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Abstract

The role of trend inflation shocks for the U.S. macroeconomic dy-
namics is investigated by estimating two DSGE models of the busi-
ness cycle. Policymakers are assumed to be concerned with a time-
varying inflation target, which is modeled as a persistent and stochas-
tic process. The identification of trend inflation shocks (as opposed to
a number of alternative innovations) is achieved by exploiting the mea-
sure of trend inflation recently proposed by Arouba and Schorfheide
(2011, American Economic Journal: Macroeconomics). Our main
findings point to a substantial contribution of trend inflation shocks
for the volatility of inflation and the policy rate. Such contribution
is found to be time-dependent and highest during the mid-1970s to
mid-1980s.
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1 Introduction

This paper investigates the following questions: i) Are shocks to trend in-
flation relevant to describing the U.S. macroeconomic dynamics? ii) Which
distortions arise if trend inflation shocks are not modeled? iii) Has the rel-
evance of trend inflation shocks varied over time? iv) What is the relative
importance of such shocks with respect to more conventional, temporary
monetary policy shocks?

We answer these questions by estimating two different Dynamic Stochas-
tic General Equilibrium (DSGE) models of the business cycle that are com-
monly employed in the monetary macroeconomic literature. The first one is a
small-scale new-Keynesian model featuring a few nominal and real frictions.
The presence of nominal rigidities gives monetary policy shocks the power
to influence the real side of the economy on top of inflation and the policy
rates. A version of this model is extensively analyzed in Woodford (2003).
The second model is a version of the medium-scale framework popularized
by Christiano, Eichenbaum, and Evans (2005) and taken to the U.S. data by
Smets and Wouters (2007). This model features a number of nominal and real
frictions in the attempt to offer a richer representation of the shocks affecting
the U.S. economy and the transmission mechanisms regulating their impact
on the macroeconomic dynamics. We modify these two frameworks by for-
malizing a time-varying inflation target, otherwise labeled ’trend inflation’,
which we model as a persistent process whose variance is jointly estimated
with the rest of our models’ parameters. In this way, shocks to trend inflation
concur in determining the volatility of our variables of interest.

Our empirical exercise aims at assessing to what extent trend inflation
shocks participated to the formation of the great inflation in the 1970s and
the great moderation in the post-1984 period. Hence, the contribution of this
paper to the existing literature is twofold. First, we include an exogenous
measure of trend inflation in the set of observables employed to estimate
our DSGE models. Second, we perform rolling-window estimations, which
allow us to compare the evolution of the model parameters, the volatilities
of the shocks over time, and the contribution of trend inflation shocks in

determining the U.S. macroeconomic dynamics (in particular, the volatilities



of inflation, output, and the policy rate).

Two different interpretations may be assigned to the evolution of the low-
frequency component of inflation. The first one refers to such movements as
changes in the inflation target pursued by the Federal Reserve over time.
According to this interpretation, the upward trending inflation rate occurred
in the 1970s may be interpreted as ’[...] due to a systematic tendency for
Federal Reserve policy to translate the short-run price pressures set off by
adverse supply shocks into more persistent changes in the inflation rate itself
- part of an effort by policymakers to avoid al least some of the contrac-
tionary impact those shocks would otherwise have had on the real economy.’
(Ireland, 2007, p. 1853). Given that, by assumption, agents possess full in-
formation on the structure of the economy and compute their expectations
rationally, this is our preferred interpretation of trend inflation in this pa-
per. The second interpretation relates to a learning process by the Federal
Reserve, which got to understand the inflation-output volatility trade-off in
place while observing the reaction of the U.S. economic environment to its
policy moves. This interpretation suggests that the ’[...] changing beliefs
about the output-inflation trade-off generated a pronounced low-frequency,
hump-shaped pattern in inflation.’” (Cogley, Primiceri, and Sargent, 2010, p.
57). Following Ireland (2007) and a number of subsequent contributions, we
model trend inflation as an exogenous, autoregressive process taking care of
the evolution of the Federal Reserve’s inflation target.! Hence, we formalize
neither the decisional process by the Federal Reserve to vary its target over
time nor the learning process possibly inducing the evolution of such target.
Hence, our contribution provides a quantitative assessment on the relevance
of the shocks hitting the low-frequency component of inflation, and leaves
some related modeling challenges to future research.

Our results read as follows. First and foremost, a substantial participa-
tion of trend inflation shocks to the volatilities of inflation and the policy
rate is detected. An investigation involving the sample 1965-2005 suggests
that trend inflation shocks are the main determinant of the volatility of in-

flation and the federal funds rate, and are relatively more important than

1See Castelnuovo (2012c) for an attempt to endogenize the Federal Reserve’s inflation
target on the basis of past inflation realizations.



standard monetary policy shocks. Second, such shocks explain a negligible
portion of the volatility of the U.S. output. Third, the omission of trend
inflation shocks leads to an overestimation of the role of supply shocks in
determining the dynamics of inflation and the federal funds rate. In par-
ticular, the estimated contribution of wage mark-up shocks turns out to be
doubled. Fourth, there are evident instabilities in the estimated volatility of
trend inflation shocks as well as the other structural shocks modeled in our
analysis. Fifth, the contribution of trend inflation shocks to inflation and the
policy rate dynamics is found to be time-varying. Sixth, even when allowing
for parameter instability in our estimated frameworks, trend inflation shocks
emerge as extremely important to explain the evolution of the nominal side
of the U.S. economy. In particular, their share is large when the mid-1970s to
mid-1980s are considered. Finally, the relative importance of trend inflation
shocks in explaining the dynamics of the nominal (real) side of the economy
is larger (smaller) than that of standard, temporary policy shocks.

Movements in trend inflation have already been identified as one of the
possible drivers of the post-WWII U.S. macroeconomic environment.? Ac-
cording to Cogley, Primiceri, and Sargent (2010), trend inflation is the single
most important factor behind the U.S. inflation dynamics. Evidence in fa-
vor of a drop in the persistence of the inflation gap correlated with a fall
in trend inflation is provided by Cogley and Sbordone (2008). Coibion and
Gorodnichenko (2011a) couple a small-scale DSGE model with a policy rule
featuring a time-varying inflation target, and show that the reduction in
trend inflation occurred since the mid-1980s has importantly contributed to
lead the U.S. economy to the Great Moderation phase.?

Our paper makes further steps in the assessment of the relevance of trend

2Evidence in favor of trend inflation’s variability is provided, among others, by Belay-
gorod and Dueker (2005), Cogley and Sargent (2005b), Kozicki and Tinsley (2005), Ire-
land (2007), Stock and Watson (2007), Cogley and Sbordone (2008), Leigh (2008), Kozicki
and Tinsley (2009), Sbordone, Tambalotti, Rao, and Walsh (2010), Castelnuovo (2010),
Coibion and Gorodnichenko (2011a), Coibion and Gorodnichenko (2011b), Aruoba and
Schorfheide (2011), Del Negro and Eusepi (2011), Castelnuovo, Greco, and Raggi (2012),
Castelnuovo (2012c).

3Further elaborations by Ascari, Branzoli, and Castelnuovo (2011) unveil an interaction
involving trend inflation and wage indexation that turns out to be relevant in assessing
policymakers’ ability to anchor inflation expectations in the U.S. economic environment.



inflation as for post-WWII U.S. inflation dynamics. In particular, we con-
duct rolling-window estimations of a small-scale DSGE model featuring trend
inflation and temporary policy shocks with post-WWII U.S. data. To do
so, we employ a set of macroeconomic indicators, among which the empir-
ical proxy for trend inflation recently proposed by Aruoba and Schortheide
(2011).* This is, in our opinion, a crucial departure from the existing lit-
erature. Several reasons justify the use of an ’observable’ measure of trend
inflation. First, trend inflation is often interpreted as the inflation target
pursued by the Federal Reserve.” Hence, it is typically modeled as a latent
process entering a simple policy rule. This is problematic from an economet-
ric standpoint, in that two persistent latent processes (the trend inflation
process and the monetary policy shock process) enter the (log-linearized)
policy rule jointly. Then, it becomes difficult to disentangle the effects of
these two shocks on the endogenous variables of interest. The employment
of a measure of trend inflation, on top of a set of ’standard’ macroeconomic
indicators (among which we include the federal funds rate), allows us to cir-
cumvent this identification issue and sharpen our estimates on the effects
of trend inflation against other shocks. Second, as shown by Castelnuovo,
Greco, and Raggi (2012), there is a huge amount of heterogeneity as for the
estimates of trend inflation in the literature. Such heterogeneity is likely to
be due to differences in cross-equation restrictions, assumptions on expec-
tation formation, observables used in the estimation, and a variety of other
factors. The employment of a proxy for trend inflation computed ’externally’
to our DSGE models makes trend inflation robust to model misspecification.
Third, different sample choices may give rise to different estimates of trend

inflation for the very same point in time due to, e.g., sampling uncertainty.

4 Aruoba and Schorfheide (2011) consider survey measures (1-year- and 10-year-ahead
inflation expectations coming from the Survey of Professional Forecasters) and a low-
frequency component of GDP deflator inflation extracted with a Band-Pass filter. The
common factor extracted by combining such "observables" with a small state-space model
is their empirical proxy for trend inflation.

*Imperfect knowledge of the economic structure and the evolution of the perceived
inflation-output volatility trade-off by the Federal Reserve is one of the possible ways
to make the trend inflation process endogenous (in this paper, it is assumed to be an
exogenous process). Interesting efforts in this direction have already been undertaken by
Cogley and Sargent (2005b), Primiceri (2006), Sargent, Williams, and Zha (2006), Carboni
and Ellison (2009), and Milani (2009).



This is clearly an unfortunate side-effect of estimations conducted without
proxies for trend inflation, above all when attempting to assess its role over
time. The employment of an ’observable’ for trend inflation help us tackling
these issues.

We proceed as follows. First, we estimate our DSGE models over the
post-WWII sample 1965-2005.5 Conditional on the estimated framework,
we compute the variance decomposition of the observables employed in our
Bayesian estimation. This allows us to assess the relative role of trend infla-
tion shocks, standard transitory monetary policy shocks, and other identified
structural innovations. As anticipated, however, our exercise is designed to
detect the possibly time-varying role played by trend inflation shocks in af-
fecting the post-WWII U.S. macroeconomic dynamics. One may think of
the turbulent 1970s as being a very different environment for policymakers
when contrasted with the ’great moderation’ phase. We tackle this issue by
running rolling-window estimations of our DSGE model with Bayesian tech-
niques, a strategy already followed (in models featuring no trend inflation)
by Canova (2009), Giacomini and Rossi (2010), Cantore, Ferroni, and Léon-
Ledesma (2011), Canova and Ferroni (2012), and Castelnuovo (2012a). This
strategy enables us to detect instabilities in possibly all structural parame-
ters of our framework by relying on standard techniques suited to estimate
linear frameworks.

Different approaches to model instabilities in the structural parameters
are available to econometricians. Modern monetary DSGE models of the
business cycle that features time-varying coefficients and stochastic volatili-
ties have been estimated by Ferndndez-Villaverde and Rubio-Ramirez (2007
a,b) and Fernandez-Villaverde, Guerrén-Quintana, and Rubio-Ramirez (2010).
Time-varying volatilities are assumed to follow an AR(1) process in log-terms
to ensure the positivity of such volatilities. This leads to a mix of levels (of
the structural shocks) and logs (of the volatilities of the structural shocks)
that creates a non-linear structure. A second-order approximation of the pol-
icy functions is therefore needed to capture such relevant non-linearities and

estimate the parameters of interest. This has two consequences. First, ratio-

6The sample width is due to our willingness to use the original estimates of trend
inflation by Aruoba and Schorfheide (2011).



nal expectations are solved by appealing to perturbation methods (that are
superior to alternatives, see Ferndndez-Villaverde and Rubio-Ramirez (2010)
and the references therein). Second, once the model is solved for rational
expectations, the likelihood function is evaluated by appealing to particle
filtering. This methodology is extremely powerful and econometrically clean.
However, given its computations costs, it forces the econometrician to stick
to a limited number of time-varying parameters. This is unfortunate, be-
cause given the likely covariance of the structural parameters of interest,
fixing a sub-set of parameters while leaving the complementary sub-set free
to change is likely to induce biases in the simulated density (see Canova and
Ferroni (2012) for a discussion). In contrast, rolling-window estimations allow
to trace instabilities in (possibly) all structural parameters in a convenient
manner, so enabling us to overcome this issue.

Another alternative to handle parameter instability is represented by
regime-switching, which has recently been adopted to estimate DSGE frame-
works by a number of authors (Bianchi (2011), Liu, Waggoner, and Zha
(2011)). This technique is obviously extremely powerful, in that it enables
to identify different phases characterizing the economic environment (e.g.,
‘tranquil’ times as opposed to ’turbulent’ periods). As a matter of fact, how-
ever, it forces the data to 'pick and choose’ among a necessarily limited num-
ber of states, i.e., to 'discretize’ the economy. Differently, rolling-windows, in
principle, just ’let the data speak’ as for the relevant ’state’ among the pos-
sible infinite ones per each given window, so offering a natural generalization
of the regime-switching approach.

Wrapping up, we see the rolling-window methodology as complementary
to the time-varying coefficients/stochastic-volatility and the regime-switching
approaches. Of course, there is no free lunch. The cost is that of abstracting
from the role that time-varying parameters may play in influencing agents’
expectations, i.e., with our rolling-window approach we are forced to assume
that agents have neither memory of the past windows nor are able to exploit
past and current information on parameters’ drifts to form expectations on
the future evolution of the economy. Moreover, rolling-window estimation is
adequate as an initial step in detecting instabilities in the structural para-

meters of their framework. They, however, do not represent a generalization
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of the alternatives we discusses earlier such as regime-switching coefficients
or smoothly time-varying coefficients and volatilities. In light of the results
presented in this paper, we see the application of more sophisticated tech-
niques to detect structural instabilities in a DSGE framework as the natural
following step, which we leave to future research.

The paper closest to ours are probably Ireland (2007) and Cogley, Prim-
iceri, and Sargent (2010) as for the small-scale model application, and Sbor-
done, Tambalotti, Rao, and Walsh (2010) and Del Negro and Eusepi (2011)
as regards the application with the Smets and Wouters’ (2007) model. Ire-
land (2007) builds up a small-scale DSGE model in which firms may index
their prices to trend inflation, which is interpreted as the inflation target
pursued by the Federal Reserve. He finds that trend inflation is responsible
for the bulk of the volatility of inflation and the policy rate in the sample
under scrutiny. Ireland’s (2007) analysis assumes the structure of the U.S.
economy not to feature any instability over the post-WWII sample. Cog-
ley, Primiceri, and Sargent (2010) relax this assumption by engaging in a
subsample analysis focusing on the pre- vs. post-Volcker periods. They doc-
ument a fall in the inflation gap persistence and volatility, which is shown to
be related to the reduction in the variance of trend inflation shocks during
the great moderation. Sbordone, Tambalotti, Rao, and Walsh (2010) esti-
mate a medium-scale model & la Smets and Wouters (2007) conditional on
the great moderation sample. Their evidence supports the relevance of trend
inflation shocks as for the volatility of the nominal side of the economy. Del
Negro and Eusepi (2011) estimate a variety of medium-scale models by em-
ploying Survey of Professional Forecaster’s short-term inflation expectations
measures on top of a standard set of macroeconomic indicators. In partic-
ular, they deal with a medium-scale model a la Smets and Wouters (2007)
that features a fix inflation target; the same-medium scale model but with a
time-varying inflation target; and an imperfect information model in which
agents infer the time-varying target from the observation of the federal funds
rate as in Erceg and Levin (2003). Their empirical exercise points to the
empirical superiority of the perfect information model with the time-varying
trend inflation. As in this papers, we assume trend inflation to follow an

autoregressive process whose variance is estimated jointly with the rest of
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the parameters of interest. We also find support for the role of trend in-
flation shocks as drivers of the U.S. inflation and policy rate in the United
States. We add on these literature by showing that the contribution of such
shocks in determining the volatility of the nominal side of the economy has
followed an ’inverted U-shape’, with the highest value, at least as for infla-
tion, recorded in the mid-1980s. Moreover, we show that models omitting
trend inflation shocks overestimate the contribution of supply shocks in de-
termining inflation and the federal funds rate. In particular, the shocks to
the wage mark-up are those that get inflated the most in presence of this
form of model misspecification.

This paper develops as follows. Section 2 presents a helicopter tour over
the literature dealing with the estimation of the trend inflation process. Sec-
tion 3 presents our small-scale model, its estimates, and the variance de-
composition analysis performed with such framework. Section 4 develops
our rolling-window investigation conditional on the small-scale model pre-
sented in Section 3. Section 5 moves to the analysis based on the Smets
and Wouters (2007) model, and presents our full-sample and rolling-window
estimates. Section 6 concludes. An Appendix including some details on the
Bayesian estimation of our DSGE models as well as the description of the

Smets and Wouters (2007) framework is also provided.

2 Trend inflation estimates: A helicopter tour

Figure 1 displays a number of trend inflation estimates in the literature. It
focuses on a selection of contributions in the literature, i.e., Kozicki and
Tinsley (2005), Ireland (2007), Kozicki and Tinsley (2009), Coibion and
Gorodnichenko (2011), and Aruoba and Schorfheide (2011), and Casteln-

uovo, Greco, and Raggi (2012).” To offer a sense of how such estimates may

"The sources of these estimates read as follows. Kozicki and Tinsley (2005 and 2009)
and Ireland (2007): Original files provided by the authors. Coibion and Gordnichenko
(2011): American Economic Review (website), their paper, zip file under "Additional
Materials Download Data Set", "GreenBookForecasts for AER.xIsx" file, Trend Inflation,
Smoothed estimates. Monthly estimates converted to quarterly estimates by selecting
the latest available observation within each quarter. Aruoba and Schorfheide (2011):
American Economic Review (website), their paper, zip file under "Additional Materials
- Download Data Set", "inflation-target.xIs" file, "filtered 2" estimates. Castelnuovo,



relate to a measure of inflation, we contrast them with the U.S. GDP deflator
inflation rate.®

Panel [1,1] displays Kozicki and Tinsley’s (2005) estimate of trend infla-
tion. Kozicki and Tinsley (2005) employ a VAR model featuring variations
in the Fed’s inflation target that are imperfectly perceived by the private
sector, which is unable to perfectly distinguish between permanent target
shocks and transitory policy shocks and learn over this difference as more
information enter its information set. The changes of the inflation target
partly reflect the Fed’s response to supply shocks hitting the U.S. economy
over the post-WWII period. Kozicki and Tinsley’s (2005) estimated target
moves from values smaller than 2% in the early 1960s to values close to 8% at
the end of the 1970s. Their trend inflation measure takes somewhat higher
values than ours in the late 1960 and early 1970s. Interestingly, their esti-
mated inflation target drops to zero during the Volcker disinflation, then it
gradually returns to around 4% from the mid-1980s to the mid-1990s, and
slightly lowers later on.

Ireland (2007) estimates a microfounded DSGE model of the business cy-
cle with perfect information enjoyed by all agents of the economic system.
The trend inflation process is modeled as a random walk.” His estimate of
the inflation target is quite similar to the one proposed by Stock and Watson
(2007), who work with reduced-form models for the U.S. inflation rate that
allow for trend inflation and time-varying volatility of the stochastic compo-
nents they consider, and it is statistically consistent with the one proposed
by Cogley and Sbordone (2008), once the uncertainty surrounding the latter
is taken into account. Panel [1,2] superimposes Ireland’s (2007) estimate of

the Federal Reserve’s target to actual inflation. Ireland’s (2007) trend infla-

Greco and Raggi (2011): Files available upon request.

8Note that just part of the authors whose estimates are analyzed in this Section work
with GDP deflator inflation. Therefore, the difference between inflation and a given trend
inflation estimate represents by no means an attempt to "judge" its "plausibility". Again,
the presence of trend inflation is intended to offer a sense of the economic situation in
place in different phases of the post-WWII U.S. economic history.

Treland (2007) contrasts different processes of trend inflation, some of which allow for
a systematic reaction to structural shocks hitting the economic system. The role of such
shocks, however, turns out to be empirically negligible. Panel [1,2] shows the case labelled
by Ireland (2007, Figure 5, page 1869) as "Federal Reserve’s Target as Implied by the
Constrained Model with an Exogenous Inflation Target".
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tion estimate ’filters’ the U.S. inflation rate and captures its low-frequency
component. He obtains his estimate by working with a microfounded DSGE
model that features firms that, when not reoptimizing their prices, just set
them conditional on a convex combination involving past and trend inflation.
As in our paper, the central bank is assumed to react to a measure of the
inflation gap conditional on a time-varying inflation target.

A different picture emerges from Kozicki and Tinsley’s (2009) contribu-
tion. They estimate a policy rule with time-varying coefficients using real-
time Greenbook data and imposing a set of restrictions consistent with inter-
mediate money supply targeting. The resulting trend inflation is estimated
to lie between 6.1 and 7.2% in the period 1970-1980, then dramatically falls
to about 3% in the 1980s and 1990s, a phase in which no intermediate money
supply targeting is implemented.!” Panel [2,1] shows a dramatic difference
between their target and, say, Ireland’s (2007). Such difference may be due,
among other reasons, to the fact that they account for some restrictions
implied by money supply targeting.

Coibion and Gorodnichenko (2011) propose an estimate of trend inflation
conditional on a Taylor rule featuring time-varying coefficients and estimated
with real-time Greenbook data. Such rule features a time-varying intercept,
which they interpret as being a combination of time-dependent objects such
as trend inflation, the equilibrium real interest rate, and the target growth
rates for the output growth and the output gap. Some assumptions on the
evolution of the last three objects enable Coibion and Gorodnichenko (2011)
to recover the evolution of the trend inflation process. Their estimated tar-
get, displayed in Panel [2,2], turns out to be smoother than ours, with an
empirical standard deviation reading 1.76 vs. the larger 1.92 associated to
Ireland’s (2007) estimate (conditional on Coibion and Gorodnichenko’s sam-
ple). However, a similar pattern emerges, in that both measures clearly follow
the upward inflation trend of the 1970s, the Volcker disinflation occurred in
the early 1980s, and the somewhat gradual stabilization of inflation realized

in the 1990s. Notably, the correlation between these two measures of trend

0 Evidence in favor of a decline of the role of money growth as a driver of the (Hodrick-
Prescott filtered) U.S. real GDP when moving from the 1970s to the great moderation is
found by Castelnuovo (2012a).
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inflation reads 0.84.

Panel [3,2] focuses on the estimate obtained by Castelnuovo, Greco, and
Raggi (2012). They work with a very flexible Taylor rule that features pos-
sibly time-varying policy coefficients, trend inflation, and heteroskedastic
shocks. They find clear evidence in favor of such model of the U.S. pol-
icy conduct when contrasted with a constrained version of it featuring no
time-varying inflation target. Interestingly, their trend inflation estimate,
which is obtained with a single-equation approach allowing for policy time-
dependence along the previously mentioned dimensions, is extremely similar
to Ireland’s (2007), whose estimation is obtained with a microfounded DSGE
model featuring absence of any time-dependent object.

Finally, a different approach to compute trend inflation is followed by
Aruoba and Schorfheide (2011). They combine three different measures of
inflation - quarterly GDP inflation filtered through a one-sided band pass
filter, one-year- and ten-year-ahead inflation expectations from the Survey
of Professional Forecasters - by using a small state-space model. Then, they
extract the common factor via the Kalman filter. Panel [3,3] plots Aruoba
and Schorfheide’s (2011) estimate. Such measure turns out to be quite similar
to those proposed by Ireland (2007) and Castelnuovo, Greco, and Raggi
(2012). This is interesting, in light of the fact that Aruoba and Schorfheide’s
estimate involves measures of expectations that are not considered in the
other two investigations.

Figure 1 points to the heterogeneity of estimates present in the litera-
ture. In summary, Ireland’s (2007), Castelnuovo et al (2011) and Aruoba
and Schorfheide’s (2011) propose extremely similar estimates (despite of the
strikingly different methodologies, samples, and data employed). Coibion
and Gorodnichenko’s (2011) estimate is fairly similar to those obtained by
these three papers. Kozicki and Tinsley (2005) offer a somewhat different
picture, in that their trend inflation estimate suggest realizations like the
dramatic drop to zero in the early 1980s, which are absent in the remain-
ing estimate under scrutiny. Finally, Kozicki and Tinsley’s (2009) suggest a
quite stable trend inflation estimate that features a clear ’break in mean’ at
the end of the 1970s. In drawing these comparisons, one must keep in mind

that differences may be due to a variety of reasons, including differences in
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selected samples, data transformation (e.g., the quarterly inflation rate used
in our exercise and in Ireland, 2007, as opposed to the four-quarter inflation
rate employed by Kozicki and Tinsley, 2005), structure imposed to the data
(e.g., simple rules as in our case, Kozicki and Tinsley, 2005, and Coibion
and Gorodnichenko, 2011, structural vector autoregressions as in Kozicki
and Tinsley, 2005, state-space representations as in Aruoba and Schorfheide,
2011, DSGE frameworks as in Ireland, 2007), vintage of the data ('real-time’
vs. 'revised’ data).

In our DSGE model-based analysis, we will focus on Aruoba and Schorfheide’s
(2011) estimate on trend inflation for various reasons. First, it is a model-
free measure of trend inflation. DSGE models are typically misspecified
along some dimensions (Del Negro, Schorfheide, Smets, and Wouters (2007)).
Clearly, model misspecification may lead to a potentially distorted estimate
of the trend inflation process. From this standpoint, it is ’safer’ to rely on
externally combined observables when feeding the measurement equations
of our DSGE models with a measure of trend inflation. Second, expecta-
tions over future inflation are likely to be quite informative on the trend
inflation process, in that rational agents should form their expectations over
future inflation by appealing, first and foremost, to their predictions on the
low-frequency component of inflation. Third, as already stressed in the In-
troduction, the role of innovations to the policy rate per se vs. innovations
to the inflation target is hard to identify unless an empirical proxy of trend
inflation is employed.

We now turn to our structural analysis.

3 A structural analysis with a small-scale DSGE
model

The small-scale framework we work with reads as follows:

13



T = B(l+aB) 'Ema +a(l+aB) 'y + kxy + ef, (1)
v = YExa+ (1= — o (R — Ema) + ¢, (2)
Ry = (1= 0p)(m] + dn(me — 7)) + Gu00) + SpRer +ei',  (3)
T, = P (4)
b = pel  +of ke {n R} (5)
vl ~ i.i.d.N(0, U?),j € {m, xz, R}. (6)

Eq. (1) is an expectational new-Keynesian Phillips curve (NKPC) in
which 7; stands for the inflation rate, § represents the discount factor, x;
identifies the output gap, whose impact on current inflation is influenced by
the slope-parameter x, o identifies indexation to past inflation, and €] may
be interpreted as a ’cost-push shock’; v is the weight of the forward-looking
component in the intertemporal IS curve (2); o~ ! stands for households’
intertemporal elasticity of substitution; 7 is a stochastic component that
works as a ’demand’ shock; ¢, ¢,, and ¢p are the policy parameters cap-
turing the systematic monetary part of the monetary policy conduct, which
is here represented by a standard Taylor rule (3); the monetary policy shock
elt allows for a stochastic evolution of the policy rate.

The evolution of the inflation target - formalized by eq. (4) - is dic-
tated by the autoregressive parameter p, as well as the volatility o, of its
innovation €. This process is typically assumed to be a random walk or a
very-persistent variance-stationary process capturing the low-frequency com-
ponent of the inflation rate, which are likely to be sensible approximations
of the time-varying target set by monetary-policy authorities (see Ireland
(2007), Cogley, Primiceri, and Sargent (2010), Coibion and Gorodnichenko
(2011a), and Aruoba and Schorfheide (2011), among others). The autoregres-
sive processes (5) are intended to account for the possible persistence of the
shocks affecting the economic environment. Such shocks are loaded by the

mutually independent martingale-differences (6), which close the model.!!

"1 As a matter of fact, the shocks to inflation €7 and output ¥ are likely to be con-
volutions of "deep" innovations. For instance, the "cost-push" shock ] might very well
capture price-mark up shocks, shocks to the possibly time-varying elasticity of substitu-
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Since the seminar contribution by Clarida, Gali, and Gertler (2000), this
model has been extensively employed to scrutinize the drivers of the U.S.
macroeconomic dynamics.

The version of the model we consider omits to account for the role played
by price dispersion as for the structure of the NKPC in a world in which
steady-state trend inflation (in net terms) is allowed to take a strictly positive
value. However, a recent paper by Ascari, Castelnuovo, and Rossi (2011)

shows that such role is, from an empirical standpoint, likely to be negligible.

3.1 Model estimation

We estimate the model (1)-(6) with Bayesian methods. Bayesian methods
have been shown to perform relatively better than alternatives like classical
maximum likelihood or GMM as for DSGE models like those employed in this
paper (Canova and Sala (2009)). Readers interested into in depth-discussions
on the pros and cons of using Bayesian techniques vs. other estimation
methods are referred to An and Schorfheide (2007) and Fernandez-Villaverde
(2010).

3.2 Data and priors

We work with quarterly U.S. data. We employ four observables, which we de-
mean prior to estimation. The output gap is computed as log-deviation of the
real GDP with respect to the potential output estimated by the Congressional
Budget Office. The inflation rate is the quarterly growth rate of the GDP
deflator. For the short-term nominal interest rate we consider the effective
federal funds rate expressed in quarterly terms (averages of monthly values).
The source of these data is the Federal Reserve Bank of St. Louis’ website.
As discussed in the introduction, we also employ the measure of trend infla-

tion elaborated by Aruoba and Schorfheide (2011). From the private sector’s

tion among goods, and other disturbances. The same holds as for the "non-policy demand
shifter" 7, which does not allow us to discriminate among (say) investment-specific tech-
nology shocks, shocks to consumers’ preferences, or fiscal shocks, and others. However,
this paper’s ultimate goal is to pin down the relative role played by identified shocks such
as shocks to trend inflation and monetary policy shocks in shaping the dynamics of the
economy. Therefore, the "reduced form" nature of the inflation and output shocks does
not prevent us in any manner from performing such an assessment.
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standpoint, such measure can be interpreted as an anchor for long-term in-
flation expectations. Aruoba and Schorfheide’s trend inflation estimate is
based on three different measures of inflation expectations, i.e., the GDP de-
flation inflation filtered by a one-sided Band-Pass filter, the one-year ahead
inflation expectations provided by the Survey of Professional Forecasters,
and the ten-year ahead inflation expectations coming from the same source.
Such measures are combined by the employment of a small state-space model
with which the common factor is extracted via the Kalman filter.!? We work
with the sample 1965:1-2005:1V.*

The priors employed in our estimation are indicated in Table 1. Some
parameters are hardly identified in our model, then we calibrate them as
it is customary in this literature. The discount factor is fixed to 0.99, a
value quite common in this literature. The persistence of the trend inflation
model is also calibrated. This is a choice done to avoid having troubles
in converging to the ergodic posterior density of our model, troubles that
might arise in dealing with this close-to-unit root trend inflation observable.
Following Cogley, Primiceri, and Sargent (2010), we set p, to 0.995. This
value implies a bounded value for the trend inflation variance in population
and, at the same time, it allows us to capture the extremely high persistence
of the trend inflation process. An alternative would be to allow for a unit-
root in trend inflation. However, Cogley, Primiceri, and Sargent (2010) show
that a unit root in trend inflation is likely to induce a very low predictability
of the inflation gap by models like the ours. This would be at odds with
the fact documented by Cogley, Primiceri, and Sargent (2010), who employ
VARs with time-varying coefficients and stochastic volatility to model the
post-WWII U.S. data and find that such predictability has been high before

the advent of Paul Volcker as Federal Reserve’s chairman.

2Further details on the construction of this measure of trend inflation are provided in
Aruoba and Schorfheide (2011), pp. 70-71.

13 Aruoba and Schorfheide (2011) employ the sample 1965:1-2005:1. In our rolling-window
estimation, we will use windows of fixed-length (details are provided in the following
Section). Given the selection of our window-size as well as our set of initial observations
(one per each window), we work with a slightly extended sample, i.e., 1965:1-2005:IV. The
last three ’observations’ of the inflation target we employ in our estimations are obtained
by assuming a fixed target during the 2005. Given that such year clearly belongs to the
Great Moderation sample, we believe this assumption to be quite plausible.
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As for the estimated parameters, we employ standard priors. In partic-
ular, we assume a fairly conservative value for the slope of the NKPC, an
aggressive reaction to the inflation gap by the Federal Reserve, and a high
persistence of the cost-push shock. We are fairly agnostic as for the remaining
parameters, whose a-priori domain is suggested by economic considerations.

Notice that, in conducting our Bayesian estimations, we exclude parame-
trizations consistent with the absence of an equilibrium or multiple equilibria
under rational expectations. The latter case is often advocated when describ-
ing the U.S. monetary policy conduct during the 1970s (for the seminal paper
in this area, see Clarida, Gali, and Gertler (2000)). Likelihood-based estima-
tions of DSGE models with multiple equilibria, however, require the econo-
metrician to choose a single equilibria out of the many, a choice that is not
irrelevant as for the moments implied by the model (Castelnuovo (2012b)).*
Therefore, our analysis focuses on parametrizations implying a unique equi-

librium under rational expectations.

3.3 Posteriors

We verify a smooth convergence towards the posterior density by the graph-
ical analysis elaborated by Brooks and Gelman (1998). A visual inspection
of the posterior density confirms the absence of bimodalities and plateaus.'’
The outcome of our Bayesian estimation is reported in Table 1. All pa-
rameters assume very conventional values. The slope of the Phillips curve
takes a posterior-mean value equal to 0.11, quite in line with the calibra-
tion suggested by Ireland (2004). Price indexation is very low, a finding
not surprising in light of the very high persistence of the cost-push shock
autoregressive process. The weight of the forward-looking component is es-
timated to be larger than that of past output but clearly smaller than one, a
result offering support to the hypothesis of habit formation in consumption
elaborated by Furher (2000). The intertemporal elasticity of substitution

takes a value in line with a variety of estimates in the literature (Benati and

For a prior-free test of indeterminacy in the U.S. based on GMM techniques, see
Castelnuovo and Fanelli (2011).

15This part of the analysis, not documented here for the sake of brevity, is available
upon request.
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Surico (2008), Benati and Surico (2009)). Monetary policy is estimated to
exert an aggressive reaction against inflation fluctuations (in deviations with
respect to trend inflation), a very mild reaction to the output gap, and a
reasonable amount of persistence. Shocks are estimated to be persistent. As
for our shocks’ standard deviations, that of trend inflation is quite precisely
estimated.

Are our posterior densities heavily influenced by our choice of employing
Aruoba and Schorfheide’s (2011) estimate of the Federal Reserve’s inflation
target? To answer this question, we re-estimated the model without such
a proxy, therefore treating trend inflation as an unobservable latent factor.
Table 1 (column identified by ’(2)’) reports our posterior densities. The main
change with respect to the baseline scenario regards the standard deviation of
the trend inflation process, which turns out to be doubled with respect to the
baseline scenario ’(1)’. The remaining structural parameters are in general
just mildly affected by the omission of the empirical proxy by Aruoba and
Schorfheide’s (2011). The two parameters affected the most are policymakers’
reaction to the output gap, which substantially increases, and the persistence
of the cost-push shock, which is basically halved with respect to the baseline
case.

Turning to Aruoba and Schorfheide’s (2011) proxy again, one may want
to dig deeper in order to understand what the role played by short- and
long-term inflation expectations is. Aruoba and Schorfheide’s estimate of
trend inflation is obtained by combining three different measures of inflation
expectations, i.e., a low-frequency representation of GDP deflator inflation
extracted via a one-sided version of the Band-Pass filter, a 1-year ahead infla-
tion expectation measure, and a 10-year ahead inflation expectation measure.
The latter two indicators are from the Survey of Professional Forecasters,
which is currently managed by the Federal Reserve Bank of Philadelphia.!
Survey-based measures may be contaminated by measurement errors. More-
over, they can be misleading indicators of the Federal Reserve’s inflation

target if expectations are not formed in a fully-rational fashion, or if agents

16 As for the ten-year ahead inflation expectations, the data for the period 1979-1991 are
from the Livingston Survey and the Blue Chip Economic Indicators. All series on inflation
expectations come from the Federal Reserve Bank of Philadelphia.
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do not have a full knowledge of the structural model in place. To take this
‘measurement error’ issue into account, we re-estimate the model with a mea-
sure of trend inflation exclusively based on the Band-Pass filter as computed
by Aruoba and Schorfheide (2011). Table 1 reports our posterior means (see
column ’(3)"). As a matter of fact, one can hardly notice any variations with
respect to the baseline case. The only parameter that seems to be affected by
the change in the proxy for trend inflation is price indexation, whose posterior
mean turns out to be lower. However, the 90% credible sets suggest that one
should be very cautious before claiming a strong effect of the change in our
proxy on the estimated value of such parameter. A possible interpretation
of this result is that the Band-Pass filtered inflation rate is a good proxy of
Aruoba and Schorfheide’s (2011) measure of trend inflation. This is hardly
surprising, given the correlation between these two measures.'”

The high degree of persistence of the cost-push shock €7 is due to the high
degree of persistence of the inflation rate. In contrast, the degree of price
indexation « is estimated to be negligible. However, one may suspect the
existence of an alternative mode characterized by a ’high indexation-low cost-
push shock persistence’, which could emerge conditional on a different set of
priors. We investigate this issue by running an alternative estimation con-
ditional on two different a-priori parameter densities, i.e., « ~ B(0.75,0.15)
and p, ~ B(0.25,0.15). The remaining priors are kept as in our ’baseline’
case.

Table 1 (column ’(4)’) collects the outcome of this estimation. Several
comments are in order. First, the choice of the priors drive the result as for
price indexation and the persistence of the cost-push shock. In particular,
the former (posterior mean) reads 0.69, while the latter 0.06. Therefore, dif-
ferent priors may very well ’turn the world upside down’ as for these two
parameters, which are key to describe the dynamics of the U.S. inflation.
Second, the choice of different priors as for these two parameters has got ev-

ident implications as far as most of the remaining parameters are concerned.

17As documented by Aruoba and Schorfheide in their footnote 7 (2011, p. 71), by
regressing their estimates of trend inflation on the measure computed via the Band-Pass
filter (1-year ahead inflation expectations / 10-year ahead inflation expectations), one
obtains a coefficient equal to 0.57 (0.22 / 0.23).
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In particular, the slope of the NKPC gets ’squeezed’ towards zero; the degree
of forward-lookingness in the IS curve and the persistence of the non-policy
demand shock turn out to be substantially lower; the policy reaction to infla-
tion, while remaining aggressive, is estimated to be milder, while that to the
output gap much more aggressive; the degree of policy gradualism is found
to be higher, while the persistence of the policy shock more moderate; the
volatility (standard deviation) of the non-policy demand shock is also found
to be larger. Third, and most importantly, the overall ’fit’ of the model
is measured to be worse conditional on these alternative priors. In terms
marginal likelihoods, computed by adopting the 'modified-harmonic mean’
approach proposed by Geweke (1999), we found a difference (expressed in
log-points) of about 7.5. This translates into a Bayes factor of about 1,808,
which provides us with a 'very strong’ evidence in favor of the model with
'low indexation and high cost-push shock persistence’.!® Therefore, in the
rest of the paper, we will concentrate on the ’low indexation-high cost-push
shock persistence’ formulation of the model.

What is the role played by trend inflation shocks as opposed to other inno-
vations in shaping our observables? We investigate this issue in the following

Section.

3.4 Variance decomposition

We assess the role of trend inflation shocks by appealing to a standard vari-
ance decomposition exercise. Our computations (conditional on the model’s
posterior mode) will refer to two different horizons, i.e., 8—step and co—step
ahead. The former one is intended to assess the contribution of the structural
shocks at "business cycle frequencies’. Differently, the second one aims at pin-
ning down the drivers of the U.S. macroeconomic 'unconditional variances’,
which are of clear interest as for welfare evaluations (see, e.g., Woodford
(2003)).

Table 2 - Panel A collects the contribution of the four structural shocks

18 According to Kass and Raftery (1995), a Bayes factor between 1 and 3 is "not worth
more than a bare mention", between 3 and 20 suggests a "positive" evidence in favor of
one of the two models, between 20 and 150 suggests a "strong" evidence against it, and
larger than 150 "very strong" evidence.
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(cost-push, non-policy demand, monetary policy, and trend inflation) as for
the three variables of interest (output, inflation, the policy rate). The 8-
step ahead decomposition assigns a dominant role of the cost-push shock
as for the business cycle fluctuations of output, with a contribution over
90%. Inflation is explained by an ensemble of shocks, with the non-policy
demand shock providing the largest contribution (40%), the supply shock a
quite substantial one (about 30%), the policy shock playing an important
role (about 20%), and the trend inflation shock being the responsible of as
much as 10% of the forecast error variance decomposition. The demand
shock turns out to be a key-driver for the policy rate as well, whose volatility
at business cycle frequencies is also importantly determined by the policy
shock and the cost-push shock. Differently, the trend inflation shock plays a
marginal role here.

Trend inflation shocks are shocks to the low-frequency component of in-
flation. One may therefore argue that different results may be obtained when
focusing on the co—step ahead decomposition. Table 2 - Panel B offers sup-
port to this intuition. First, the role of trend inflation is estimated to be
large as for the volatility of inflation and the policy rate, with about 37%
of the former and 25% of the latter explained by changes in the Federal Re-
serve’s inflation target. Trend inflation shocks compete with ’supply’ shocks
in determining the volatility of these two variables, with the latter shocks
remaining the main drivers of inflation and the short-term policy rate. The
role of standard monetary policy shocks is marginal, even if they explain
about 11% of the sample variance of the policy rate. The contribution of
’"demand’ shocks is noticeable, with a share larger than 10% as for both vari-
ables. Interestingly, trend inflation shocks do not contribute to explain the
volatility of our empirical measure of the output gap, which is almost entirely
explained by supply shocks. This is far from surprising, because shocks to
the supply side of the economy (above all, those hitting inflation first) are
typically those responsible for the inflation-output volatility trade-off in this
model.

What if an econometrician failed to model trend inflation shocks? Table
2 - panels C and D reports the figures obtained by estimating a restricted

version of our model that features a fixed inflation target, i.e., with 'muted’
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trend inflation shocks. Interestingly, evident distortions affect the identifi-
cation of the drivers of the U.S. economic environment. Conditional on the
analysis at business cycle frequencies, one can detect a strong over-estimation
of the contribution of the demand shock as for the volatility of output. The
participation of the cost-push shock to the forecast error of inflation gets dou-
bled, while that of the policy rate turns out to be severely underestimated.
Finally, the supply shock’s participation as for the volatility of the policy rate
is estimated to be around 50% larger. As far as our unconditional volatil-
ities are concerned, the contribution of the supply shock to the volatilities
of inflation and the federal funds rate turns out to be dramatically inflated,
while the participation of demand and policy shocks gets slightly reduced.
This exercise suggests that, conditional on the post-WWII U.S. sample, the
omission of trend inflation may return estimated moments that are heavily
distorted by model misspecification.

Our framework does not explicitly model variations in the natural level
of the real interest rate, which is typically estimated to be very persistent.
Therefore, the dynamics of such omitted factor could in principle bias our
inflation target’s estimated standard deviation upward and inflate its con-
tribution as for the forecast error variance decomposition of inflation and
the federal funds rate. To control for the effects of this model misspecifica-
tion, we estimate our model by employing filtered measures of the federal
funds rate that retains cyclical frequencies only. Such cyclical representa-
tion of the policy rate is obtained by subtracting Aruoba and Schorfheide’s
proxy of trend inflation from the federal funds rate series. We then estimate
our model with such ’purged’ measure of the federal funds rate along with
our observables for inflation, the inflation target, and the output gap. A
variance-decomposition exercise points to a reduction of the contribution of
trend inflation as for the volatility of inflation and the policy rate, with fig-
ures reading 25% as for the former and 17% as for the latter (figures referring
to the oo — step ahead decomposition). The remaining ’explanatory power’
is assigned to supply shocks, whose contribution to the variance of inflation
(federal funds rate) goes up to 59% (57%). However, the main message of
our benchmark exercise, i.e., the large role played by trend inflation shocks

in explaining the dynamics of the nominal side of the economy, remains qual-
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itatively unaffected.

Is our variance decomposition analysis affected by the employment of
Aruoba and Schorfheide’s (2011) ’observable’ for the inflation target? Ta-
ble 3 contrasts the variance decomposition of our baseline scenario (already
collected in Table 2, and re-proposed here for easing the reader) with that
conditional on the model being estimated without any observable as for trend
inflation. As for trend inflation shocks, the largest variation when not exploit-
ing the proxy in the estimation phase regards the forecast error for inflation
at business cycle frequencies (whose figures are collected in Panels A and C),
which basically turns out to be twice as much as what recorder in the baseline
scenario, which is, some 20%. As a matter of fact, however, the shock which
gains the most in absolute terms is the supply shock, which goes up to 58%
(from 28%). The identification of the drivers of the inflation rate at business
cycle frequencies are importantly affected by the choice of not employing the
observable for the inflation target. The demand shock’s contribution to in-
flation volatility is some 40% when the proxy is used in the estimation, and
some 20% when it is not, while that of the monetary policy shock is about
20% when the target is ’observable’ vs. a much more moderate 2.53% when
it is not. This latter shock’s contribution to the forecast error of the policy
rate turns out to be halved when dropping Aruoba and Schorfheide’s (2011)
proxy from the list of observables employed in the estimation of our DSGE
model.

Moving to the oo — step ahead decomposition (Table 3, panels B and D),
one can notice that, while being present, the differences between the scenario
with vs. without an observable for trend inflation are much milder. As for the
variance decomposition of output, differences are in fact negligible. Moving
to inflation’s, we notice in particular a larger role assigned to supply shocks
when trend inflation is not ’observable’ (from 44% to 56%), a substantial
reduction in that of non-policy demand shocks (from 12% to 3.5%) and of
policy shocks (from 6.71% to 0.45%). Finally, when considering the forecast
error variance decomposition of the policy rate, we notice an increase in the
participation of the supply shocks (the difference amounts to about 8%), a
reduction in the contribution of demand and the policy shocks (some 5% and

8.3%, respectively), and an increase in that of the trend inflation shock of
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about 6%.

Our results on the oo — step ahead forecast error variance decomposition
turn out to be somewhat more robust to the omission of the observable for
trend inflation with respect to analysis conducted at business cycle. More-
over, the unconditional forecast error variance decomposition is of clear inter-
est from policy purposes due to its link with microfounded welfare indicators
(for a discussion, see Woodford (2003)). Finally, it allows us to draw com-
parisons with some relevant contributions which dealt with trend inflation
shocks (e.g., Ireland (2007), Cogley, Primiceri, and Sargent (2010)). There-
fore, the remainder of the paper will focus on the oo — step ahead forecast
error variance decomposition.

So far, we have scrutinized a fixed sample of U.S. data, 1965:1-2005:1V.
Obviously, one may wonder how stable the contribution of trend inflation is
over time. In the attempt to investigate the role of trend inflation shocks
further, Figure 2 reports inflation and the federal funds rate as modeled
by our DSGE framework (baseline scenario) along with their counterfactual
counterparts computed by setting trend inflation shocks to zero at all times.
Evidently, the relative contribution of trend inflation shocks to inflation and
the policy rate is far from being stable. In particular, trend inflation shocks
play a great role in explaining inflation and the policy rate during the great
inflation phase of the 1970s. Differently, the role of variations in trend infla-
tion is almost negligible during the great moderation. Clearly, this evidence
calls for a deepening of the role of trend inflation over time, which requires the
employment of a more flexible approach as for the estimation of our DSGE
model. Our choice is to undertake a rolling-window investigation, which is

developed in the following Section.

4 Rolling-window approach

We then move to the investigation of the possible instabilities affecting this
model’s relationships by implementing a rolling-window approach. In partic-
ular, we start from the 1965:1-1979:1V window and estimate the model, then
we move the first and last observation of the window by two years and repeat

the estimation. We keep the size of the window fixed (at 60 observations,
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which is a 15-year window) to minimize the differences in the precision of our
estimates due to the sample-size. Our last window covers 1991:1-2005:1V, i.e.
we consider fourteen different windows, which enable us to assess fourteen
different posterior densities for all the parameters of interest.

The width of our window is fairly in line with the one chosen by previous
contributions when estimating small- or medium-scale DSGE models with
this technique. Canova (2009) works with a window-size of 80 observations
(20 years) with a small-scale model with constant trend inflation. Casteln-
uovo (2012a) employs 60 observations (15 years) with a small-scale framework
featuring real balances in the equilibrium equations of inflation and output as
well as a positive reaction of the Federal Reserve to the growth rate of nomi-
nal money. Canova and Ferroni (2012) scrutinizes a medium-scale model & la
Smets and Wouters (2007) by focusing on windows of 68 quarters (17 years).
A similar choice is made by Giacomini and Rossi (2010), who stick to a 70-
quarter window size. Cantore, Ferroni, and Léon-Ledesma (2011) choose a
window-size of 60 observations (15 years) as a benchmark, but explores al-
ternative sizes up to 90 quarters. Our choice of a window-size of 15 years
appears to be reasonable in light of the number of parameters present in the
models we aim at estimating. Much smaller sizes, between 16 and 39 obser-
vations, are actually suggested by Inoue, Rossi, and Jin (2011), who develop
a methodology to select the size of the window in the forecasting context
when multiple models are jointly evaluated. Our purpose is clearly different,
in that we aim at providing an ex-post description of the data. To achieve
our goal, our sample numerosity must be high enough to allow the data to

influence the posterior density via their impact on the likelihood-function.

4.1 Window-specific parameters

Figure 3 plots some selected percentiles of the posterior densities of our struc-
tural parameters against the windows considered in our estimation. We no-
tice some instability as for the slope of the Phillips curve, which drops when
the mid-1980s and 1990s are considered. Some previous literature (e.g., Prim-
iceri (2006), Best (2011)) found the slope of the NKPC to be unstable mostly
during the mid-1960s to the late 1970s. Our result lines up with the empirical
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evidence on the reduction of such a slope occurring in sync with the advent
of the Great Moderation (see Carlstrom, Fuerst, and Paustian (2009) for a
discussion). We also find instabilities in the weight of expected output in the
IS curve, as well as the persistence of the cost-push shock, again when the
window 1988-1999 is taken into account. The inverse of the intertemporal
elasticity of substitution and the systematic policy reaction to inflation grow
over time. Also the degree of interest rate smoothing and the persistence of
the monetary policy shock appear to increase over time. The reaction of the
output gap features ups and downs. Overall, however, the credible sets of
these parameters hardly display important differences when moving from a
window to another.

Figure 4 plots the evolution of the volatilities of our shocks. A number
of considerations can be made. First, the volatility of supply and demand
shocks display a downward (although non-monotonic) trend. Second, the
volatilities of our monetary policy shocks, i.e., the standard innovation to the
policy rate and shocks to trend inflation, feature a hump-shaped volatility
over our windows. Both volatilities increase over the first five windows, peak
at 1973-1987, then slowly decrease as the observations of 1980s and 1990s
become dominant in the windows under investigation. This result supports
the findings in Justiniano and Primiceri (2008) and Ferndndez-Villaverde,
Guerrén-Quintana, and Rubio-Ramirez (2010) on the relevance of model-
ing time-conditional variances of the structural shocks identified in DSGE
models.

This picture is intriguing in light of the evolution of the volatility of actual
inflation and the federal funds rate, which is depicted in Figure 5. Clearly,
this hump-shaped pattern is a feature of the U.S. data as for these two vari-
ables, as also documented by Canova (2009). Interestingly, the correlation
between the volatility of the shocks affecting trend inflation and that of ac-
tual inflation (as measured by its sample standard deviation) is 0.64, larger
than the one involving the volatility of the policy rate and trend inflation
shocks, which reads 0.53. Even larger the correlations between these observ-
ables’ sample standard deviations and the volatility of the standard policy
rate shock, which read 0.91 and 0.80 as for inflation and the policy rate,

respectively.
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4.2 Window-specific variance decomposition

The presence of subsample instabilities as those documented in the previ-
ous Section naturally calls to recompute the variance decomposition of our
observables by accounting for the time-dependence of our estimated parame-
ters. Figure 6 collects the outcome of our exercise. Various considerations are
in order. The relative contribution of trend inflation and cost-push shocks
is clearly time-dependent. Trend inflation shocks explain about 28% of the
volatility of inflation at the beginning of the sample. Then, these shocks’
participation becomes larger, and hits its highest level in 1979-1993 with a
share of about 62%. Subsequently, their contribution drastically declines and
ends up being in line with that of the demand shock at the end of the sam-
ple, i.e., 12%. This 'inverted-U’ relationship is negatively correlated with the
contribution offered by the cost-push shock, which starts off at a level as high
as 59%, then declines to about 19% in 1979-1993, and increases again in the
last windows, with a contribution in 1991-2005 of about 63%. Differently, the
contribution of demand and standard monetary policy shocks is quite stable
over time, with the former being responsible for about 12% of the volatility
of inflation and the latter about 8%.

The ’inverted-U’ contribution by trend inflation also applies as for the
volatility of the policy rate, with a participation of about 20% during the
period 1965-1979, around 49% in 1977-1991, and a decline in the second part
of the sample under investigation to its lowest figure - 9% - in 1991-2005.
The behavior of the participation of the cost-push shock is more complex,
in that it records its highest values at the beginning and at the end of the
sample - 60% and 70%, respectively - and ’oscillates’ in the middle of it,
with the lowest value - 12% - in 1971-1989. Again, the contribution of the
remaining demand shocks is fairly constant over time, with a share of about
19% attributable to the shock hitting the IS curve, and 9% to the standard
monetary policy shock.

Our results suggest that i) the contribution of trend inflation shocks to the
volatility of the nominal side of the economy is substantial; ii) such contribu-
tion is time-varying; iii) a description of the post-WWII U.S. economy based

on the ’Volcker-appointment break’ only, which would call for an analysis
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contrasting the great inflation phase and the great moderation period, would
probably fail to capture the richness of the evolution of the participation of

the trend inflation shocks over time.

5 A larger-scale DSGE model

Of course, a poor description of the processes that drive inflation and the
policy rate in the U.S. economy may in principle lead to an overestimation
of the role of trend inflation. As a matter of fact, virtually all central banks
and a large number of researchers have drifted their attention to the richer
medium-scale framework a la Smets and Wouters (2007) for some years now.
This model features a variety of nominal and real frictions as well as a set
of shocks that can be given a structural interpretation. We then re-propose
our analysis by considering an estimated version of the Smets and Wouters’
(2007) model, whose shocks can be given a structural interpretation. We
refer to Smets and Wouters (2007) and to our Appendix for a full description
of the model.

5.1 Data and priors

We first estimate Smets and Wouters’ (2007) framework with Bayesian tech-
niques over the sample 1965:1-2005:IV. We use the seven observables em-
ployed by Smets and Wouters (2007) (quarterly growth rates of GDP, con-
sumption, investments, and wages, all expressed in per-capita, real terms;
log of hours; GDP deflator quarterly inflation; and federal funds rate) plus
the measure of trend inflation developed by Aruoba and Schortheide (2011).
As done with the small-scale model, we consider a Taylor rule in which the
policymakers react to a measure of the inflation gap (as opposed to raw in-
flation) determined by considering an exogenous process for trend inflation
as the one described by eq. (4).

The model features a deterministic growth rate driven by labor-augmenting
technological progress, so that the data do not need to be detrended before
estimation. Tables 3 and 4 document the priors we employed, which are the
same as Smets and Wouters’ (2007).
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5.2 Posteriors

Our results are in line with most of the literature focusing on the estima-
tion of DSGE models for the U.S. economy with great moderation data. In
particular, we find a strong systematic policy reaction to inflation, a mild
reaction to the model-consistent output gap, and a slightly stronger one to
output growth. Monetary policy is conducted with a fair amount of grad-
ualism. Our evidence points to a fairly large degree of habit formation in
consumption, and lends support to the modeling of frictions in capital for-
mation. The posterior means of the Calvo price and wage parameters are
comparable with a large number of estimates obtained with macroeconomic
U.S. data. Shocks to TFP, Government spending, price and wage mark-ups
feature a high degree of correlation, also considering the MA(1) component
of these last two shocks. Tables 3 and 4 collect some selected percentiles of

our posterior densities.

5.3 Variance decomposition: Full sample analysis ...

We appeal to the variance decomposition analysis to gauge the role of trend
inflation vs. other shocks conditional on the estimated medium-scale frame-
work & la Smets and Wouters (2007). Table 5 - Panel A collects the figures
computed by considering our model with trend inflation vs. an alternative
that features a fixed inflation target. Interestingly, the results obtained with
our small-scale model (see previous Section) are fully confirmed by the analy-
sis with the richer Smets and Wouters’ (2007) framework. Shocks to trend
inflation are responsible for most of the volatility of inflation and almost half
the volatility of the policy rate. Such shocks are just negligible as for the
dynamics of real variables. Again, when employing trend inflation to control
for the effects of the (otherwise unmodeled) low-frequency component of the
federal funds rate, we record a reduction of the contribution of trend inflation
shocks as for the policy rate and inflation. However, such reduction is mar-
ginal as for the policy rate (45% explained by trend inflation shocks), and
more marked, but far from overturning our main message, as for inflation
(47% explained by our inflation target shocks).

When omitting trend inflation shocks (Table 5 - Panel B), other shocks’s
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contribution gets inflated. In particular, the shocks to the price and wage
mark-ups turn out to be substantially magnified by the omission of a trend
inflation process in the model.

As we learnt with our previous analysis, however, the contribution of
trend inflation shocks is likely to be time-dependent. Therefore, we move
to our rolling-window analysis and estimate the Smets and Wouters (2007)

model over different windows.

5.4 ... and rolling-window investigation

Figures 7 and 8 depict the evolution of our estimated structural parameters
and shocks’ volatilities. While some instabilities affecting the former ones
may be detected, a clear time-dependence emerges when considering the
variances of our structural shocks. All shocks tend to become less volatile
when moving from the 1960s and 1970s to the great moderation, with the
interesting exception of the innovations affecting the wage mark-up. As be-
fore, our monetary policy shocks display a hump-shaped evolution, which
makes us hint that such shocks might importantly contribute to explain the
evolution of the U.S. inflation and policy rate.

Figure 9 shows the evolution of the contribution of ours shocks on the
volatilities of our interest. The top panel, which focuses on inflation, is ex-
tremely similar to the one in Figure 6. The contribution of trend inflation
shocks is large and time-varying, with an ’inverted-U’ relationship qualita-
tively very similar and quantitatively even larger than the one suggested
by the small scale model. ’Supply’ shocks, i.e., TFP shocks and shocks to
the mark-ups, play a substantial role, and tend to explain the largest share
of inflation volatility towards the end of the sample. Again, we observe a
fairly constant participation of 'demand’ shocks (here, Government spending,
risk-premium, investment-specific technology shocks) and standard monetary
policy innovations, with the former explaining about 8% of the volatility of
inflation, and the latter 7%.

Trend inflation shocks are estimated to be substantially relevant also as
for the volatility of the policy rate. Again, the bell-shaped evolution of the

contribution of such shocks is confirmed also by this medium-scale model,
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with a participation peaking at 49% as for the window 1979-1993. Differently
with respect to the story told by the small-scale model, supply shocks play
a role somewhat comparable to monetary policy shocks, with an evolution
over time that appears to be complementary to that provided by standard
monetary policy innovations. Interestingly, here demand shocks play a larger
role than suggested by the small-scale model, with a quantitatively impor-
tant, time-dependent participation that follows a U-shaped pattern hitting
its peak value of 43% in the window 1989-2003.'°

Wrapping up, estimates conducted with the Smets and Wouters (2007)
framework confirm our findings, the most important ones we reiterate here: i)
the contribution of trend inflation shocks to the volatility of the nominal side
of the economy is substantial; ii) such contribution is time-varying; iii) a de-
scription of the post-WWII U.S. economy based on the "Volcker-appointment
break’, which would call of an analysis contrasting the great inflation phase
and the great moderation period, would probably represent just a part of
the richness of the evolution of the participation of the trend inflation shocks

over time.

6 Conclusions

This paper investigated the role of shocks to trend inflation for the post-
WWII U.S. economic environment. Two new-Keynesian models of the busi-
ness cycle, a small-scale AD/AS model a la Woodford (2003) and a medium-
scale framework a la Smets and Wouters (2007) were modified to account for
the time-varying inflation target possibly pursued by the Federal Reserve dur-
ing the period 1965-2005. A mapping between the model-consistent, latent
trend inflation process and the trend inflation estimate recently proposed by
Aruoba and Schortheide (2011) was imposed in the estimation. Particular at-
tention was posed to the time-dependence of the role of the shocks to trend
inflation identified with our estimated frameworks. Such time-dependence
was assessed by appealing to a rolling-window approach, which enabled us

to gauge the variations in the estimated parameters featured by our models.

9The outcome of our rolling-window exercises are robust to moderate variations of the
width of our windows.
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Our main findings point to a substantial contribution of trend inflation
shocks in determining the volatility of variables such as inflation and the
policy rate. Such contribution is found to be larger than that assigned to
standard monetary policy innovations. The relative importance of trend
inflation shocks in highest when observations belonging to the 1980s dominate
our investigated subsamples, and less relevant (but still very relevant) during
the 1970s and especially the 1990s. In contrast, we find the dynamics of the
real side of the U.S. economy to be hardly explained by trend inflation shocks.

While our assumption of an exogenous trend inflation process made it
possible to appreciate its role from an empirical standpoint, it is clearly un-
satisfactory when turning to using these models for policy purposes. A struc-
tural interpretation for the low-frequency component of inflation is clearly
needed. Interesting research pointing to the role of that learning processes
of the structure of the economy by the Fed may have played in shaping the
low frequencies of the U.S. inflation process have been proposed by, among
others, Cogley and Sargent (2005b), Primiceri (2006), Sargent, Williams,
and Zha (2006), and Carboni and Ellison (2009), and Milani (2009). Milani
(2007) and Milani and Rajbhandari (2011) have shown that models that fea-
ture learning mechanisms turn out to be empirically superior than models
endowed with standard rational expectation-formation as for the post-WWII
U.S. macroeconomic data. Paving the 'learning avenue’ is likely to be a par-
ticularly exciting research agenda for the years to come.

Another worth-exploring route relates to the distinction between policy
surprises and policy 'news’. On top of policy surprises, i.e., unexpected
departures from the Taylor rate, policy 'news’, which are expected policy
moves by the Federal Reserve due to communications, announcements, and
the like, are potentially powerful shocks in terms of impact on the economic
environment, as suggested by some recent empirical investigations (Milani
and Treadwell (2011)). Clearly, a distinction between news to the federal
funds rate conditional on a fixed-inflation target vs. news to the policy rate
due to an expected variation in such target can be made.

Finally, our results are obtained via Bayesian estimations conditional on
a time-domain approach. In two recent papers, Tkachenko and Qu (2011a,b)

study parameter identification, estimation, and inference in medium-scale
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DSGE models from a frequency-domain perspective. In a recent contribution,
Sala (2011) conducts a similar effort. Such approach naturally leads them to
focus on the business cycle frequencies of interest for DSGE model-builders.
We see the investigation of the role of trend inflation shocks undertaken with
the lenses offered by a frequency-domain approach as an intriguing effort for

future research.
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Appendix

A1l - Bayesian estimation

To perform our Bayesian estimations we employed DYNARE, a set of algorithms
developed by Michel Juillard and collaborators (Adjemian, Bastani, Juillard,
Mihoubi, Perendia, Ratto, and Villemot (2011)). DYNARE is freely available
at the following URL: http://www.dynare.org/.

The simulation of the target distribution is basically based on two steps.

e First, we initialized the variance-covariance matrix of the proposal dis-
tribution and employed a standard random-walk Metropolis-Hastings
for the first ¢t <ty = 20,000 draws. To do so, we computed the poste-
rior mode by the ’csminwel’ algorithm developed by Chris Sims. The
inverse of the Hessian of the target distribution evaluated at the poste-
rior mode was used to define the variance-covariance matrix Cj of the
proposal distribution. The initial VCV matrix of the forecast errors in
the Kalman filter was set to be equal to the unconditional variance of
the state variables. We used the steady-state of the model to initialize

the state vector in the Kalman filter.

e Second, we implemented the ’Adaptive Metropolis’ (AM) algorithm
developed by Haario, Saksman, and Tamminen (2001) to simulate the
target distribution. Haario, Saksman, and Tamminen (2001) show that
their AM algorithm is more efficient than the standard Metropolis-
Hastings algorithm. In a nutshell, such algorithm employs the history
of the states (draws) so to ’tune’ the proposal distribution suitably. In
particular, the previous draws are employed to regulate the VCV of the
proposal density. We then exploited the history of the states sampled
up to t > tg to continuously update the VCV matrix C} of the proposal
distribution. While not being a Markovian process, the AM algorithm
is shown to possess the correct ergodic properties. For technicalities,

see Haario, Saksman, and Tamminen (2001).

As for the small-scale three-equation DSGE model, we simulated two
chains of 400,000 draws each, and discarded the first 90% as burn-in. To
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scale the variance-covariance matrix of the chain, we used a factor so to
achieve an acceptance rate belonging to the [23%,40%)] range. The stationar-
ity of the chains was assessed via the convergence checks proposed by Brooks
and Gelman (1998). The region of acceptable parameter realizations was
truncated so to obtain equilibrium uniqueness under rational expectations.
When turning to the Smets and Wouters’ (2007) model, we employed 100,000
draws of the Metropolis-Hastings to simulate the posterior density of such

framework.

A2 - The Smets-Wouters (2007) model

The Smets and Wouters (2007) model is a Dynamic Stochastic General Equi-
librium framework extremely popular in academic and institutional circles.
The model features a number of shocks and frictions, which offer a quite
rich representation of the economic environment and allow for a satisfac-
tory in-sample fit of a set of macroeconomic data (Del Negro, Schorfheide,
Smets, and Wouters (2007)). Moreover, Smets and Wouters (2007) show
that this model is quite competitive when contrasted with Bayesian-VARs
as for forecasting exercises, in particular for the elaboration of medium-term
predictions.

The Smets and Wouters (2007) model features sticky nominal price and
wage settings that allow for backward-looking inflation indexation; habit
formation in consumption; investment adjustment costs; variable capital uti-
lization and fixed costs in production. The stochastic dynamics is driven by
seven structural shocks, namely a total factor productivity shock, two shocks
affecting the intertemporal margin (risk premium shocks and investment-
specific technology shocks), two shocks affecting the intratemporal margin
(wage and price mark-up shocks), and two policy shocks (exogenous spend-
ing and monetary policy shocks).

In a nutshell, the model features the following main ingredients. House-
holds maximize a nonseparable utility function in consumption and labor
over an infinite life horizon. Consumption appears in the utility function
in quasi-difference form with respect to a time-varying external habit vari-

able. Labor is differentiated by a union, so there is some monopoly power
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over wages, which results in explicit wage equation and allows for the intro-
duction of sticky nominal wages & la Calvo (1983). Households rent capital
services to firms and decide how much capital to accumulate given the cap-
ital adjustment costs they face. The utilization of the capital stock can be
adjusted at increasing cost. Firms produce differentiated goods, decide on
labor and capital inputs, and set prices conditional on the Calvo model. The
Calvo model in both wage and price setting is augmented by the assumption
that prices that are not reoptimized are partially indexed to past inflation
rates. Prices are therefore set in function of current and expected marginal
costs, but are also determined by the past inflation rate. The marginal costs
depend on wages and the rental rate of capital. Similarly, wages depend on
past and expected future wages and inflation. The model features, in both
goods and labor markets, an aggregator that allows for a time-varying de-
mand elasticity depending on the relative price as in Kimball (1995). This
is important because the introduction of real rigidity allows us to estimate a
more reasonable degree of price and wage stickiness.

The log-linearized version of the DSGE model around its steady-state

growth path reads as follows:
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and g, and i, are the steady-state exogenous spending-output ratio and

investment-output ratio, with:

iy = (7= 1+ 0)k, (26)

where ~ is the steady-state growth rate, ¢ is the depreciation rate of capital,

k, is the steady-state capital-output ratio; 2z, = RYk, is the steady-state

rental rate of capital. Notice that eq. (22), the one of the stochastic process

of the government spending, allows for the productivity shock to affect it.
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This is so because exogenous spending, in this model, includes net exports,
which may be affected by domestic productivity development.

As for the consumption Euler equation (8):

A A
h
(Jc _ 1)W6L*
= — = 28
“ o.(1+ %) (28)
1= 2
G = 1 (29)

(1—1—%) O,

Current consumption is a function of past and expected future consumption,
of expected growth in hours worked, of the ex ante real interest rate, and of
a disturbance term 2. Under the assumption of no habits (A = 0) and that
of log-utility in consumption (o, = 1), ¢; = ¢3 = 0, then the standard purely
forward looking consumption equation is obtained. The disturbance term &?
represents a wedge between the interest rate controlled by the central bank
and the return on assets held by the households. A positive shock to this
wedge increases the required return on assets held by the households. At
the same time, it increases the cost of capital and it decreases the value of
capital and investment (see below). This is basically a shock very similar to
a net-worth shock. This disturbance is assumed to follow a standard AR(1)
process.

The dynamics of investment is captured by the investment Euler equation

(9), where:

1
= - 30
Zl 1 +6/yl_ac ( )
1
g = 31
/LQ 1—{—/8’}/170'6'72(10 ( )

where ¢ is the steady-state elasticity of the capital adjustment cost function,

and [ is the discount factor applied by households. Notice that capital
adjustment costs are a function of the change in investment, rather than its
level. This choice is made to introduce additional dynamics in the investment
equation, which is useful to capture the hump-shaped response of investment

to various shocks. In this equation, the stochastic disturbance £! represents a
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shock to the investment-specific technology process, and is assumed to follow
a standard first-order autoregressive process.

The value-of-capital arbitrage equation (10) suggests that the current
value of the capital stock ¢; depends positively on its expected future value
(with weight ¢; = 8y77°(1 — J)), as well as the expected real rental rate on
capital Eyrf,; and on the ex ante real interest rate and the risk premium
disturbance.

Eq. (11) is the first one of the supply side block. It describes the aggregate
production function, which maps output to capital (k]) and labor services
(I;). The parameter o captures the share of capital in production, and the
parameter ¢, is one plus the share of fixed costs in production, reflecting the
presence of fixed costs in production.

Eq. (12) suggest that the newly installed capital becomes effective with a
one-period delay, hence current capital services in production are a function
of capital installed in the previous period k; and the degree of capital utiliza-
tion z;. As stressed by eq. (13), the degree of capital utilization is a positive
function of the rental rate of capital, z; = 2;7F, where 2; = (1 — 1) /1) and
1 is a positive function of the elasticity of the capital utilization adjustment
cost function normalized to belong to the [0,1] domain.

Eq. (14) describes the accumulation of installed capital k;, featuring the

convolutions:

kio= (1-9)/v (32)
ky = [1 - (1 - %)} (14 B87'779) v (33)

Installed capital is a function not only of the flow of investment but also of
the relative efficiency of these investment expenditures as captured by the
investment-specific technology disturbance &, which follows an autoregres-
sive, stationary process.

Eq. (15) relates to the monopolistic competitive goods market. Cost
minimization by firms implies that the price mark-up !, defined as the
difference between the average price and the nominal marginal cost or the
negative of the real marginal cost, is equal to the difference between the

marginal product of labor and the real wage w,;, with the marginal product
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of labor being itself a positive function of the capital-labor ratio and total
factor productivity.
Profit maximization by price-setting firms gives rise to the New-Keynesian

Phillips curve, i.e., eq. (16), with the convolutions being:

bp
n = —2r 34
s = (34)
Byt
7'[' pr —’ 35
» = Thaee (35)

1 (1 - 571_065p>(1 - €p)
Lt By, &, (6, — ey +1]

Notice that, in maximizing their profits, firm have to face price stickiness

T3 (36)

a la Calvo (1983). Firms that cannot reoptimize in a given period index
their prices to past inflation as in Smets and Wouters (2003). In equilib-
rium, inflation 7; depends positively on past and expected future inflation,
negatively on the current price mark-up, and positively on a price mark-
up disturbance /. The price mark-up disturbance is assumed to follow an
ARMA(1,1) process. The inclusion of the MA term is to grab high-frequency
fluctuations in inflation. When the degree of price indexation ¢, = 0, m; =0
and eq. (16) collapses to the purely forward-looking, standard NKPC. The
assumption that all prices are indexed to either lagged inflation or trend in-
flation ensures the verticality of the Phillips curve in the long run. The speed
of adjustment to the desired mark-up depends, among others, on the degree
of price stickiness ¢, the curvature of the Kimball goods market aggregator
€p, and the steady-state mark up, which in equilibrium is itself related to
the share of fixed costs in production (¢, — 1) via a zero-profit condition.

In particular, when all prices are flexible (£, = 0) and the price mark-up

p
shock is zero at all times, eq. (16) reduces to the familiar condition that the
price mark-up is constant, or equivalently that there are no fluctuations in
the wedge between the marginal product of labor and the real wage. Cost
minimization by firms also implies that the rental rate of capital is negatively
related to the capital-labor ratio and positively to the real wage (both with
unitary elasticity) (see eq. (17)).

Similarly, in the monopolistically competitive labor market, the wage

mark-up will be equal to the difference between the real wage and the mar-
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ginal rate of substitution between working and consuming, an equivalence
captured by eq. (18), where o is the elasticity of labor supply with respect
to the real wage and \ is the habit parameter in consumption. Eq. (19) shows
that real wages adjust only gradually to the desired wage mark-up due to
nominal wage stickiness and partial indexation, the convolutions related to

this equation being:

1
wy = m (37)
I A
w2 - 1 +/6,}/1_o.c (38)
bw
— 39
w3 1+5717% ( )
— (1—0¢) _
wy, = bw (1 67 gw)(l éw) (40)

L4 pytmre &, (¢ — Dew +1]

Notice that if wages are perfectly flexible (£, = 0), the real wage is a

constant mark-up over the marginal rate os substitution between consump-
tion and leisure. When wage indexation is zero (1, = 0), real wages do not
depend on lagged inflation. Notice that, symmetrically with respect to the
pricing scheme analyzed earlier, also the wage-mark up disturbance follows
an ARMA(1,1) process.

The model is closed by eq. (20), which is a flexible Taylor rule postu-
lating a systematic reaction by policymakers to current values of inflation,
the output gap, and output growth. In particular, one of the objects poli-
cymakers react to is the output gap, defined as a difference between actual
and potential output (in logs). Consistently with the DSGE model, poten-
tial output is defined as the level of output that would prevail under flexible
prices and wages in the absence of the two mark-up shocks. Then, policy-
makers engineer movements in the short-run policy rate r;, movements which
happen gradually given the presence of interest rate smoothing p. Stochastic
departures from the Taylor rate, i.e. the rate that would realize in absence
of any policy rate shocks, are triggered by a stochastic AR(1) process.

Finally, eqs. (21)-(24) define the stochastic processes of the model, which
features, as already pointed out, seven shocks (total factor productivity, in-
vestment specific technology, risk premium, exogenous spending, price mark-

up, wage mark-up, and monetary policy).
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Notice that the model features a deterministic growth rate driven by
labor-augmenting technological progress, so that the data do not need to be

detrended before estimation.
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Figure 1: Alternative estimates of trend inflation in the literature.
Trend inflation estimates: A comparison. Solid blue lines: GDP defla-
tor quarterly inflation; red dashed lines: Trend inflation estimates, different
contributions.Sources of other contributions’ estimates reported in the text.
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Figure 2: Variance decomposition - role of trend inflation shocks.

Smoothed series, model calibrated with posterior mean.
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™

Var/shocks. v vy v v
Panel A
Trend 8 — step ahead T 92.11 5.77 2.10  0.02
inflation T 28.21 39.53 21.74 10.52
shocks R 20.54 4246 32.85 4.15
Panel B
oo — step ahead T 99.30 0.51 0.19 0.00
T 44.12 12.19 6.71 36.99
R 49.05 14.77 11.25 24.94
Panel C
No trend 8 — step ahead T 87.29 10.29 2.42
inflation 7 59.09 34.88 6.03 —
shocks R 30.93 45.23 23.84
Panel D
oo — step ahead T 98.60 1.14 0.27
7 91.42 7.33 1.25 —
R 83.51 11.36 5.13

Table 2: Variance decomposition implied by the small-scale DSGE
model. 1965:1-2005:1V U.S. data. Figures conditional on the posterior mode
values of the model. Panel A and B: Scenarios with trend inflation shocks;
Panel C and D: Scenarios without trend inflation shocks.
estimation procedure provided in the text.
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Details on the



Var/shocks. v vy v v
Panel A
Trend inflation 8 — step ahead x 92.11  5.77 2.10  0.02
as ’observable’ s 28.21 39.53 21.74 10.52
R 20.54 42.46 3285 4.15
Panel B
oo — step ahead x 99.30 0.51 0.19 0.00
T 4412 12.19 6.71 36.99
R 49.05 14.77 11.25 24.94
Panel C
Trend inflation 8 — step ahead x 87.57 10.62 1.63 0.18
as latent factor s 58.50 19.78 2,53 19.19
R 34.41 4296 14.76  7.87
Panel D
oo — step ahead x 98.02 1.66 0.25  0.07
s 56.31  3.53 0.45 39.71
R 57.32  9.50 2.92 30.26

Table 3: Variance decomposition implied by the small-scale DSGE
model. 1965:1-2005:1V U.S. data. Figures conditional on the posterior mode
values of the model. Panel A and B: Scenarios with an observable for trend

inflation; Panel C and D: Scenarios without an observable for trend inflation.

Details on the estimation procedure provided in the text.
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Figure 3: Evolution of the structural parameters of our small-scale
DSGE model. Definitions of the structural parameters given in Table 1.
Solid line: Posterior median. Dotted lines: 5th and 95th posterior percentiles.
Evolution of the parameters constructed by employing fourteen rolling win-
dows of 15-year constant length. Windows: [1965:1-1979:1V, 1967:1-1981:1V,
..., 1991:1-2005:1V].
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Figure 4: Evolution of the shocks’ standard deviations of our small-
scale DSGE model. Definitions of the shocks’ standard deviations given in
Table 1. Solid line: Posterior median. Dotted lines: 5th and 95th posterior
percentiles. Evolution of the shocks’ standard deviations constructed by
employing fourteen rolling windows of 15-year constant length. Windows:
[1965:1-1979:1V, 1967:1-1981:1V, ..., 1991:1-2005:1V].
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Figure 5: Evolution of the standard deviations of our observables.
Sample moments computed by considering quarterly rates of inflation and the
policy indicator. Evolution of the moments constructed by employing four-
teen rolling windows of 15-year constant length. Windows: [1965:1-1979:1V,
1967:1-1981:1V, ..., 1991:1-2005:1V].
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Figure 6: Evolution of the variance decomposition implied by the
estimated small-scale DSGE model. Window-specific variance decom-
position computed by calibrating the small-scale model with its posterior

mode values.
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Param. Interpretation Priors Poste[g'log?; % eans

,95¢

ital adj. cost elasticity N 1(4,1. 72
© Capital adj. cost elasticity ormal(4,1.5) [4?0777'24}

Oc Risk aversion Normal(1.5,0.375) 1.23
[1.07,1.37)

h Habit formation Beta(0.7,0.1) 0.73
[0.66,0.80]

Ew Wage stickiness Beta(0.5,0.1) 0.65
[0.54,0.78]

o Elast. lab. supply Normal(2,0.75) 0.85
[0.05,1.65]

3 Price stickiness Beta(0.5,0.1) 0.67
[0.61,0.74]

L Wage indexation Beta(0.5,0.15) 0.58
[0.37,0.78]

Lp Price indexation Beta(0.5,0.15) 0.16
[0.07,0.27)
(0 Capacity utiliz. elast. Beta(0.5,0.15) [0.96,50.775}
o —1 Fixed c. in prod. (share)  Normal(0.25,0.125) 0 9%%860]

T'r T. Rule, inflation Normal(1.5,0.25) 2.09
[1.79,2.41]

p T. Rule, inertia Beta(0.75,0.10) 0.81
[0.77,0.85]
Ty T. Rule, output gap Normal(0.125,0.05) [ 00(59(())02}
Ay T. Rule, output growth Normal(0.125,0.05) o (1)5.20024}
T St. state inflation rate Gamma(0.625,0.10) 0 gi%170]
100(8~" — 1) St. state interest rate Gamma(0.25,0.10) o 0.25 )

I St. state hours worked Normal(0,2) 0.18
[—2.37,2.60]

Table 4: Bayesian estimates of the Smets and Wouters’ (2007)
DSGE model - Structural Parameters. 1984:1-2008:11 U.S. data. Prior
densities: Figures indicate the (mean,st.dev.) of each prior distribution.
Posterior densities: Figures reported indicate the posterior mean and the
[5th,95th]| percentile of the estimated densities. Details on the estimation
procedure provided in the text.
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Param.

Interpretation

Priors

Posterior Means
[5h,95th]

Hoayy
Pga

TFP shock, st.dev.

Risk-premium shock, st.dev.

Gov. spending shock, st.dev.
Invest.-specific tech. shock, st.dev.
Mon. policy shock, st.dev.

Price mark-up shock, st.dev.

Wage mark-up shock, st.dev.

Trend inflation shock, st. dev.

TFP shock, AR(1) coeff.
Risk-premium shock, AR(1) coeff.
Gov. sp. shock, AR(1) coeff.
Invest.-spec. tech. shock, AR(1) coeff.
Mon. pol. shock, AR(1) coeff.

Price mark-up shock., AR(1) coeff.
Wage mark-up shock, AR(1) coeff.
Price mark-up shock, MA(1) coeft.
Wage mark-up shock, MA(1) coeff.
Gov.spending-TFP shocks, correlation

InvGamma(0.1, 2

InvGamma(0.1, 2

InvGamma(0.1,2

InvGamma

InvGamma

0.1,2

InvGamma(0.1, 2

InvGamma(0.1,2

(
(
(
(
(
(
(
(

)
)
)
)
0.1,2)
)
)
)

InvGamma(0.1,2

Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2
Beta(0.5,0.2

(

)
)
)
)
)
)
)
)
)
Beta(0.5,0.2)

0.50

[0.46,0.55]

0.24
[0.20,0.28]

0.55
[0.50,0.52]

0.44
[0.36,0.52]

0.24
[0.22,0.27]

0.14
[0.12,0.16]

0.27

[0.23,0.31]

0.05
[0.04,0.06]

0.96
[0.95,0.98)

0.25
[0.12,0.38)

0.95
[0.94,0.97]

0.69
[0.58,0.78)

0.17
[0.06,0.28]

0.92
[0.87,0.98)

0.98

[0.97,0.99]

0.73
[0.61,0.86]

0.85
[0.75,0.95)

0.51

[0.37,0.65)

Table 5: Bayesian estimates of the Smets and Wouters’ (2007)
DSGE model - Shock processes. 1984:1-2008:11 U.S. data. Prior densi-
ties: Figures indicate the (mean,st.dev.) of each prior distribution. Posterior
densities: Figures reported indicate the posterior mean and the [5th,95th]
percentile of the estimated densities. Details on the estimation procedure
provided in the text.
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Var/shocks. — v° v? VY v! v" VP ¥ v*
Panel A
Trend HRS 1.55  1.86 525 751 251 887 7235 0.10
inflation R 566 7.00 230 16.00 12.64 3.84 3.71 48.85
shocks T 248 1.19 070 397 6.36 16.87 11.16 57.27
Yepp 14.28 18.75 2698 20.76 6.40 6.04 6.64 0.15
YcON 6.19 56.58 045 0.83 11.59 521 1889 0.28
YINV 489 348 066 7892 348 583 266 0.10
VW AG 6.64 145 005 198 202 26.45 6133 0.08
Panel B
No trend HRS 202 213 6.68 1143 274 839 66.61
inflation R 860 6.34 394 26.78 1254 6.98 34.82
shocks T 415 052 1.03 4.70 3.66 29.02 56.92
Yepp 16.07 18.40 26.63 22.12 535 545 598 —
YooN 6.89 5832 126 1.62 10.66 5.29 15.96
YINV 580 2.88 1.15 80.85 248 4.63 2.21
VW AG 580 0.39 0.08 220 0.81 27.08 63.64

Table 6: Variance decomposition implied by the Smets and Wouters’
(2007) DSGE model. 1965:1-2005:IV U.S. data. Figures conditional on
the posterior mode values of the model. Details on the estimation procedure
provided in the text.
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Figure 7: Evolution of the structural parameters of the Smets and
Wouters’ (2007) DSGE model. Definitions of the structural parameters
given in Table 1. Solid line: Posterior median. Dotted lines: 5th and 95th
posterior percentiles. Evolution of the parameters constructed by employ-
ing fourteen rolling windows of 15-year constant length. Windows: [1965:1-
1979:1V, 1967:1-1981:1V, ..., 1991:1-2005:1V].
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Figure 8: Evolution of the shocks’ standard deviations of the Smets
and Wouters’ (2007) DSGE model. Definitions of the shocks’ standard
deviations given in Table 1. Solid line: Posterior median. Dotted lines:
5th and 95th posterior percentiles. Evolution of the shocks’ standard devia-
tions constructed by employing fourteen rolling windows of 15-year constant

length. Windows: [1965:1-1979:1V, 1967:1-1981:1V, ..., 1991:1-2005:1V].
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Figure 9: Rolling-window variance decomposition implied by the
Smets and Wouters (2007) model. Model calibration: Window-specific
posterior mode. "Supply" and "Demand" shocks defined as in Smets and
Wouters (2007), i.e., supply shocks: TFP, price mark-up, and wage mark-
up shocks; demand shocks: Investment-specific tech., Government spending,
and risk-premium shocks. Version of the model with reaction to the output
gap set to zero to ease the computation of the posterior mode (very similar
results were obtained by relaxing this constraint).
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