1/2
t εt, we get Et−1[ε

∗
t ] = 0 and Et−1[ε

∗
t ε

∗�
t ] = Qt, whereQt = (1−α−β)S+α ε∗t−1ε

∗�
t−1+βQt−1.

Hence, ε∗t follows a linear MGARCH process (Engle and Kroner 1995). This argument suggests the assumption

of a general linear MGARCH model for ε∗t as a practical way to extend the cDCC model in (10). Thus, modeling

ε∗t as a Baba-Engle-Kraft-Kroner (BEKK) model (Engle and Kroner 1995), delivers

Qt = C +
Q̄�

q=1

K�

k=1

Āq,k {Q
∗1/2
t−q εt−qε

�
t−qQ

∗1/2
t−q } Ā�

q,k +
P̄�

p=1

K�

k=1

B̄p,kQt−p B̄
�
p,k, (12)

where

C ≡ S −
Q̄�

q=1

K�

k=1

Āq,k S Ā�
q,k −

P̄�

p=1

K�

k=1

B̄p,k S B̄�
p,k. (13)

For this model, Qt is pd provided that C is pd. We will refer to model (12) as the BEKK cDCC model. A

special case of the BEKK cDCC model is the Diagonal Vech cDCC model (Bollerslev 1990), which can be

written as

Qt = (ιι� −
Q�

q=1

Aq −
P�

p=1

Bp)⊙ S +
Q�

q=1

Aq ⊙ {Q∗1/2
t−q εt−q ε

�
t−qQ

∗1/2
t−q }+

P�

p=1

Bp ⊙Qt−p. (14)

For this model, Qt is pd provided that the intercept is pd, Aq ≡ [αij,q] is psd for q = 1, 2, . . . ,Q, and Bp ≡ [βij,p]

is psd for p = 1, 2, . . . ,P (Ding and Engle 2001). As an identification condition, we set sii = 1 for i = 1, 2, . . . , N .

It can easily be seen that the representation of ρij,t in terms of correlation GARCH devices, given in (11), directly

extends to the Diagonal Vech cDCC model. If Aq = αq ιι� for q = 1, 2, . . . ,Q, and Bp = βp ιι� for p = 1, 2, . . . ,P,

we get the Scalar cDCC model. For this model, Qt is pd if αq ≥ 0 for q = 1, 2, . . . ,Q, βp ≥ 0 for p = 1, 2, . . . ,P,
�Q

q=1 αq +
�P

p=1 βp < 1, and S is pd. For Q = P = 1, one gets the model in (10).

2.2.1 cDCC stationarity principle.

The next proposition draws on the modular structure of the cDCC model to establish cDCC stationarity

conditions as a modular stationarity principle (cDCC stationarity principle). Loosely speaking, if (Rt, εt) is

stationary and hi,t is stationary for i = 1, 2, . . . , N , then (Ht, yt) is stationary. From a modeling perspective,

a useful consequence of this is that, if the correlation-return process is stationary, any functional form of the

variance processes is allowed for (e.g., GARCH, TGARCH, EGARCH,. . . ) without prejudice for the stationarity

6



of the covariance-return process, provided that the single variance processes are stationary under the assumption

of univariate stationary standardized innovations. We notice that this property is not peculiar to the cDCC

dynamic conditional correlation model, but it is true, e.g., for the DCC and VC models as well. With the cDCC

model, however, it takes on a practical interest because the stationarity conditions for the cDCC specification

of (Rt, εt) can be explicitly derived from a recent result of Boussama et al. (in press). Before stating the

proposition, we need to introduce some notations. For the BEKK cDCC model in (12), setAq ≡ U{
�K

k=1Aq,k⊗
Aq,k}W � for q = 1, 2, . . . , Q̄, and Bp ≡ U{

�K
k=1Bp,k ⊗ Bp,k}W � for p = 1, 2, . . . , P̄, where ⊗ denotes the

Kronecker product. The matrices U and W are the unique N(N + 1)/2 × N2 matrices such that vech(Z) =

Uvec(Z), vec(Z) = W �vech(Z), and UW � = IN(N+1)/2 for any N -dimensional symmetric matrix Z, where vec

and vech, respectively, denote the operators stacking the columns and the lower triangular part of the matrix

argument. The existence and uniqueness of U and W hold by linearity of vech and vec. Let

hi,t = Hi(θi; εi,t−1, εi,t−2, . . .)

denote the representation of hi,t in terms of standardized innovations, obtained by recursively substituting

backward for lagged yi,t = εi,t
�
hi,t into hi,t = hi(θi; yi,t−1, yi,t−2, . . .). We assume that εt = R1/2

t ηt , where R
1/2
t

is the unique psd matrix such that R1/2
t R1/2

t = Rt , and ηt is iid such that E[ηt] = 0 and E [ηtη
�
t] = IN .

Proposition 2.3. ( cDCC stationarity principle). For the BEKK cDCC model in (12), suppose that:

H1) the density of ηt is absolutely continuous with respect to the Lebesgue measure, positive in a neighborhood

of the origin;

H2) C is pd, and the largest eigenvalue of
�Q̄

q=1Aq +
�P̄

p=1Bp is less than one in modulus.

Then, (i) the process [vech(Rt)
�, ε�t]

� admits a non-anticipative, strictly and weakly stationary, and ergodic solu-

tion. In addition to H1-H2, suppose that:

H3) Hi(θi; εi,t−1, εi,t−2, . . .) is measurable for i = 1, 2, . . . , N .

Then, (ii) the process [vech(Ht)�, y�t, vech(Rt)
�, ε�t]

� admits a non-anticipative, strictly stationary, and ergodic

solution. In addition to H1-H3, suppose that:

H4) E[y2i,t] < ∞ for i = 1, 2, . . . , N .

Then, (iii) the process yt admits a weakly stationary solution.

Regarding the correlation assumptions, namely, H1-H2, we notice that H1 is typically fulfilled in any practical

application, and that H2 is easy to check. For example, with the Diagonal Vech cDCC model, H2 is equivalent to

the assumption that
�
ιι� −

�Q
q=1Aq −

�P
p=1Bp

�
⊙S is pd and

�Q
q=1 αii,q +

�P
p=1 βii,p < 1 for i = 1, 2, . . . , N .

The specific form of the variance assumptions, H3-H4, depends on the model of hi,t (see Francq and Zaköıan

2010 for a survey). As for H3, the point to keep in mind is that Hi,t must be measurable under strictly stationary

εi,t, which is a less stringent assumption than the usual one of iid εi,t. For example, in the GARCH(1,1) model

(Bollerslev 1986), hi,t = ci + ai y
2
i,t−1 + bi hi,t−1, where ci > 0, ai ≥ 0, and bi ≥ 0, Hi,t is measurable if

E[log(ai ε
2
i,t+ bi )] < 0 and E[max{0, log(ai ε2i,t+ bi )}] < ∞ (Brandt 1986 and Bougerol and Picard 1992). If εi,t

is iid (which holds if ηt is Gaussian), it suffices that E[log(ai ε
2
i,t + bi )] < 0. As for H4, by a well known result,

it follows that E[y2i,t] < ∞ if ai + bi < 1.

2.2.2 Formula and interpretation of S.
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Proposition 2.4. For the BEKK cDCC model in (12-13), suppose that assumptions H1-H2 of prop. 2.3 hold.

Then, Q∗1/2
t εt is covariance stationary, and

S = E[Q∗1/2
t εt ε

�
tQ

∗1/2
t ]. (15)

Noting that E[Q∗1/2
t εtε

�
tQ

∗1/2
t ] = E[ε∗t ε

∗�
t ] = E[Et−1[ε

∗
t ε

∗�
t ]] = E[Qt], from eq. (15) it follows that S = E[Qt].

Thus, S is the expectation of the correlation driving process. We notice that, as with the DCC and VC models,

with the cDCC model S is not the second moment of εt. Nevertheless, relying on the simple structure of (15),

a psd intuitive large system estimator can be easily constructed (see sec. 3.2).

2.2.3 Testing for integrated correlations.

Proposition 2.5. (Test of cDCC integrated correlations). For the cDCC model in (10), suppose that: H1)

the density of ηt is absolutely continuous with respect to the Lebesgue measure, positive in a neighborhood of the

origin, H2) α > 0, and H3) S is pd. Then, for i �= j, it holds that

(i) if α+ β < 1, then ρ2ij,t is strictly and weakly stationary, and limm−→∞Et [ρ
2
ij,t+m] = E[ρ2ij,t] < 1;

(ii) if α+ β = 1, then ρ2ij,t+1 = Et

�
ρ2ij,t+1

�
< Et

�
ρ2ij,t+2

�
< Et

�
ρ2ij,t+3

�
< · · · < limm−→∞Et

�
ρ2ij,t+m

�
.

In the long-run, the non-integrated ρ2ij,t+m is expected to either increase or decrease; the sign of the expected

dynamics depends on the current state, ρ2ij,t+1, and the stationary state, E[ρ2ij,t], which is proved to be non-

degenerate. Conversely, in the long-run, the integrated ρ2ij,t+m is in any case expected to increase.

We notice that, for α+ β = 1, the intercept of the GARCH(1,1) process qii,t is zero, which implies that a.s.

qii,t −→ 0 for t −→ ∞ (Nelson 1990, Proposition 1). This can cause numerical problems during the computation

of ρij,t = qij,t/
√
qii,tqjj,t for large t and α + β = 1. The DCC model is free from such a drawback in that, for

α+ β = 1, the DCC qii,t is AR(1) stationary (see sec. 2.1.1).

3 . LARGE SYSTEM ESTIMATION

3.1 The DCC estimator

Let LT (θ, S,φ) =
�T

t=1 lt(θ, S,φ) denote the error correction decomposition of the DCC quasi-log-likelihood

(QLL), where θ ≡ [θ�1, . . . , θ
�
N ]� and φ ≡ [α,β]�. Thus, lt(θ, S,φ) = −(1/2)

�
N log(2π) + log |H̃t|+ y�t H̃

−1
t yt

�
,

where H̃t ≡ D̃1/2
t R̃t D̃

1/2
t , where D̃t and R̃t, respectively, stand for Dt and Rt evaluated at (θ, S,φ) (see eq.

(1-4)). Because of the presence of S, which includes N(N−1)/2 distinct parameters to estimate, the joint quasi-

maximum-likelihood (QML) estimation of the DCC model is infeasible for large N . As a feasible estimator,

Engle (2002) suggested a three-step procedure called DCC estimator. Before introducing it, we first define an

estimator of S conditional on θ.

Definition 3.1. (DCC conditional estimator of S). For fixed θ, set S̃θ ≡ T−1�T
t=1 ε̃tε̃

�
t , where ε̃t ≡ [ε̃1,t, . . . , ε̃N,t]�,

ε̃i,t ≡ yi,t/
�
h̃i,t, and h̃i,t ≡ hi,t(θi; yi,t−1, yi,t−2, . . .).

S̃θ is the sample second moment of the standardized returns evaluated at θ. Alternatively, S̃θ can be defined

as the sample (centered or uncentered) correlation of ε̃t.
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Definition 3.2. (DCC estimator).

Step (1): set θ̂ ≡ [θ̂�1, θ̂
�
2, . . . , θ̂

�
N ]�, where θ̂i is the univariate QML estimator of θi, i = 1, 2, . . . , N ;

Step (2): set Ŝ ≡ S̃θ̂;

Step (3): set φ̂ ≡ argmaxφ LT (θ̂, Ŝ,φ), subject to α ≥ 0, β ≥ 0 and α+ β < 1.

A common choice for the initial values of the correlation recursions is to set εi,0 = 0 for i = 1, 2, . . . , N and

Q0 = Ŝ. The choice of the initial values for the variance recursions depends on the model of hi,t. To alleviate

the bias of φ̂ due to the presence of the large dimensional estimated nuisance parameter Ŝ, Engle et al. (2009)

suggested replacing LT (θ, S,φ) with the so-called bivariate composite DCC QLL,

N�

i=2

LT,i,i−1(θ, S,φ), (16)

where LT,i,i−1(θ, S,φ) denotes the bivariate QLL of the DCC submodel of (yi,t, yi−1,t).

3.1.1 Inconsistency of the DCC estimator.

The consistency conditions for θ̂ depend on the GARCH models of the conditional variances (see Francq

and Zaköıan 2010 for a survey). Regarding Ŝ, we have proven in section 2.1.2 that the equality S0 = E[εtε
�
t]

does not hold in general (thereafter a superscript zero will denote true values. ). If S0 �= E[εtε
�
t] and plim S̃θ is

finite in a neighborhood of θ0, under consistency of θ̂ it follows that plim Ŝ = plim S̃θ̂ �= S0 (Wooldridge 1994,

Lemma A.1). As for φ̂, we notice that, unless S and φ are proven to be orthogonal, if Ŝ is inconsistent, φ̂ is

inconsistent in turn (Newey and McFadden 1994, sec. 6.2, p. 2179).

3.1.2 Inferences from DCC estimations.

The inconsistency of Ŝ is a potential cause of inconsistent inferences. Following Engle (2002, p. 342, eq.

33 — see, e.g., Franses and Hafner 2009), the standard errors of φ̂ are corrected for the estimation of (θ, S)

relying on the formulas in Newey and McFadden (1994, Theorem 6.1; analogous formulas are derived by Engle

and Sheppard 2001 relying on White 1996). Unfortunately, for such formulas to hold, a consistent estimator of

(θ, S) is generally required.

3.2 The cDCC estimator

As a large system estimator for the cDCC model, Aielli (2006) suggested the cDCC estimator, an ad hoc

generalized profile QLL estimator which can be directly extended to the Diagonal Vech cDCC model. In this

section, LT (θ, S,φ) =
�T

t=1 lt(θ, S,φ) will denote the error-correction decomposition of the QLL of the Diagonal

Vech cDCC model, where φ is the vector stacking the lower triangle of the model dynamic parameter matrices.

Thus, (θ, S,φ) relates to H̃t = D̃1/2
t R̃tD̃

1/2
t according to eq. (1-3) and (14). The parameter space of φ and θ

will be denoted by Φ and Θ, respectively. Before introducing the cDCC estimator, we first define an estimator

of S conditional on (θ,φ).

9



Definition 3.3. ( cDCC conditional estimator of S). For fixed (θ,φ), set S̃θ,φ ≡ T−1�T
t=1 Q̃

∗1/2
t ε̃t ε̃

�
t Q̃

∗1/2
t ,

where ε̃t is defined as in def. 3.1, and Q̃∗
t ≡ diag(q̃11,t, . . . , q̃NN,t), where

q̃ii,t = (1−
Q�

q=1

αii,q −
P�

p=1

βii,p) sii +
Q�

q=1

αii,q ε̃
2
i,t−q q̃ii,t−q +

P�

p=1

βii,p q̃ii,t−p. (17)

S̃θ,φ is the sample second moment of S conditional on (θ,φ) (see eq. (15)). By construction, S̃θ,φ is pd.

Note that S̃θ,φ is fast to compute as it simply requires running N univariate recursions for ε̃t plus N univariate

recursions for Q̃t. By unit variance of εi,t
√
qii,t (see again (15)), we can alternativly define S̃θ,φ as the sample

(centered or uncentered) correlation of Q̃∗1/2
t ε̃t. In this case, S̃θ,φ will be unit-diagonal, like S.

Definition 3.4. ( cDCC estimator).

Step (1): set θ̂ as in def. 3.2;

Step (2): set φ̂ ≡ argmaxφ∈Φ LT (θ̂, S̃θ̂,φ,φ);

Step (3): set Ŝ ≡ S̃θ̂,φ̂.

The objective function for φ (see Step 2) is an example of generalized profile QLL (Severini 1998). The

parameter φ is the parameter of interest and (θ, S) is the nuisance parameter. The estimator of the nuisance

parameter conditional on the parameter of interest is defined as (θ̂, Ŝθ̂,φ), where only Ŝθ̂,φ depends on φ. Once

φ̂ is computed, the unconditional estimate of the nuisance parameter is computed as (θ̂, Ŝθ̂,φ̂), which is nothing

but the value of the conditional estimator of the nuisance parameter at the end of the maximization process.

Thereafter, the objective function for φ will be referred to as the cDCC profile QLL (cDCC PQLL for short).

For suitably restricted φ, the cDCC PQLL is a function of a relatively small number of parameters. For

example, in the case of the Scalar Vech cDCC model, the cDCC PQLL is a function of P+Q parameters, where

P and Q are typically small. More general models can be estimated assuming reduced rank Diagonal Vech

dynamic parameter matrices, and/or the block partition of Billio et al. (2006). Under appropriate conditions

(Newey and McFadden 1994, Theorem 3.5), a Newton-Raphson one-step iteration from the cDCC estimator will

deliver an estimator with the same asymptotic efficiency as the joint QML estimator. The bivariate composite

version of the cDCC estimator is obtained by profiling the cDCC analog of (16) in place of the cDCC QLL.

We notice that the DCC estimator is a generalized profile QLL estimator where the conditional estimator of

the nuisance parameter, (θ̂, Ŝ), does not depend on φ. At least in principle, a DCC estimator totally analogous

to the cDCC estimator can be defined setting the DCC conditional estimator of S to the sample counterpart

of (8) for fixed (θ,φ). Unfortunately, such an estimator is not always psd. Similar problems also arise with the

VC model (see eq. 9).

3.2.1 Consistency of the cDCC estimator: a heuristic proof.

Proposition 3.1. For the Diagonal Vech cDCC model in (14), suppose that assumptions H1-H2 of prop. 2.3

hold. Then, plim S̃θ0,φ0 = S0.

Relying on prop. 3.1, we can provide a heuristic proof of the consistency of the cDCC estimator (see also

Fig. (2)).
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The cDCC estimator is the maximizer of the cDCC QLL subject to {θ = θ̂, S = S̃θ̂,φ,φ ∈ Φ}. If θ̂ is

consistent and plim S̃θ,φ is finite for all (θ,φ), then

plim {θ = θ̂, S = S̃θ̂,φ,φ ∈ Φ} = {θ = θ0, S = plim S̃θ0,φ,φ ∈ Φ}

(Wooldridge 1994, Lemma A.1). Since plim S̃θ0,φ0 = S0 (see prop. 3.1), the limit in probability of the cDCC

constraint is a correctly specified constraint. Therefore, if plimT−1LT (θ, S,φ) is finite for all (θ, S,φ) and

uniquely maximized in (θ0, S0,φ0) (which is a common assumption in QML settings — see Bollerslev and

Wooldridge 1992), plimT−1LT (θ̂, S̃θ̂,φ,φ) is uniquely maximized in φ0 (Wooldridge 1994, Lemma A.1). This

proves the consistency of φ̂ provided that the convergence of the scaled cDCC PQLL to its limit is uniform

(Newey and McFadden 1994, Theorem 2.1). As for Ŝ, if plim S̃θ,φ is finite for all (θ,φ) and plim(θ̂, φ̂) = (θ0,φ0),

then plim Ŝ = plim Ŝθ̂,φ̂ = S0 (Wooldridge, 1994, Lemma A.1).

We notice that a consistency proof like that above would not work with the DCC estimator, in that, if

plim Ŝ �= S0, the limit in probability of the DCC constraint, {θ = θ0, S = plim Ŝ,φ ∈ Φ}, is a misspecified

constraint.

3.2.2 Inferences from cDCC estimations.

Let s, s̃(θ,φ) and λt(θ,φ) denote the vectors stacking the lower off-diagonal elements of S, S̃θ,φ and

Q̃∗1/2
t ε̃t ε̃

�
t Q̃

∗1/2
t , respectively. Let γ ≡ [θ�,φ�, s�]�, lt(θ, s,φ), and li,t(θi) ≡ −(1/2){log(2π) + log h̃i,t + y2i,t/h̃i,t},

where i = 1, 2, . . . , N , denote the cDCC parameter, the individual cDCC QLL at time t, and the i-th individual

GARCH QLL at time t. The cDCC estimator, denoted as γ̂ ≡ [θ̂�, φ̂�, ŝ�], is a solution of the estimating equations

T−1�T
t=1 gt(γ) = 0, where the individual score is defined as gt(γ) ≡ [{ut(θ)}�, {vt(θ,φ)}�, {pt(θ,φ, s)}�]�, where

pt(θ,φ, s) ≡ λt(θ,φ) − s, vt(θ,φ) ≡ (∂/∂φ)lt(θ, s̃(θ,φ),φ), and ut(θ) = [{u1,t(θ1)}�, . . . , {uN,t(θN )}�]�, where
ui,t = (∂/∂θi)li,t(θi). Under the conditions in Newey and McFadden (1994, Theorem 3.2, with Ŵ replaced by

the identity), it follows that
√
T (γ̂ − γ0)

A≈ N(0, {A0}−1B0{A0�}−1), where

A0 ≡ plim




T−1
T�

t=1

∂

∂γ�
gt(γ)

�����
γ=γ0




 and B0 ≡ lim
T−→∞

V AR

�
T−1/2

T�

t=1

gt(γ
0)

�
.

The matrix A0 is block lower triangular with block partition determined by the partition of γ into θ, φ, and s. It

can easily be seen that the standard errors of θ̂i are the traditional univariate QML standard errors, and that the

standard errors of φ̂ do not depend on derivatives with respect to the O(N2) term, s. Estimates of the standard

errors of θ̂, φ̂ and — if needed — ŝ, can be computed by replacing the relevant blocks of A0 and B0 with the

sample counterparts evaluated at γ̂. For B0, heteroskedastic and autocorrelation (HAC)-robust estimates (see,

e.g., Newey and West 1987) are required. If S̃θ,φ is computed as a sample (centered or uncentered) correlation,

the individual score of s — namely, pt(θ,φ, s) — will be designed accordingly.

4 . EMPIRICAL APPLICATIONS

To compare the empirical performances of the DCC and cDCC estimators we use a MATLAB code based

on a sequential quadratic programming optimizer. As a starting point for the estimations of the correlation
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parameters, we use the true value of the data generating process (DGP) in the simulations under correctly

specified model, and the maximizer of the objective function over a grid in the simulations under misspecification

and in the applications to the real data. We impose � ≤ α ≤ 1−�, � ≤ β ≤ 1−�, and α+β ≤ 1−�, where � = 10−5,

to get more stable maximizations. The conditional estimators of S are computed as centered correlations.

4.1 Simulations under correctly specified model

For s ≡ s12 = 0,±.3,±.6,±.9, α = .01, .04, .16, and α + β = .8, .99, .998, we generate M = 500 DCC

bivariate Gaussian series of length T = 1750, discarding a burning period of 500 observations to alleviate the

effect of the initial values. Since our focus is on the correlation fitting performances, the DCC estimator is

computed assuming that the standardized innovations are known. An analogous experiment is run for the

cDCC estimator. The box plots of the estimation error of ŝ are presented in the panel of Fig. (3). Regarding

the DCC estimator, ŝ exhibits a positive bias for s0 < 0 and a negative bias for s0 > 0. Such a shrinkage effect

increases with the persistence of the correlation process, as measured by α0 + β0, and with the impact of the

news, as measured by α0. Coeteris paribus, for varying s0 the bias moves according to a sinusoidal pattern.

This is particularly evident for α0 + β0 = .998 and α = .16 (see the lower left plot of the panel). For typical

values of the dynamic parameters (see the plots for α0 + β0 > .8 and α0 ≤ .04) the bias is negligible. For

s0 = 0, the estimator appears to be unbiased whatever the value of (α0,β0) is. The box plots of the relative

estimation error of α̂ are presented in Fig. (4). For α0 + β0 = .998 and α0 = .16, the box plots are symmetric

and well centered around zero. The same holds for the estimation error of β̂ (see the lower left plot of Fig.

(5)), suggesting that the large bias of ŝ for α0 + β0 = .998 and α0 = .16 does not affect the performances

of (α̂, β̂). Fig. (6) presents the box plots of the mean absolute error of the conditional correlation estimator,

M−1T−1�M
m=1

�T
t=1

��ρ̂t − ρt
�� , where ρ̂t ≡ ρ̂12,t and ρt ≡ ρ12,t. For α0 + β0 = .998 and α0 = .16, in spite of

the large bias of ŝ, the estimator exhibits the best performances.

The good performances of α̂, β̂, and ρ̂t for α0 + β0 = .998 and α0 = .16, can be explained as follows. For

large t, by backward substitutions we can approximate q12,t as

q12,t ≈
1− α0 − β0

1− β0
s0 +

α0

1− β0

�
(1− β0)

t−1�

n=1

{β0}n−1ε1,t−n ε2,t−n

�
.

The right hand side is a weighted mean of s0 and of the term in brackets. If α0 + β0 and α0 are both large —

such as for α0 + β0 = .998 and α0 = .16 — the weight of s0 is small. In this case, the effect on the second-step

estimates, α̂, β̂, and ρ̂t, due to replacing s0 with a biased first-step estimate, like ŝ, will be small in turn.

The cDCC estimator of s does not exhibit any apparent bias (see Fig. (3)). All the related box plots

are symmetric and well centered around zero. Regarding α̂, β̂, and ρ̂t, we notice that, apart from the two

plots corresponding to α0 + β0 ≤ .99 and α0 = .16 (see the last row of the panels of Fig. (4), (5) and (6),

respectively), the DCC estimator and the cDCC estimator provide practically identical performances. For

α0 + β0 ≤ .99 and α0 = .16, instead, the cDCC estimator tends to underperform the DCC estimator.In this

case, however, a comparison of the two estimators is not appropriate because of the different DGP’s. This

argument is illustrated in Fig. (7), where the ACF of ρij,t is reported. For α0 + β0 ≤ .99 and α0 = .16, the

ACF’s of the two models are different, denoting different DGP’s. As expected, in the remaining plots, the

ACF’s of the two models are very similar if not identical.
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4.2 Simulations under misspecification

Following Engle (2002), we generateM = 500 bivariate Gaussian series of length T = 1000, with GARCH(1,1)

variances set as h1,t = .01+ .05 y21,t−1+ .94h1,t−1 and h2,t = .30+ .20 y22,t−1+ .50h2,t−1. The correlation series are

set as CONSTANT ≡ {ρt = .9}, STEP ≡ {ρt = .9− .5(t ≥ 500)}, FAS TSINE ≡ {ρt = .5+ .4. cos(2πt/20)},
SINE ≡ {ρt = .5 + .4. cos(2πt/200)}, and RAMP ≡ {ρt = mod(t/200)/200}. Such correlation processes en-

sure a variety of dynamics, such as rapid changes, gradual changes, and periods of constancy. For performance

measures we consider the following regression-based tests computed on portfolio returns, w�yt, where w is the

vector of portfolio weights (we recall that the conditional variance of w�yt is w
�Htw).

• Engle-Colacito regression. The Engle-Colacito (E&C) regression (Engle and Colacito 2006) is defined

as {(w�yt)
2 /(w� Ĥtw )} − 1 = λ + ξt, where ξt is an innovation term. The test is a test of the null hypothesis

that λ = 0. An HAC-robust estimator of the standard error of ξt is required.

• Dynamic Quantile test. Denote the τ×100%-quantile of the conditional distribution of w�yt as VaRt(τ)

(where VaR stands for Value at Risk). For fixed τ , set HITt ≡ 1 if w�yt < VaRt(τ), and HITt ≡ 0 otherwise. By

construction, {HITt− τ} is zero-mean iid. The Dynamic Quantile (DQ) test (Engle and Manganelli 2004) is an

F -test of the null hypothesis that all coefficients, as well as the intercept, are zero in a regression of {HIT t− τ}
on past values, VaRt(τ) and any other variables. We set VaRt(τ) = −1.96

�
w� Ĥtw , which corresponds to the

2.5% estimated quantile under Gaussianity. We use five lags and the current estimated VaR as regressors.

• LM test of ARCH effects. The LM test of ARCH effects (Engle 1982) is based on the property that

the series (w�yt)
2/(w�Htw) does not exhibit serial correlation. The test is a test of the null hypothesis that

(w�yt)
2/(w�Ĥtw) is serially uncorrelated. In this paper five lags are used.

If the model is correctly specified and the estimates are set to the true values, the above tests are asymptot-

ically normal. In our experiment, because of the model misspecification and the replacement of true quantities

with estimated quantities, the size of the tests will likely be different from the nominal size. As portfolio specifi-

cations, we consider the equally weighted portfolio, denoted as EW, and the minimum variance portfolios with

and without short selling, denoted as MV and ∗MV, respectively. The vector of EW weights is known and equal

to ι/N . The MV and ∗MV weights, which depend on the unknown Ht, are computed from the estimate of Ht.

For each of the two estimators, we have 5× 3× 3 (= 45) tests to compute, where 5 is the number of correlation

specifications, 3 is the number of regression-based tests, and 3 is the number of considered portfolios. For each

test, we compute the percentage of rejections at a 5% level on the generated series. The more rejections, the

more evidence of misspecification. All the resulting percentages are close to or less than the nominal size, and

they are practically the same for the two estimators (the related table is not reported here for reasons of space).

For each test, the null hypothesis of equal percentage of rejections for the two estimators is not rejected at any

standard levels.

4.3 Applications to real data

We consider two datasets extracted from Datastream. The first dataset includes the S&P 500 composite

index and the related nine SPDR sector indices for a total of N = 10 assets. The sample period is May 2003

- February 2010, which results in T = 1750 daily returns. The second dataset includes N = 100 randomly

selected equities from the S&P 1500 index industrial and consumer goods components. The sample period is
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June 2003 - March 2010, again for a total of T = 1750 daily returns. The two estimators are computed in

their bivariate composite versions (see sec. 3.1 and 3.2) assuming GARCH(1,1) variances. For performance

measures, we consider three sets of out-of-sample forecast criteria, namely, (i) a set of Equal Predictive Ability

(EPA) tests of one-step-ahead correlation forecasts, (ii) regression-based tests computed from one-step-ahead

forecasts, and (iii) EPA tests of multi-step-ahead correlation forecasts.

4.3.1 EPA tests of one-step-ahead correlation forecasts.

Let Ĥt|t−1 denote the DCC one-step-ahead estimate of Ht based on a rolling window of T̄ < T excess

returns. The excess returns of the rolling window, denoted as ŷt−j , j = 1, 2, . . . , T̄ , are estimated setting

ŷt−j ≡ zt−j − z̄t−1, where zt−j is the observed return at time t− j and z̄t−1 ≡ T̄−1�T̄
j=1 zt−j . We set T̄ = 1250,

which results in T − T̄ = 500 out-of-sample forecasts. As a mean square error (MSE) loss (Diebold and Mariano

1996) for the DCC forecasts of the EW conditional variance we set

dt ≡ EWMSEt ≡
��

w�ŷt|t−1

�2 − w� Ĥt|t−1w
�2

, (18)

where ŷi,t|t−1 ≡ zi,t − z̄i,t−1. For the DCC correlation forecasts we define the MSE loss

dt ≡ CORRMSEt ≡
1

N(N − 1)/2

�

i<j=2,...,N

�
ε̂i,t|t−1 ε̂j,t|t−1 − ρ̂ij,t|t−1

�2
, (19)

where ρ̂ij,t|t−1 is the (i, j)-th correlation associated to Ĥt|t−1 and ε̂i,t|t−1 ≡ ŷi,t|t−1/
�

ĥi,t|t−1, where ĥi,t|t−1 is

the one-step-ahead forecast of hi,t. As Gaussian score losses (Amisano and Giacomini 2007) we set

dt ≡ EWSCOREt ≡ log(w� Ĥt|t−1w) + (w�ŷt|t−1)
2/(w� Ĥt|t−1w) (20)

for the DCC forecasts of the EW conditional variance, and

dt ≡ CORRSCOREt ≡ log |R̂t|t−1|+ ε̂�t|t−1{R̂t|t−1}−1ε̂t|t−1 (21)

for the DCC correlation forecasts, where ε̂t|t−1 ≡ [ε̂1,t|t−1, . . . , ε̂N,t|t−1]
� and R̂t|t−1 is the correlation matrix

associated to Ĥt|t−1. For the MV and ∗MV portfolios, the EW weights in (18) and (20) are replaced by the

appropriate weights. Analogous losses are computed for the cDCC estimator.

Let d̄ and d̄c denote the DCC and cDCC average losses, respectively. The null hypothesis, H0 : E
�
d̄c − d̄

�
=

0, denotes equal predictive ability for the two estimators. Under appropriate conditions (Diebold and Mariano

1996), it holds that

EPA ≡
√
T − T̄ (d̄c − d̄ )�

�V AR[
√
T − T̄ (d̄c − d̄ )]

A∼ N(0, 1),

where �V AR[
√
T − T̄ (d̄c − d̄ )] is an HAC-robust estimate of the variance of

√
T − T̄ (d̄c − d̄ ). Negative (resp.

positive) values of EPA provide evidence in favor of cDCC (resp. DCC) forecasts. Note that the only model

dependent estimation error entering the considered loss functions is that of the correlation estimator. Hence,

all resulting EPA tests will essentially compare the correlation performances of the two estimators. The EPA

test statistics for the considered losses are reported in Table (1).
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Table 1. EPA Tests of One-step-ahead Forecasts

Small dataset Large dataset

Loss type CORR EW MV ∗MV CORR EW MV ∗MV

MSE -1.44 -0.17 -0.65 0.26 -2.41 -2.50 -1.82 -1.11

SCORE -1.88 -1.31 0.28 0.12 -2.68 -1.43 -0.93 -2.46

NOTE: Negative (resp. positive) values are in favor of the cDCC (resp. DCC)

estimator. Numbers in boldface denote significance at 5% level.

For the small dataset, all tests are insignificant at a 5% level. With the large dataset, the message is in favor

of the cDCC estimator. The sign of the test statistic is always negative, four tests of eight are significant at a

5% level, and one among them is significant at a 1% level.

4.3.2 Regression-based tests from one-step-ahead forecasts.

The regression based tests of section 4.2, computed replacing yt and Ĥt with ŷt|t−1 and Ĥt|t−1, are tests of

correct specification of the DCC model. Analogous tests can be computed to assess the correct specification

of the cDCC model. If the model is correctly specified and the estimates are set to the true values of the

parameters, the tests are asymptotically normal. In this paper, because of the replacement of true quantities

with estimated quantities, the size of the tests can be different from the nominal size even if the model is

correctly specified. Table (2) reports the test results. The performances of the DCC and cDCC estimators are

similar, with performances slightly better for the cDCC estimator in the small dataset, where six cDCC test

statistics of nine are smaller than the corresponding DCC test statistics.

Table 2. Regression-based Tests Computed From One-step-ahead Forecasts

E & C Test DQ Test ARCH Test

Dataset Estimator EW MV ∗MV EW MV ∗MV EW MV ∗MV

Small cDCC 3.77 19.55 6.19 -0.67 -0.47 -0.50 0.59 3.72 3.53

DCC 3.90 25.39 6.31 -0.67 -0.48 -0.50 0.68 4.63 3.53

Large cDCC 34.63 83.23 72.11 -0.25 -0.87 -0.77 4.28 2.84 1.32

DCC 33.83 85.66 73.94 -0.23 -0.91 -0.75 3.92 2.24 1.37

NOTE: Numbers in boldface denote significance at 5% level.

4.3.3 EPA tests of multi-step-ahead correlation forecasts.

The forecast at time t of ρij,t+m is defined as Et[ρij,t+m], where m ≥ 2 (for m = 1 we get Et[ρij,t+1] = ρij,t+1).

With both the DCC model and the cDCC model, Et[ρij,t+m] is infeasible. For the DCC model, Engle and

Sheppard (2001) suggested replacing Et[ρij,t+m] with two possible approximations. One is defined as,

ρ̄ij,t+m|t ≡
qij,t+m|t

√qii,t+m|t qjj,t+m|t
, (22)
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where

qij,t+m|t ≡ sij (1− α− β)
m−2�

n=0

(α+ β)n + qij,t+1(α+ β)m−1. (23)

The second is

�̄ij,t+m|t ≡ �̄ij (1− α− β)
m−2�

n=0

(α+ β)n + ρij,t+1(α+ β)m−1, (24)

where �̄ij ≡ E[εi,t εj,t]. We can adopt analogous formulas for the cDCC model. We then set

dt ≡
1

N(N − 1)/2

�

i<j=2,...,N

�
ε̂i,t+m|t+m−1 ε̂i,t+m|t+m−1 − ρ̄ij,t+m|t

�2
(25)

as a MSE loss for ρ̄ij,t+m|t, where t = T̄ + 1, T̄ + 2, . . . , T − m and m ≥ 2. An analogous loss is adopted for

�̄ij,t+m|t. The unknown parameters entering ρ̄ij,t+m|t and �̄ij,t+m|t (including �̄ij) are replaced by the estimates

computed from the rolling window ŷt−1, ŷt−2, . . . , ŷt−T̄ . The estimated standardized returns entering (25), which

are based on ŷt+m−1, ŷt+m−2, . . . , ŷt+m−T̄ (see (19)), are preferred to the estimated standardized returns based

on the whole sample to alleviate the effect of possible structural breaks in the mean and conditional variance of

zi,t. As forecast horizons we select the Fibonacci numbers greater than 1 and less than 250, where 250 is about

the number of daily returns per year. We notice that, for varying the forecast horizon and the approximation,

the EPA tests will not be independent.

As a first goal, we are interested in comparing, for a fixed estimator, the predictive ability of the two

competing forecasts, denoted with ρ̄ and �̄. The related EPA test statistics are reported in Table (3).

Table 3. EPA Tests of Multi-step-ahead Correlation Forecasts

Forecast horizon

Dataset EPA Test 2 3 5 8 13 21 34 55 89 144 233

Small ρ̄c vs. �̄c -1.31 -1.39 -1.45 -1.30 -0.88 -0.77 -0.69 -2.47 -2.72 -2.61 -2.15

ρ̄ vs. �̄ -1.41 -1.61 -1.71 -1.51 -0.51 0.48 2.41 0.46 -1.43 0.02 -1.92

ρ̄c vs. ρ̄ -1.49 -1.51 -1.50 -1.39 -1.33 -1.36 -1.76 -2.69 -2.64 -2.60 -2.15

�̄c vs. �̄ -1.51 -1.54 -1.56 -1.49 -1.52 -1.58 -2.11 -2.72 -2.02 -2.11 -1.56

Large ρ̄c vs. �̄c -2.19 -2.84 -2.88 -2.84 -2.45 -2.18 -1.51 -1.17 0.42 1.14 1.44

ρ̄ vs. �̄ -1.86 -2.69 -2.93 -2.99 -2.93 -2.91 -2.39 -2.29 -0.60 -0.77 1.58

ρ̄c vs. ρ̄ -2.31 -2.21 -2.16 -1.68 -1.71 -0.90 0.19 -0.07 0.79 0.98 1.63

�̄c vs. �̄ -2.25 -2.07 -1.93 -1.31 -1.43 -0.47 0.62 0.58 1.09 0.19 2.10

NOTE: Negative (resp. positive) values of the EPA test, “X vs. Y ”, are in favor of X (resp. Y ). ρ and � denote the

correlation forecasts Numbers in boldface denote significance at 5% level. A superscript c denotes cDCC forecasts.

Negative (resp. positive) values of the test statistics denote a preference for ρ̄ (resp. �̄). With the cDCC

estimator (see the first row of the table), the preference is for ρ̄. The test statistic is always negative, and, for

m ≥ 55, it is significant at a 5% level. With the DCC estimator (see the second row of the table), the message

is less conclusive. The only significance is for m = 34 and in favor of �̄, but most test statistics are negative,

which is in favor of ρ̄. With the large dataset, with both estimators the preference is for ρ̄ (see the fifth and

sixth rows of the table).
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As a second goal, we are interested in comparing the performances of the DCC and cDCC estimators for

a fixed correlation forecast. Regarding the small dataset (see the third and fourth row of the table), the test

statistic is always negative, which is in favor of cDCC forecasts. For m ≥ 34, eight tests of ten are significant

at a 5% level. Regarding the large dataset (see the seventh and eighth rows of the table), the only test which

is significant and in favor of the DCC estimator is for n = 233, when �̄ is used. In all the remaining cases, the

test is either not significant, or significant and in favor of cDCC forecasts. The test statistics, however, increase

with m, denoting an improvement of the DCC forecasts as long as the forecast horizon increases. In summary,

for the considered datasets, there is some evidence that ρ̄ is recommendable with respect to �̄, and that the

cDCC correlation forecasts outperform the DCC correlation forecasts.

5 . CONCLUSIONS

In this paper we discussed some problems which arise with the DCC model. We pointed out that the test of

DCC integrated correlations is inconclusive, and that the DCC estimator of the location correlation parameter

can be inconsistent. We then discussed the cDCC model as a possible tractable alternative to the DCC model.

The formula of the cDCC conditional correlation has been proven to be more intuitive than the corresponding

DCC formula. Sufficient conditions for the stationarity of the cDCC relavant processes have been derived,

and the test of the cDCC integrated correlation has been proven to be a conclusive procedure. A large system

estimator for the cDCC model, called the cDCC estimator, has been discussed in detail and heuristically proven

to be consistent.

The performances of the DCC and cDCC estimators have been compared by means of applications to

simulated and real data. When the persistence of the correlation process and the impact of the news are both

high, the DCC estimator of the location correlation parameter has been proven to be seriously biased. The

corresponding cDCC estimator has been shown to be uniformly unbiased. On two sets of real data, the cDCC

multi-step-ahead correlation forecasts have been proven to perform equally or significantly better than the

corresponding DCC forecasts.

ACKNOWLEDGMENTS

I would like to thank Farid Boussama, Christian T. Brownlees, Giorgio Calzolari, Gabriele Fiorentini, Gi-

ampiero M. Gallo, Matteo Guastini, Davide Perilli, Pietro Rigo, Paolo Santucci De Magistris, Nicola Sartori,

Enrique Sentana and two anonymous referees for their careful and useful suggestions. I would also like to thank

my brother Gian Luca for his precious support.

APPENDIX: PROOFS

Proof of prop. 2.1. Taking the expectations of both members of (4) and rearranging, yields S = {(1 −
β)E[Qt]− αE[εtε

�
t]}/(1− α− β). Noting that E[Qt] = E[Q∗1/2

t RtQ
∗1/2
t ] = E[Q∗1/2

t Et−1[εtε
�
t]Q

∗1/2
t ] =

E[Et−1[Q
∗1/2
t εtε

�
tQ

∗1/2
t ]] = E[Q∗1/2

t εtε
�
tQ

∗1/2
t ], proves the proposition. �

Proof of prop. 2.2. Dividing the numerator and denominator of the right hand side of ρij,t = qij,t/
√
qii,tqjj,t
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by
√
qii,t−1qjj,t−1, and replacing β with 1− α, yields

ρ2ij,t+m+2 =
{α (εi,t+m+1εj,t+m+1/

√
qii,t+m+1qjj,t+m+1) + (1− α) ρij,t+m+1}2

{α (ε2i,t+m+1/qii,t+m+1) + (1− α)}× {α (ε2j,t+m+1/qjj,t+m+1) + (1− α)} ,

where m ≥ 0. For α = 0 we get Et+m[ρ2ij,t+m+2] = ρ2ij,t+m+1, and, for α = 1, we get Et+m[ρ2ij,t+m+2] =

Et+m[(ε2i,t+m+1ε
2
j,t+m+1)/ (ε2i,t+m+1ε

2
j,t+m+1)] = 1. By continuity and monotonicity of Et+m[ρ2ij,t+m+2] with re-

spect to α, it follows that ρ2ij,t+m+1 < Et+m[ρ2ij,t+m+2] for all α ∈ (0, 1). Taking the expectations at time t of

both members of the latter inequality, yields Et[ρ
2
ij,t+m+1] < Et[Et+m[ρ2ij,t+m+2]] = Et[ρ

2
ij,t+m+2], which, for

m = 0, 1, . . . , r − 2 and limm→∞, proves the proposition.

Proof of prop. 2.3. From ε∗t = Q∗1/2
t εt, where εt = R1/2

t ηt, it follows that ε∗t = Q1/2
t ηt, where Q1/2

t ≡
Q∗1/2

t R1/2
t is the unique psd matrix such that Q1/2

t Q1/2
t = Qt. This fact, together with H1-H2, ensures that the

BEKK process, [vech(Qt)�, ε∗�t ]
�, admits a non-anticipative, strictly stationary, and ergodic solution (Boussama

et al., 2010, Theorem 2.3). Therefore, any time-invariant function of [vech(Qt)�, ε∗�t ]
�, such as [vech(Rt)�, ε�t]

�,

admits a non-anticipative, strictly stationary, and ergodic solution (Billingsley 1995, Theorem 36.4). Since

the elements of [vech(Rt)�, ε�t]
� have finite variance, by Cauchy-Schwartz inequality the second moment of

[vech(Rt)�, ε�t]
� exists finite, which completes the proof of point (i). To prove point (ii), it suffices to note

that [vech(Ht)�, y�t, vech(Rt)�, ε�t]
� is a time-invariant function of [h1,t, . . . , hN,t, vech(Rt)�, ε�t]

�, which, under H1-

H3, is a measurable function of the non-anticipative, strictly stationary, and ergodic process [vech(Rt)�, ε�t]
�.

Under H1-H4, point (iii) follows by strict stationarity of yt and Cauchy-Schwartz inequality. �
Proof of prop. 2.4. Under H1-H2 of prop. 2.3, ε∗t is weakly stationarity (Boussama et al., 2010, Theorem

2.3). If ε∗t is weakly stationary, the second moment of ε∗t is the matrix S in eq. (13) (Engle and Kroner 1995).

Since ε∗t = Q∗1/2
t εt, the proposition is proven. �

Proof of prop. 2.5. As for point (i), under H1-H3, vech(Rt) is strictly stationary and ergodic (see prop. 2.3).

Therefore, under H1-H3, ρ2ij,t, which is a time-invariant function of vech(Rt), is strictly stationary and ergodic

(Billingsley 1995, Theorem 36.4). Since ρ2ij,t ≤ 1, the expectation of ρ2ij,t exists finite; hence, if ρ
2
ij,t is ergodic,

limm−→∞Et [ρ
2
ij,t+m] = E[ρ2ij,t]. If E[ρ2ij,t] = 1, a.s. ρij,t = ±1, or, equivalently, a.s. qij,t = ±√

qii,tqjj,t. Under

H1-H3 this is not possible because, under H1-H3, Qt is p.d. This completes the proof of point (i). As for point

(ii), divide the numerator and denominator of the right hand side of ρij,t = qij,t/
√
qii,tqjj,t by

√
qii,t−1qjj,t−1.

Replacing β with 1− α, yields

ρ2ij,t+m+2 =
{α εi,t+m+1εj,t+m+1 + (1− α) ρij,t+m+1}2

{α ε2i,t+m+1 + (1− α)}× {α ε2j,t+m+1 + (1− α)} ,

where m ≥ 0. The proof is then analogous to the proof of prop. 2.2. �
Proof of prop. 3.1. Under H1-H2 of prop. 2.3, ε∗t is weakly stationary and ergodic with stationary second

moment S0 (see prop. 2.4). Hence, under H1-H2 of prop. 2.3, the matrix process ε∗t ε
∗�
t , which is a time-invariant

functions of ε∗t , is ergodic with finite first moment S0. This yields plimT−1�T
t=1 ε

∗
t ε

∗�
t = S0, which proves the

proposition in that, for (θ,φ) = (θ0,φ0), we have that Q̃∗1/2
t ε̃t = ε∗t . �
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Figure 1. DCC and cDCC Conditional Correlations. Simulated series of ρij,t. The DGP parameter values

are reported at the top of the panel for α0 + β0, and on the right hand side of the panel for α0. The location

parameter is set as s0ij = .3. DCC in straight line and cDCC in dashed line.
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Figure 2. Performance of the cDCC Estimator for Increasing T . The figure provides an example of the

behavior of the cDCC estimator for increasing the sample size. For illustrative purposes, it is assumed that θ0

and β0 are known. The DGP is bivariate Gaussian with parameters set as (s0,α0) = (.3, .4), where s0 ≡ s012.

The contour plots refer to the scaled cDCC QLL, that is, T−1LT (s,α), where s ≡ s12. The dashed line refers

to the constraint {s = s̃α,α ∈ [0, 1)}, under which the cDCC QLL is maximized by the cDCC estimator (see

section 3.2.1). With the considered model the constraint is a curve of the plane. For varying α, the scaled

cDCC PQLL, that is, T−1LT (s̃α,α), describes the value assumed by the scaled cDCC QLL along the curve of

the plane. The cDCC estimator, (α̂, ŝ), is denoted with a bullet, and the true value with a cross and dotted

lines. The more observations, the more the scaled cDCC QLL centers on the true value of the parameters, the

more the cDCC constraint approaches a correctly specified constraint.
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Figure 3. Estimation Error of ŝ. Box plots of ŝ − s0. The DGP parameter values are reported at the top of

the panel for α0 + β0, on the right hand side of the panel for α0, and along the x-axis of each plot for s0. For

each box plot, the box, the line inside the box, and the bullet, denote, respectively, the interquartile range, the

median, and the average of the estimates. The end of the upper whisker is computed as the greatest observation

less than or equal to the sum of the third quartile and the interquartile range. The percentage at the end of

the upper whisker refers to the estimates greater than the end of the whisker. Symmetric definitions hold for

the lower whisker.
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Figure 4. Estimation Error of α̂. Box plots of (α̂−α0)/α0 (for the general layout of the panel, the construction

of the box plots, and the percentages at the end of the whiskers of the box plots, see the caption of Fig. 3). If

there are estimates on the upper boundary, the related percentage is reported at the top of the plot. If many

estimates fall on the upper boundary, the end of the upper whisker can coincide with the boundary, which

results in a percentage of observations greater than the end of the whisker equal to zero. Symmetric definitions

hold for the percentages below the lower whisker.

25



7.
4%

−.
9

8.
8%

−.
6

13
%

−.
3

18
.6
%

   
0

13
.2
%

 .3
10
.8
%

 .6
6.
2%

 .9

16
.2
%

0%
20
%

0%

22
.2
%

0%
0%

0%

23
.2
%

0%
22
.2
%

0%

16
.2
%

0%

DCC

8%
−.

9
10
%

−.
6

12
%

−.
3

19
.6
%

   
0

15
.4
%

 .3
12
.6
%

 .6
5.
2%

 .9

16
.4
%

0%

20
.4
%

0%
23
.4
%

0%

0%
0%

22
.6
%

0%
22
.4
%

0%

16
.2
%
0%

cDCC

s0

−1.2

−1

−.8

−.6

−.4

−.2

0

.2

9.
2%

−.
9

12
%

−.
6

17
.4
%

−.
3

18
%

   
0

17
.4
%

 .3
9.
6%

 .6
8%

 .9

20
%

0%

20
.4
%

0%
0%

0%

0%
0%

19
.8
%

0%
19
.4
%

0%

20
.8
%

0%

DCC

9.
2%

−.
9

12
%

−.
6

17
%

−.
3

17
.8
%

   
0

18
.2
%

 .3
9.
6%

 .6
8.
6%

 .9

20
.8
%

0%
20
.4
%

0%

0%
0%

0%
0%

0%
0%

20
.4
%

0%

20
%

0%

cDCC

s0

−1.2

−1

−.8

−.6

−.4

−.2

0

.2

21
.6
%

−.
9

23
.2
%

−.
6

25
.6
%

−.
3

26
.6
%

   
0

21
.4
%

 .3
23
.4
%

 .6
22
.2
%

 .9

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

DCC

22
%

−.
9

22
.6
%

−.
6

25
.2
%

−.
3

28
%

   
0

21
.4
%

 .3
23
.6
%

 .6
23
%

 .9

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

cDCC

s0

−1

−.5

0

.5

−.
9

−.
6

−.
3

.2
%

   
0  .3  .6  .9

3.
6%

1.
4%

4.
6%

1.
6%

5.
8%

2.
4%

5%
2.
4%

3.
6%

1.
4%

3.
2%

2.
6%

3%
1.
2%

DCC

−.
9

−.
6

−.
3

.2
%

   
0

.2
%

 .3  .6  .9

5.
4%

1.
4%

5%
2.
2%

5%
2%

5.
6%

2.
4%

4.
2%

1.
8%

4%
3.
4%

5.
4%

2.
2%

cDCC

s0

−.04

−.03

−.02

−.01

0

.01

.02

.03

−.
9

.2
%

−.
6

.2
%

−.
3

.4
%

   
0

.2
%

 .3  .6  .9

5%
1.
4%

6.
4%

1.
4%

4.
8%

.6
%

6.
8%

.6
%

7.
2%

2.
2%

6%
.8
%

4%
1.
8%

DCC

−.
9

.2
%

−.
6

−.
3

.8
%

   
0

.2
%

 .3  .6  .9

4.
8%

1.
8%

7%
2%

5.
8%

.8
%

8.
4%

1%

8%
1.
6%

6.
4%

1.
6%

5.
2%

2%

cDCC

s0

−.06

−.04

−.02

0

.02

.04

5.
2%

−.
9

8.
4%

−.
6

9.
4%

−.
3

11
.2
%

   
0

8.
8%

 .3
7%

 .6
3.
8%

 .9

11
%

0%
14
.2
%

0%

13
.2
%

0%
13
.4
%

0%

13
.2
%

0%
11
.2
%

0%

10
.8
%

0%

DCC

5.
2%

−.
9

8.
4%

−.
6

10
.4
%

−.
3

12
.2
%

   
0

8.
4%

 .3
7.
2%

 .6
3.
8%

 .9

10
.2
%

0%
13
.2
%

0%

13
.6
%

0%
13
.8
%

0%

12
.8
%

0%
11
.4
%

0%

11
%

0%

cDCC

s0

−1

−.5

0

.5

−.
9

−.
6

−.
3

   
0  .3  .6  .9

3.
6%

2.
4%

3%
3.
2%

2%
2%

3.
4%

2.
6%

1.
6%

1.
8%

3%
2.
2%

2.
2%

1.
4%

DCC

−.
9

−.
6

−.
3

   
0  .3  .6  .9

2%
2.
4%

4.
2%

3.
6%

5.
2%

3.
6%

2.
4%

1.
4%

3.
4%

1.
8%

2.
6%

3.
6%

3%
2.
2%

cDCC

s0

−.08

−.06

−.04

−.02

0

.02

.04

.06

.08

−.
9

−.
6

−.
3

   
0  .3  .6  .9

3.
2%

3.
6%

3.
2%

.8
%

1.
8%

1.
4%

3%
2.
2%

2%
1.
6%

3.
4%

1.
6%

3.
2%

2.
2%

DCC

−.
9

−.
6

−.
3

   
0  .3  .6  .9

2.
4%

2.
6%

3.
6%

2.
8%

2.
2%

1%
4%

2.
8%

2.
4%

1.
6%

4%
1.
8%

2%
1%

cDCC

s0

−.08

−.06

−.04

−.02

0

.02

.04

.06

.08

−.
9

−.
6

−.
3

   
0  .3  .6  .9

5.
4%

1.
8%

3%
1%

4.
6%

1.
6%

5.
6%

.4
%

5%
.6
%

2.
8%

1.
2%

3.
6%

2%

DCC

−.
9

−.
6

−.
3

.2
%

   
0  .3  .6  .9

4.
4%

2%
2.
6%

1%

3.
8%

2%
6.
2%

.4
%

5.
2%

1%
2%

1.
6%

4%
1.
4%

cDCC

s0

−.4

−.3

−.2

−.1

0

.1

.2

.3

.4

α0 + β0 = .998 α0 + β0 = .99 α0 + β0 = .8

α
0
=

.0
1

α
0
=

.0
4

α
0
=

.1
6

Figure 5. Estimation Error of β̂. Box plots of (β̂−β0)/β0 (for the general layout of the panel, the construction

of the box plots, and the percentages appearing in the fugure, see the caption of Fig. 4).
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Figure 6. Mean Absolute Error of ρ̂t. (for the general layout of the panel, the construction of the box plots,

and the percentages appearing in the figure, see the caption of Fig. 4).
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Figure 7. Autocorrelation Function of ρij,t. ACF computed as the mean of the sample ACF’s of 100 series of

length T = 100, 000. The DGP parameter values are reported at the top of the panel for α0 + β0, and on the

right hand side of the panel for α0. The location parameter is set as s0ij = .3. DCC in straight line and cDCC

in dashed line.

28


