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Abstract

The realized volatility of financial returns is characterized by persistence and oc-
currence of unpredictable large increments. To capture those features, we introduce
the Multiplicative Error Model with jumps (MEM-J). When a jump component
is included in the multiplicative specification, the conditional density of the real-
ized measure is shown to be a countably infinite mixture of Gamma and K dis-
tributions. Strict stationarity conditions are derived. A Monte Carlo simulation
experiment shows that maximum likelihood estimates of the model parameters are
reliable even when jumps are rare events. We estimate alternative specifications of
the model using a set of daily bipower measures for 7 stock indexes and 16 individual
NYSE stocks. The estimates of the jump component confirm that the probability
of jumps dramatically increases during the financial crises. Compared to other real-
ized volatility models, the introduction of the jump component provides a sensible
improvement in the fit, as well as for in-sample and out-of-sample volatility tail
forecasts.
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1 Introduction

A great deal of the recent literature on volatility modeling exploits realized volatility
measures as ex-post estimates of the return variation over a given horizon. The recent
financial crisis has been an important test for existing volatility models. In general, models
of realized measures are unable to fit the abnormal levels reached by the volatility during
the financial turmoil. This seems to call for a more realistic econometric specification of
such models. The inclusion of jumps in the volatility process is a step forward a more
appropriate description of the volatility dynamics. Recently, the analysis of jumps in
prices and volatility, and their interactions, in a continuous-time framework has shown
the importance of both components in fitting the observed dynamics of prices, see e.g.
Chernov et al. (2003), Duffie et al. (2000), Pan (2002), Eraker (2004), Eraker et al. (2003),
Jones (2003), Broadie et al. (2007), Todorov and Tauchen (2011), Andersen et al. (2012),
Bandi and Reno (2012, 2013).

In a discrete-time setting, the analysis has focused on the role that jumps in prices
have in predicting the future volatility. Andersen et al. (2007) extend the HAR-RV model
to include past price jumps, i.e. the HAR-RV-J model. Instead Caporin et al. (2014)
explicitly model the volatility jumps in a HAR setup. This allows a direct estimation of
volatility jumps which is used to analyze the economic determinants. One of the results
of their analysis is that volatility jumps increase significantly the fit of the model in the
right tail. It emerges that it is important to allow for the presence of jumps because
this component can contribute to explain the level of the daily volatility during periods
of market turmoils. One limitation of the HAR models in the log-transformed volatility
series is that to obtain the forecasts distribution of the levels can be problematic.

We propose the Asymmetric HAR-MEM-J (AHAR-MEM-J) which is an extension of
the multiplicative error model (MEM) by Engle (2002) and Engle and Gallo (2006). We
extend the MEM approach to the modeling of the realized measures by including a latent
process, labeled jump, that causes infrequent large moves in the volatility. The AHAR-
MEM-J is a three-factor model: first, a long-run factor, modeled by the Asymmetric
HAR, which replicates the long-run dependence present in volatility; second, a short-run
factor, which represents the transitory component of the volatility process; and third,
the jump factor, which is responsible for the presence of realizations in the right tail of
volatility distribution. For an analogous interpretation, see Ghysels et al. (2004). Thanks
to the availability of realized volatility measures which sterilize the effect of price jumps
on volatility, we can easily focus on time series that include only volatility jumps, if they
are present. Modeling the volatility by including a jump process increases the model’s
capability of capturing extreme movements, or tail events. Potential sources of jump
innovations to volatility can be important news, data releases, or unexpected events, which

might induce market participants to suddenly revise their portfolios, thus producing large



variations in the volatility level. During the financial crises of 2008 the volatilities of stock
markets across the world have experienced such abnormal movements.

Our approach is similar to that of Bauwens and Veredas (2004). We specify the
volatility process as a combination of a continuous volatility component and a discrete
compound Poisson process for the jumps; the two elements determine the level of the
volatility in a multiplicative framework. It follows that the conditional density of the
realized measure is a countably infinite mixture of two random variables: one distributed
as a Gamma, and the second, when the number of jumps is strictly larger than zero, is
distributed as a Kappa, henceforth K. The K is a product distribution, known in physics
and radar applications, but never used in econometrics, to the best of our knowledge. The
K is obtained as the product of two Gamma-distributed random variables. Exploiting
the knowledge of the mixture density that characterizes the conditional distribution of
the observed volatility measure, it is possible to obtain in closed form the conditional
moments, the likelihood function and the quantiles. In order to account for the empirical
evidence of jump clustering, the intensity parameter, governing the jump occurrence in
the compound Poisson process, is specified in a time varying form, according to an au-
toregressive specification, in the spirit of Hansen (1994) and Maheu and McCurdy (2004).
For what concerns the continuous volatility component, we have adopted an Asymmetric
Heterogeneous Autoregressive (AHAR) specification. A common finding in the empiri-
cal literature that employs MEMs in volatility modeling is indeed that the estimates of
GARCH-type specifications of the conditional mean turn out to be close to be integrated.
Such an evidence highlights the necessity of having a mean model specification that takes
into account the persistence observed in the realized measure series. Our empirical results
confirm this finding. Indeed, the HAR specification sensibly improves the fit compared
to simpler, and less persistent, specifications of the continuous volatility component. The
model parameters can be estimated by maximum likelihood methods. However, given the
mixture structure, different local maxima may exist, see Frithwirth-Schnatter (2006). For
our model, a Monte Carlo simulation experiment shows the appropriateness of the finite-
sample features of maximum likelihood estimation. In addition, the maximum likelihood
estimates of the jump component seem to be reliable, even when jumps are rare events.

The empirical application is based on daily bipower volatility series of individual stocks
and equity indexes. The estimation results highlight a positive probability of jumps in
volatility, which is consistent with the findings of previous studies on the topic. The
AHAR-MEM-J with time-varying jump intensity allows for a greater flexibility in ac-
commodating extremely large volatilty realizations, dramatically improving the fit of the
baseline MEM. By analogy to the Value-at-Risk (VaR), we introduce the Volatility-at-
Risk (VolaR) which constitutes a natural measure of risk when designing volatility trading
strategy. The evaluation of the VolaR estimation provided by alternative specifications is

in favour of the MEM-J against models without jumps.



In summary, the contributions of the paper are at least three. Firstly, we generalize
the baseline MEM of Engle and Gallo (2006) by including a jump term, which captures
the occasional boosts of volatility, and a pseudo long-memory component which is able
to account for the observed persistence. Secondly, the conditional density of the model’s
dependent variable is derived as well as the log-likelihood function. Finally, we provide
evidence that the jumps are a relevant component of the realized measure series, thhus
supporting the claim that ignoring them might lead to an under-estimation of the VolaR.
This under-coverage of the right tail of the volatility density leads to an underestimation
of the volatility risk especially in periods of markets turmoils, with consequences for the
pricing of derivatives and volatility trading strategies.

The paper is organized as follows. Section 2 sets the notation of the baseline MEM.
Section 3 describes the MEM-J and the finite mixture distribution that characterizes the
conditional density of the model’s dependent variable. Conditional moments are also pre-
sented. Section 4 discusses both model extensions with HAR dynamics and time-varying
parameters, and the model’s properties, such as conditions for covariance stationarity and
maximum likelihood estimation. Section 5 illustrates the empirical results. In particular,
Subsection 5.1 describes the dataset and the construction of the volatility series, while
the subsection 5.2 provides a discussion of the empirical results obtained with stocks in-
dexes and individual S&P 500 stocks under different model specifications; in subsection
5.3 results with alternative MEM specifications are presented. In Section 6 the results
of the VolaR analysis are reported and discussed. Finally, Section 7 concludes. Proofs,
selected derivations of relevant quantities and additional theoretical details are included
in Appendix A. A Web Appendix also contains some additional results and details on the
K distribution.

2 The baseline MEM

In this section we briefly present the MEM, in its simplest form, as introduced by Engle
and Gallo (2006). Let RM,; be the daily realized volatility measure.! We assume that
RM, follows a general MEM, i.e.

RM; = puey (1)

with
e =w+ o' Xy 1+ Bru—1

"'We assume that the realized volatility measure used in the empirical analysis is corrected for mi-
crostructure noise and filtered from price jumps. The estimator adopted in the present paper is briefly
described in Section 5.1.



and where X;_; is a vector that contains variables included in the information set at time

t — 1. Moreover, the innovation &, is a random variable with scale-shape Gamma density?
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where % is the scale and v is the shape of the Gamma density, both driven by the common
parameter v. In this case, we have E,_; [¢,] = 1 and V,_; [¢,] = . By the properties of the
Gamma distribution (in particular the product of a Gamma-variate by a scalar assuming

it is known or included in the information set) we have

1 RMv\" 1 _Rrmpy
RM|I, 1) = Kt RM,; > 0.
FRMIE) = g (E0) e

If the realized measure follows a MEM, the conditional mean and variance are given as
E[RM|I; ] = py = w + &' Xy + B, (4)

and
V[RM|I ] = piv". (5)

The form of pu, is sufficiently flexible to include simple auto-regressive patterns, HAR
terms, asymmetry, or predetermined variables. Examples of possible specifications for
e are given, among others, in Engle and Gallo (2006) and Brownlees et al. (2012). In-
terestingly, the term g, induces the conditional variance of the realized measure to be
time-varying, thus making the MEM consistent with the so-called volatility-of-volatility
feature, studied in Corsi et al. (2008) among others. The literature on multiplicative
models of volatility includes several extensions of the baseline MEM. For example, Gallo
and Otranto (2012) extend the MEM to include time-varying parameters as in the case
of regime-switching MEM. The latter specification allows for changing parameters but
requires to impose a priori structures on the form of the transition and on the number of
underlying regimes. Alternatively, Haerdle et al. (2012) propose to adaptively estimate
the MEM based on a window of varying length and thus providing updated parameter

estimates at each point in time.

2See the Web Appendix for some further details on Gamma, and related, random variables.



3 A Multiplicative Error Model with Jumps

The baseline MEM with a Gamma distributed error term is poorly designated to account
for the presence of large and abrupt movements, i.e. the jumps, that characterize the
volatility dynamics. The presence and the effects of volatility jumps have been already
documented in the literature either in a continuous time framework, or, in discrete time,
see Caporin et al. (2014), among others. Excluding volatility jumps reduces the fit of
the model to real data, thus resulting in a worsening of the forecasting performance. We
therefore propose a generalization of the MEM of Engle and Gallo (2006), which we call
MEM-J. The new model introduces, in a multiplicative way, an additional volatility jump
term to the standard MEM of Engle and Gallo (2006). The dynamic of the MEM is also
generalized by the inclusion of HAR terms following Corsi (2009), we defer the discussion
of this to Section 4. Under the MEM-J specification, the realized volatility measure RM,

is decomposed into the product of three elements
RMt = MtZtgt (6)

where p; is a function measurable with respect to the information set at time ¢ — 1,
Zy is the volatility jump component, and the innovation ¢; is a scale-shape Gamma,
ee|ly—qy ~ T (%, 1/). Hereafter, to simplify the interpretation of the model outcome, the
Gamma density of the innovation term is expressed in the mean-shape representation, i.e.
e¢|l;—1 ~ I'(1,v), which is, by construction, equivalent to the scale-shape representation.
Hence, a number of assumptions on Z; and ¢; are required in order to identify and separate

the two sources of shocks. The jump term, Z;, is defined as

]_ Nt - O
Zt - N (7)
Yim Y Nie>0

where /V; is a non-negative integer-valued random variable that represents the number of
jumps occurring at time t. When N, = 0, i.e. jumps are absent, the MEM-J reduces to
the MEM. The random variable determining the occurrence and the number of jumps,
Ny, is modeled as a Poisson with intensity A,

e\
m!

P(Nt :m‘[t,l) = m:O,172,... (8)
The second characterizing element of Z; defines the size of the jumps. This is determined
by the sum of independent Gamma random variables, Y;; ~ I' (1, <) (in mean-shape form).
Note that the jump density is not dependent on time and the parameter characterizing

the jump evolution is assumed to be time-invariant.

Assumption 1 In the MEM-J



i. & 1s an i.i.d. process defined on positive support with Ele,] = 1.

it. €, Ny and the variables Y, j =1,2,..., Ny, are assumed to be independent for

any t.

By the properties of the Gamma density,? it follows that, if N, = m > 0,
Zi /Ny =m > 0,11 ~ T (m,mg) 9)

in mean-shape representation. It is interesting to note that the jump component has mean
and variance which depend on the number of jumps, i.e. E[Z;|N; =m > 0,; 1] = m and
VI[Z Ny =m > 0,11 = =. So far, all parameters are assumed to be time invariant. In
Section 4 we discuss the introduction of time varying parameters. Additional flexibility
in the model parameters can potentially capture the increase in the jumps contribution
to the overall variability of the volatility during market turmoils.

It follows from equation (6) that the MEM-J can be written as

RM; = pymy <10>

where the innovation term 7, = Z;¢, is the product of two sources of shocks, one depending
on jumps. In the next paragraphs we will study the properties of the conditional density
of n; and of RM, which clearly depend on the distributional assumptions made on Z; and

E¢.

3.1 The conditional density of 7,

The density of 7, depends on the realization of N;. When N, = 0, we have that | N, =
0, I;_1 is simply equal to &;|;_1, since Z; = 1. In this case, the conditional density of 7,

in mean-shape form, coincides with that of ¢, i.e.
Nl Nt = 0, Iy = ¢l ~ T (1,v). (11)

Differently, when N; = m > 0 the conditional density of 7, given Z; is Gamma in mean-

shape form
77t|Zt,Nt:m > Oalt—l NP(Zt,I/). (12)

In order to derive the conditional density of 7, given N, and I;_;, a fundamental element

for the construction of the model likelihood, we have to evaluate the following integral:

/ f(nt‘Nt =m > O, Zt7 [t71>f<zt‘Nt =m > O,[t,1>dz, (13)
0

3See the discussion in the Web Appendix.



where both conditional densities in the integral are Gamma expressed in mean-shape

form. We thus introduce the following proposition (proof in Appendix A).

Proposition 1 Under Assumption 1, consider n, = Zie, where Z; defined in (7) has the
conditional density in (9) and e, ~ ' (1,v). Assuming that Z; and &, are independent at

all leads and lags, it follows that

mes+v

2
Ju|Ny=m >0,1,_,) = —(ThGV) 2

M

WKMW (QW) , (14)

where K, (+) is the modified Bessel function of the second kind. Thus the innovation term
n, conditional on Ny =m > 0 and I;_1, has a K distribution, see Redding (1999), denoted
as

mINe=m > 0,11 ~ K(m,mg,v).

The first two moments of n;, conditional on Ny =m >0 and I;_y, are

E [nt|Nt =m > O, [tfl] = m

1 1 1 1
V|Ne=m>0,1.1] = mzw =m’ <—+—+—>.
mgr 14 mg mrg

The K density is governed by three parameters which have specific meanings in our case.
The first parameter is the mean of the K density, and it is equal to the number of jumps,
m. The second parameter depends on the shape of the jump component Z;, while the
third also depends on the shape parameter of the innovation term ;. Additional details
on the K distribution are presented in the Web Appendix. Interestingly, the conditional
variance of 7, is an increasing function of the number of jumps arrivals, m. Hence, periods
with a larger number of jumps arrivals are characterized by a higher volatility-of-volatility.

The innovation term conditional on the information set, I;_;, might be seen as char-

acterized by a countably infinite mixture

FOulliz) = P (N, = 0[L-)T (1,v) + > P(Ny = m|l,1) x K (m,ms,v),  (15)
m=1
where
P(N, =0|I,_1) = e

The mixing variable is the Poisson process N;, which depends on the parameter \. As A

increases, more weight is given to the K distribution, while when A\ = 0 the density of »,
is ' (1, v) and the MEM-J reduces to the MEM.



3.2 The conditional density of RM,

The conditional density of the realized measure, given N; = m > 0 and [;_1, follows from
the distribution of the term 7, in equation (14). The following proposition reports the

density and the subsequent corollary introduces the conditional moments of RM;.

Proposition 2 Consider model (10) where n, = Ze, with Z; defined in equation (7) and
gr ~ I'(1,v). Assuming that Z; and e, are independent at all leads and lags, it follows
that

2 (RMt meke 1 RM,

RM,|N, =m > 0,1, 1:0) = ) L S
SURMENe =m0 > 0. 4i320) = 2y (77 ) Py s ( i

v |,

(16)
where 6 is the vector of parameters. Thus the realized measure RM;, conditional on
Ny =m >0 and I;,_1, has a K distribution, denoted as

RM Ny =m > 0,14 ~ K(m,ut,mg, 1/).

The first two moments of RM;, conditional on Ny =m > 0 and I, 1, are

E [RMt|Nt =m > 0, -[t—l] = TN,
1
VIRM|N = m > 0,1, 4] = @m?2et?2

mqQr

As a result, both the conditional mean and the variance of the RM sequence are not
only time-varying and driven by p; as in the baseline MEM, but also dependent on the
realized number of jumps, m. On the other hand, when jumps are absent, i.e. m = 0, the
conditional density f(RM;|N; = 0,1;_1;0) is that of the baseline MEM. Integrating out
the realized number of jumps, the density of RM; conditional on the information set 1;

is a countably infinite mixture

F(RMy|I,—y;0) = P (N, = 0| L) T (e, v) + > P (Ny = m| 1) x K (mpy, ms,v). (17)
m=1

The conditional distribution of RM; depends both on the element p; as well as on the

jump intensity, A\. The expected value of Z; can then be used to derive the expected value

of the realized measure RM,;.* Integrating out the dependence on NV, it is possible to

obtain the expected value and the variance of RM,; with respect to the information set

I;_1 only, see Section 4.2.

4See Appendix A.3 for details on the derivation of the moments of Z;.



4 A persistent MEM-J with time-varying parameters

The main stylized fact that emerges from the empirical analysis of the financial returns is
that their volatility is characterized by several dynamic and distributional features. High
persistence, leverage effects, clusters of jumps and heteroskedastic effects in volatility are
indeed relevant characteristic that must be addressed by a proper model. In this section,

we show how the MEM-J presented in Section 3 can account for all these features.

4.1 Specification of p;

The role played by the specification of u; becomes clear when looking at the dynamics
of the model’s residuals. As volatility is an highly persistent series characterized by a
slow and hyperbolic decay of the autocorrelation function, it becomes clear that a simple
ARMA(1,1) specification, as implied by the baseline MEM, is not suited to describe such
a rich dynamic behaviour. As a consequence, the model’s residuals display significant
autocorrelation. A successful and simple approach to capture the (pseudo) long-memory
property of the volatility series has been proposed by Corsi (2009) with the HAR model.
The HAR is long autoregressive model, subject to linear constraints, designed to capture
the persistence of the logarithm of realized volatility. We therefore consider two alternative

specifications for p:

e Asymmetric MEM:
pe = w + aRM_y + By +vRM,_, (18)

where RM, = RM, - I{r; < 0}. This base specification takes the presence of
asymmetric responses of volatility to the sign of the returns (see Engle and Gallo,
2006), and the coefficient 7 captures a stronger response to negative returns, the well

known leverage effect. The baseline MEM can be simply obtained setting v = 0.

e Asymmetric HAR-MEM (AHAR-MEM), which combines the distinctive elements
of the Asymmetric MEM and the HAR

py =w + By + oy RM;_y + ap RM;_ 1.5 + asRM;y 1491 + yRM,_, (19)

where RM;_1.,_5 = %2321 RM;_j and RM,; 149 = % 231:1 RM,_;. The restric-
tion ap = a3 = 0 gives the Asymmetric MEM. Hence, it is possible to test whether
the inclusion of the weekly and monthly volatility terms provide a significant im-

provement in modeling the volatility dynamics.
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4.2 Time-varying jump intensity

The previous specification of the MEM-J is inherently limited given that the Poisson pro-
cess governing the occurrence of jumps and the Gamma density characterizing the jump
size are all driven by time invariant parameters. To increase the model flexibility we intro-
duce time variation in the parameter of the Poisson process. Instead, we maintain a time
invariant jump size since preliminary evaluations of the proposed model show that letting
the parameter to vary across time does not improve upon time-invariant specifications,
but it increases the computational burden associated with the model estimation. Never-
theless, if needed (and supported by the data), even the jump size can be time-varying.
We first specify the dynamic evolution of the parameter ), i.e. the jump intensity, for
which we suggest the Auto Regressive Jump Intensity (ARJI) specification of Chan and
Maheu (2002). The innovation in the jump intensity dynamic are derived from the jump

probability as follows:

At = Q1+ G2t + P36 (20)
where .
&=E[NJ|L] =\ =) mP (N, =ml|L,) - \. (21)
m=0

The restrictions ¢; > 0 and ¢ > ¢3 > 0 are sufficient to guarantee the positiveness of A,
as in Chan and Maheu (2002). Note that the innovation term depends on the conditional
probabilities of observing m jumps given the information set at time ¢, and those are
determined following the hypothesis of having a Poisson process governing the jumps
number, see (8). However, as the conditioning set is different, those probabilities must
be appropriately evaluated. We will discuss this issue in Section 4.4 when dealing with
the model estimation. From a distributional point of view, letting the mixing parameter
A to be dynamic implies that the conditional density of RM; in (16) has a time-varying
weight associated with the K density. This provides an extremely flexible specification of
the density of RM,, which can be exploited to infer a precise probability of occurrence of

tail events, see Section 6.°

Proposition 3 Consider model (10) where 1y = Zie, with Z; defined in equation (7) and
e, ~ I'(1,v). Assuming that Z, and e, are independent at all leads and lags, it follows

that the first two moments of RM; and n; conditional on I;_, are
E [1:|I;—1] = (67)% + )\t) ) (22)

E[RM; |1 1] = pe (e +N), (23)

Creal et al. (2013) derives the Generalized Autoregressive Score (GAS) representation for both the
time-varying intensity Poisson process and the dynamic mixtures of models. We believe that an extension
of the MEM-J model within the GAS framework is a natural advancement but this is left to future
investigation.

11



V|l = {% + )\f} I+ Y+ (e +N\) [1 T )\t} (24)

V[RM| I, 1] = pii { {% e M NAA)| (T4+vh) = (e + )\t)Q} . (25)

The conditional expected value and variance of RM; depend on the time-varying mean
component as well as on the time-varying jump intensity. We stress that the conditional
variance of RM; is time-varying thanks to the evolution in time of both p; and \;, thus
allowing the MEM-J, similarly to the MEM, to capture the volatility-of-volatility effect
studied in Corsi et al. (2008) among others. The above results highlight how the condi-
tional moments of RM; depend on the marginal moments of the jump term. In fact, the
availability of the first and second moments of the jump component potentially allows
for the construction of confidence intervals around the impact of the expected jump. For
example, compared to the baseline MEM, the conditional expectation of RM,; is inflated
by a time-varying factor (e‘At + )\t), which is never smaller than one by construction and
acts as a state-dependent boosting factor, whose introduction is expected to find strong

support in the data.

4.3 Stationarity

We first provide the stationarity conditions for the simple case of time-invariant jump

intensity with pu, specified as
q P
Hi = W + Z OziRMt_i + Z Biﬂt—z* (26)
i=1 i=1

Given the multiplicative structure of the MEM-J, the conditions for strictly stationarity

of RM; can be studied writing (26) in vector form (Markov representation):
Zt = bt + Atzt,l. (27)

Theorem 1 For the MEM-J process in (6) with Assumption 1 where 1y is a sequence
i.5.d. random variables with intensity parameter X\, there exist a unique strictly stationary

solution (which is also weakly stationary) if

€+ 0D a+> Bi<l (28)
j=1 i=1

Proof in Appendix A.5.

We also remark that if the MEM-J has a second-order stationary solution and if w > 0
then condition (28) holds. We note that the introduction of the jump term in the MEM-J
is expressed in a different form with respect to the baseline MEM of Engle and Gallo

12



(2006). We have a multiplicative term, depending on A, that impacts only on the ARCH-
related coefficients, those capturing the impact of innovations on the mean-evolution.
This is a consequence of the fact that the jump term, Z;, is a constituent of the model
innovations, 7;, and it is not persistent by construction. Interestingly, the larger the
coefficient A, the larger is the inflating factor, and the smaller is the stationarity region
given the parameters «; and [;.

We now move to the mode complex case of the time-varying jump intensity. In that
case, we provide a sufficient condition for the stationarity of the MEM-J. Consider the
MEM-J process in (6) with density, conditional to 7, defined in (16), where 7, is a
sequence of random variables with time-varying intensity parameter ), defined as in (20),

and At = A@Et

Theorem 2 Given the MEM-J in (6) with Assumption 1 and the processes for A\, and
e specified as in (20) and (26), respectively, a sufficient condition for the existence of a

strictly stationary solution is

p(A) < exp(—Eflog[(p+q)(n: + (p+¢q) = D))

where p(A) is the spectral radius of A (i.e. the greatest modulus of its eigenvalues).

This second result is less intuitive than in the constant intensity case. Nevertheless,
we stress the sufficient condition depends both on the number of dynamic parameters
affecting 1, and on the expectation of the innovation 7, that combined the jump term and

the error term ¢;.

4.4 Maximum likelihood estimation

The AHAR-MEM-J can be estimated by maximum likelihood. Under the maintained
assumption that N;|I;_y ~ Poisson()\;) with N; and &, independent processes, the con-
ditional density of RM;, f(RM;|l;_1), can be computed in closed form as in equa-
tion (17). Model parameters are estimated by maximizing the sample log-likelihood
00) = 27 log f (RM,|I,_1;0), where f(RM,|I, ;) is defined in equation (17) and 6 €
© is the vector of parameters for the AHAR-MEM-J with time-varying A, ie. 6 =
[w, B, a1, o, a3, V1, Y2, V35 D1, D2, @3, 6, ¥ . The log-likelihood function £(#) is the log-trasform
of a mixture density. In general, the mixture likelihood function can be unbounded, that
is the function is characterized by the presence of singularities. Thus the ML estimator
as global maximizer of the mixture likelihood function does not exist. Nevertheless, sta-

tistical theory outlined in Kiefer (1978) guarantees that a particular local maximizer of

5The conditional density of RM; involves an infinite sum of densities that depends on the number
of jumps. Therefore, a truncation on the maximum number of jumps m < oo is required in practical
applications. See Section 4.5 for a discussion of the choice of m.

13



the mixture likelihood function is consistent, efficient, and asymptotically normal if the
mixture is not overfitting. Several local maximizers may exist for a given sample, and a
major difficulty with the ML approach is to identify if the correct one has been found,
see Frithwirth-Schnatter (2006).

In the case of estimation of MixNormal-GARCH models, Ausin and Galeano (2007)
and Bauwens et al. (2007) have devised a Bayesian estimation procedures to avoid such
degenerated states. Alternatively, Broda et al. (2013) have proposed an augmented likeli-
hood function. We don’t adopt any of these computational devices since the Monte Carlo
results, reported below, show that this problem is not a major concern in our case.

The information used to evaluate the likelihood function involves the computation of
further quantities that drive the dynamics of the jump intensity, A;. From the Bayes rule,

it follows that the filtered jumps probabilities are equal to

P (RMt‘Nt =m, [tfl) x P (Nt = m|[t,1)
P (RM|I;_) ’

P (N, =ml|IL) = i=0,1,2,... (29

which are then used to recover the jump intensity innovations in equation (21).

4.5 Monte Carlo Simulations

We run a set of Monte Carlo simulations to explore the performance of the ML estimation
of MEM-J in finite samples. We simulate three different specifications with the same p; as
in (19) with no asymmetric effect: HAR-MEM (model in (1)), HAR-MEM-J with constant
A (model in (6)) and HAR-MEM-J with time-varying A; (model in (6) with A specified as
in (20)). The algorithm to simulate pseudo-random variates from a K density is illustrated
in Appendix B. The parameters used in simulation and the results are reported in Table
1. The simulated sample size is set equal to 3000. Due to the computational burden in
estimating the MEM-J the Monte Carlo replications are 500. We investigate the effects
that the over-specification of the jump component can have on the maximum likelihood
estimates. This can be a typical situation which arises when we have to specify nonlinear
models with latent components. We estimate over-specified models (upper and middle
panel of Table 1), i.e. the HAR-MEM-J with time-varying jump intensity, when the data
have been generated with either A equal to zero (i.e. ¢ = ¢ = ¢35 = 0) or with a
constant A. The infinite sum of densities required to compute the likelihood, see (15), is
truncated at m = 10. For values of A\ that are rarely larger than 1, the probability of
observing more than 10 jumps is of order 1078, When the jumps are totally absent, the
unconditional mean of \; = 1;’5;2 is estimated almost equal to zero, meaning that there
is a very limited mixing effect in the conditional density of RM; due to the estimated
jump term. This means that the estimated model is very close to the HAR-MEM which

is the DGP. Indeed, the parameters governing u, are estimated correctly and with small

14



RMSE. It should also be noted that the parameter ¢ is not defined under the DGP, but
is estimated when fitting the HAR-MEM-J on the data as it determines the shape of the
K distribution. When jumps are absent, i.e. A = 0, the parameter ¢ is not identified, this
is reflected in a very high RMSE.

When the jumps are present, but A is constant, the impact of the over-specification is
fairly limited, see the middle panel of Table 1, and the distribution of all parameters is
centered on the true values. The estimate of the parameter ¢3 is close to zero with a quite
large RMSE. This evidence also confirms that the HAR-MEM-J with time varying jump
intensity is identified also when A is constant and the estimated model is overspecified.
This means that the sources of variation in E[RM;|I, 4], i.e. p; and ), are separately
identified. In fact, if we look at the estimates of the HAR parameters, they seem unaffected
by this misspecification. In the third case considered, which is the estimate of the correctly
specified model, the maximum likelihood estimates have a very small finite sample bias
and the RMSE’s of ¢1/(1 — ¢2), ¢2 and ¢3 have the same order of magnitude of the other
parameters. In Figure 1, the kernel density estimates of the Monte Carlo distribution
are displayed. The plots show that the finite sample distributions for all parameters are
centred on the true values. Furthermore, the Monte Carlo estimates based on the mixture

density are well behaved and we don’t find any evidence of the presence of multiple local

maxima.
w o s o3 5 v S = 3

DGP: A=0

0.001 0.4 0.15 0.1 0.3 20 0 0 0 0
Mean 0.001 0.399 0.148 0.097 0.302 20.106 38.010 0.009 0.599 0.254
RMSE 0.000 0.021 0.069 0.023 0.076 0.577 40.972 0.033 0.636 0.334
DGP: A =0.25

0.001 0.4 0.15 0.1 0.3 35 20 0.25 0 0
Mean 0.001  0.400 0.152 0.099 0.296 34.957 20.625 0.250 0.479 0.019
RMSE 0.000 0.017 0.050 0.017 0.056 1.646 3.710 0.018 0.611 0.033
DGP: A\ >0

0.001 0.4 0.15 0.1 0.3 35 20 0.2 0.95 0.1
Mean 0.001 0.400 0.147 0.100 0.301 35.011 20.620 0.201 0.931 0.106
RMSE 0.000 0.018 0.056 0.018 0.062 1.394 4.051  0.027 0.060 0.034

Table 1: Monte Carlo results. The true parameter values used in simulation are in bold.
Sample mean and Root mean squared error (RMSE) of maximum likelihood estimates of
simulated HAR-MEM’s models.
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Figure 1: Kernel densities of the Monte Carlo estimates of the MEM-J-);, where \; varies
according to (20).

5 Empirical Results

5.1 Database and estimation of volatility

Our purpose is to model realized measures to estimate the probability and the size of
the volatility jumps once that price jumps have been disentangled from the volatility
dynamics. Indeed, when price jumps are present, the total price variation, or quadratic
variation, is equal to the sum of integrated volatility plus the squared price jumps. The

quadratic variation can be estimated by the sum of the intraday squared returns, rfj , 1.e.
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the realized volatility (or realized variance), RV,

R‘/t — Z (ptj _ptj_1)2 = ZT‘?J t= ]_, ,T (30)

M M
Jj=1 Jj=1

where r;;, = p;; — py;_, is the intraday return and M is the number of intraday observa-
tions. The realized volatility converges to the integrated variance plus the squared jump
component. Barndorff-Nielsen and Shephard (2004), have shown that RV allows for a
direct nonparametric decomposition of the total price variation into its two separate com-
ponents: a continuous part, called Bipower Variation (BPV'), and a discontinuous one,
the squared price jumps. Disentangling the price jumps is important because, as it has
been noted by Huang and Tauchen (2005), their relative contribution to the total price
variability is about 7%. The BPYV is defined as

M
m
BPV, =5 ZQ e, | t=1,..,T (31)
P

and converges to the integrated variance as M diverges. As M increases, the bipower
variation will converge to integrated continuous volatility, which is likely to be affected
by volatility jumps, as shown, for instance by Caporin et al. (2014). Hence, the following
empirical analysis will be based on the estimation of alternative MEM specifications on the
BPV series. It should be noted that, in finite samples, any volatility estimator, including
the BPV, is contaminated by a measurement bias, but it is assumed that the measurement
error can be considered negligible for the purposes of this paper.

The empirical analysis is based on two data sets. The first one includes the bipower
variation of seven stock indexes: S&P500, FTSE 100, DAX, DJIA, NASDAQ 100, CAC 40,
Bovespa, sampled from January 3, 2000 through January 31, 2013, as made available by
the Oxford-Man Institute’s Realised Library. The second data set employed consists of the
intradaily returns of 16 large cap equities quoted on the New York market: Boeing, Bank
of America, City Group, Caterpillar, Federal Express, Honeywell, Hewlett-Packard, IBM,
JP Morgan, Kraft, Pepsi, Procter & Gamble, AT&T, Time Warner, Texas Instruments,
and Wells Fargo. Prices are sampled at one minute frequency, from January 2, 2003 to
June 30, 2012, and they are provided by TickData. The bipower variation is estimated
from the 1-minute prices. In both datasets, the realized measure is expressed as daily
volatility, i.e. the square root of the bipower variation, RM, = /BPV,.

Table A.1 in the Web Appendix reports descriptive statistics of \/BPYV, for the seven
indexes. We observe well-known stylized facts such as high kurtosis and asymmetry, due
to the long upper tail characterizing the empirical density of bipower variation time series,
and the presence of a strong serial correlation as suggested by the very high values of the

auto-correlations at the selected lags 1, 5 and 22.
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Several alternative multiplicative specifications are considered for characterizing the
dynamic behaviour of the square root of the bipower variation of the stock indexes and
individual S&P 500 stocks. We estimate the simple AMEM and the AHAR-MEM in order
to evaluate if there is empirical support for a HAR specification in ;. For what concerns

the multiplicative models with jumps, we consider the following cases:
e Constant jump intensity: from equation (20) we set \; = ¢; and ¢o = ¢3 = 0;
e Time-varying jump intensity: with \; evolving as in equation (20).

To compare the alternative models we consider two different approaches. Firstly, we
pursuit a full-sample evaluation approach, where the MEM and MEM-J specifications are
compared with respect to their fit on the empirical data and a series of statistical tests
for restrictions on the parameters are performed. Secondly, we evaluate model abilities
in capturing the behaviour of the upper tail of the realized measure both in-sample and
out-of-sample. This is not only crucial for risk-management purposes, but also consistent
with the expected ability of the MEM-J in explaining sudden increases in the volatility

that cause observations of the realized measures located in the upper tail.

5.2 Full-sample model comparison

The different specifications adopted for the estimation of the BPV dynamic behavior are
first compared in terms of their ability in capturing the dynamics of the series. To this

end, we analyze the dynamic properties of the residuals

RM,

T E[RM,|I,_,] (32)

e::
The residuals obtained from different model specifications might be compared in terms
of density, moments, as well as with respect to the presence of serial correlation in the
first and second order moments.” Tables from 2 to 5 report the parameter estimates and
the residual statistics. The standardized residuals, €, are obtained by the transformation
& =Fy'[Fr(§)], for t =1,...,n, where Fy() and Fy() are the cumulative density func-
tions of the standard normal and Gamma distributions, respectively. Since the standard
diagnostic statistics and graphs are designed for residuals that are assumed normal dis-
tributed and since the model disturbances are assumed to come from a Gamma density,
this transformation for the residuals is justified. From Tables 2 and 3, which report esti-

mation results for the Asymmetric MEM and the Asymmetric HAR-MEM respectively, it

"As an alternative, model residuals might be computed by standardization of RM,; with respect to its
expected value, involving the impact of p; and (when present) Z;. In this case, innovations are defined
as Pearson’s residuals

_ RM; — E[RMy|I, 1]
V [RM,|I,_1]"?

(33)
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w « B Y v | LogLL Q1 Q1o Q22

SP500 0.0003* 0.3278% 0.5944% 0.0895* 15.9492¢ 15673 0.004  0.000  0.000
FTSE 100  0.0002* 0.3120* 0.6393* 0.0556* 16.6881¢ 16104  0.001  0.000  0.000
DAX 0.0003* 0.3247* 0.6112¢ 0.0703* 17.4627¢ 15202  0.000  0.000  0.000
DJIA 0.0003* 0.3234* 0.6037* 0.0814* 15.6513* | 15742  0.003  0.000  0.000
NSDQ 0.0003* 0.3404* 0.5915* 0.0759* 16.1353* | 15199  0.001  0.000  0.000
CAC 0.0002* 0.3051* 0.6327* 0.0782¢ 17.8968* | 15503  0.000  0.000  0.000
BOVESPA 0.0010* 0.3561* 0.5402¢ 0.0562* 15.1477¢ 13829  0.007  0.000  0.000
BA 0.0005* 0.3618% 0.5859* 0.0326% 22.4478% | 10559 0.0387 0.0003 0.0002
BAC 0.0003* 0.5227¢ 0.4376* 0.0479* 19.8641¢ | 10198 0.0832 0.0000 0.0005
C 0.0002* 0.5214% 0.4535* 0.0285* 24.6862“ | 10049 0.0370 0.0000 0.0005
CAT 0.0007*  0.4162% 0.5206* 0.0403* 22.8666“ 10340 0.0046 0.0000 0.0020
FDX 0.0005* 0.3995% 0.5435* 0.0355* 21.1708¢ 10516  0.0227 0.0000 0.0000
HON 0.0008* 0.4063* 0.5172¢ 0.0506* 23.0828¢ 10502 0.0516 0.0022 0.0033
HPQ 0.0007*  0.4000* 0.5302* 0.0452¢ 20.6334% | 10335 0.0390 0.0000 0.0004
IBM 0.0005% 0.4420* 0.4968* 0.0371* 25.3562¢ | 11303 0.0968 0.0071 0.0260
JPM 0.0004* 0.4864% 0.4731¢ 0.0366* 22.4146“ 10323 0.0039 0.0000 0.0000
KFT 0.0005* 0.3565% 0.5880* 0.0106* 16.5042¢ 10845 0.0030 0.0000 0.0003
PEP 0.0003* 0.3389% 0.6153* 0.0310* 22.4093“ 11373 0.3856 0.0229 0.0003
PG 0.0004* 0.4130* 0.5288* 0.0279* 23.2476% | 11544 0.0953 0.0005 0.0003
T 0.0003* 0.3980* 0.5617* 0.0253* 25.2941¢ | 10981 0.0234 0.0000 0.0001
TWX 0.0005* 0.4032% 0.5499* 0.0287¢ 28.8549% | 10672 0.0698 0.0024 0.0044
TXN 0.0006* 0.3546% 0.5984% 0.0270*  25.2586“ 10120 0.0527 0.0018 0.0006
WEC 0.0002*  0.4590* 0.5184* 0.0158  18.9402¢ 10255 0.4878 0.0000 0.0002

Table 2: Estimates of the baseline AMEM (see (18)). The upper part of the table reports
the results for several stock indexes while the lower part refers to 16 NYSE stocks. a, b
and ¢ stand for significance at 1%, 5% and 10% respectively. @i, Q1o and Q9 are the
p-values of the Ljung-Box test for absence of autocorrelation in the residuals, where the

latter are computed as ¢, = %.

is evident that the Asymmetric MEM is unable to capture the persistence that is present
in the bipower variation time series. On the contrary, in the case of the Asymmetric HAR-
MEM the Ljung-Box statistics does not reject the null of no residual autocorrelation in
4 out of the 7 stock indexes considered, and only when we focus on lags up to the 22-nd.
Looking at the individual stocks, at the 5% confidence level we have only 4 out of the
16 equities with some evidences of residual serial correlation, and only over 22 lags. The
number of stocks with serial correlation in the residuals of the AHAR-MEM decreases to
1 if we take the 1% confidence level. If we compare the estimated parameters of the stocks
to those of the indexes, we note the following: stocks are characterized by a somewhat
higher impact of previous day bipower variation levels. Differently, last week and last
month average bipower variations, have a more heterogeneous impact, with some cases
of reduced significance. Heterogeneity in the single assets might be expected. Finally,
we observe how the innovation parameter, v, is sensibly higher than that of the indexes.
This reflects the differences in the density, where the volatility of volatility of the indexes
is higher than that of the individual stocks. This may be due to the different sample
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Figure 3: Relative expected jump contribution.  The figures display the ratio

E(][R]\/ft]][:{)t[f}%l]}\;%i[j%l?/jtutil], where E;[RM,|I;_1] is the conditional expectation under AHAR-

MEM-J-);, and Eo[RM;|I; 1] is the conditional expectation under AHAR-MEM.

periods under exam. Given these results, in the rest of the paper we will consider only
the AHAR specification.

As it emerges from the theoretical analysis in Section 3, the MEM-J specification is
well suited to provide a high degree of flexibility for the conditional moments of RM;. The
comparison of AHAR-MEM and AHAR-MEM-J specifications starts off from the simple
evaluation of parameters significance. In fact, obtaining significant coefficients for the
jump intensity, either in the constant or dynamic specification, might be seen as a first
evidence that jumps in volatility are a significant component of the stock indexes bipower
variation. With regard to this aspect, Tables 3 and 4 allow for a first comparison. By
looking at Table 4, we observe that for all series the parameters associated with the jumps,
¢ and A, are all statistically significant, thus supporting the potential relevance of the jump
component Z;. In addition, the parameters driving the evolution of u; are close to those
of the baseline AHAR-MEM specification in Table 3, with the exception of the innovation
term, whose scale parameter v is characterized by a sensible increase. As expected, this
confirms that accounting for the presence of a jump component in the bipower variation
affects the estimate of the parameters of the innovation term distribution. Since the
nuisance parameter ¢ is not defined in the AHAR-MEM, it is not possible to evaluate
the significance of the jump term by a standard LR test, see the discussion in Hansen
(1996).% However, from a comparison of the values in Tables 3 and 4, it clearly emerges
that the log-likelihood functions of the AHAR-MEM-J are much larger than those of the
AHAR-MEM, as their difference is often larger than 100.

8Tn this case simulation based approaches can be used to recover likelihood ratio test critical values
following Hansen (1996). We don’t pursue that strategy due to the computational burden implied in the
estimation of the MEM-J.
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Figure 4: Volatility-of-volatility ratio. The figures display the ratio %, where

V [RM;|1;—1] is the conditional variance under AHAR-MEM-J-(\;), and Vo[RM;|I;_4] is
the conditional variance under AHAR-MEM.

When the jump intensity parameter is assumed to be time-varying, see Table 5, we
observe changes in parameters associated with the innovation term &; and with the jump
component Z;, while the parameters in p; are not much affected. The estimates of v
and ¢ are generally higher for the individual stocks than those of the indexes. The
estimated unconditional mean of )\; is between 0.15 and 0.20 for most stocks, and there are
not relevant differences between stock indexes and individual stocks. Interestingly, most
markets and stocks, among those considered, display estimates of ¢, larger than 0.9. T'wo
notable exceptions are FTSE-100, CAT and BOVESPA. For the latter, the sensitivity
to the news arrival, measured by the parameter ¢3 is close to persistence parameter, i.e.
¢o, this might suggest that the time-varying jump intensity specification is not needed.
However, the LR test for the joint nullity of ¢o and ¢3 takes very large values. Even
though in this case we don’t have any asymptotic theory for the LR test, we believe
that the observed values of the test statistic can reasonably lead to the rejection of the
null hypothesis in all cases considered. Introducing dynamics in the jump intensity is
therefore important to provide the necessary degree of flexibility in the characterization
of the conditional moments of RM,.

Figure 2 reports two examples of the fitted time-varying jump intensity, ), and of the
expected jump component E [Z;|I;_1]. Both the jump intensity and the expected jump
(which is a non-linear function of the jump intensity) increase during the recent crises:
the end of technology market bubble in 2001-2002, the subprime crisis in 2007-2008 and
the European sovereign crisis in 2010. Notably, the most recent crisis seem to be more
relevant in France compared to the others, a somewhat expected result. Figure 3 plots

the impact of a change in the model structure, moving from an AHAR-MEM without
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jumps to a specification including jumps. The figure shows the relative difference between
the expected realized measure, i.e. E[RM;|l, 1], of the two models (expected bipower
variation of the model with jumps minus the expected value from the model without
jumps). We observe that the introduction of jumps leads to an increase in expected
values in particular during market turmoil. This can be interpreted as a further evidence in
favour of a model including a combination of continuous mean evolution and discontinuous
(jumps) elements. The same evidence arises from a visual inspection of Figure 4 which
reports the ratio between the conditional variance obtained from the model with jumps
and the model without jumps. We note that the ratio is generally centred on 1, but
during financial turmoil the conditional variance generated by jumps is by far larger than
that generated without jumps. As a consequence, the model with jumps is expected to
provide a better description of tail volatility events, as it is able to generate large and

sudden increases in the conditional volatility-of-volatility levels.

5.3 Alternative specifications for the distribution of ¢

An alternative specification of the AHAR-MEM can be based on a flexible distribution
for ¢; that is able to generate fat-tails. To this scope, we choose the generalized Gamma
distribution of Stacy (1962), leading to the AHAR-MEM-GG specification

RM; = ue
pe = W+ By + o RMy_y + ao RM; 145 + asRMy 1491 +yRM,_,

e ~ GenGamma(l,¢,v)

where the density of the generalized Gamma is

(6/5")e e
T(v/€)

faa(e, & v) =

with 0 = % to ensure that E(e;) = 1. Lunde (1999) and Andres and Harvey (2012)
have already successfully adopted the generalized Gamma distribution in the ACD-MEM
framework. The parameter estimates of the AHAR-MEM-GG model are reported in Table
A.2 in the Web Appendix. As expected, the parameters governing the conditional mean,
1, are not affected by the choice of the distribution of ¢, and are very close to those
obtained under the Gamma specification in Table 3 and the Ljung-Box tests do not signal
significant autocorrelation in the residuals. However, the estimates of ¢ and v suggest a
strong deviation from the Gamma distribution, which is obtained under the assumption
that & = 1. The overall fitting of the AHAR-MEM-GG model, as measured by the value

of the log-likelihood function, improves considerably compared to the AHAR-MEM. In
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particular, the estimates of £ are far from 1 and generally close to 0.05, and the LR test for
¢ = 1 strongly rejects the null hypothesis that ¢; is generated by a Gamma distribution.
According to Corsi et al. (2008), realized volatility sequences show significant evidences
of heteroskedasticity, the so-called volatility-of-volatility effect. In order to accommodate
this stylized fact in the MEM, beyond what is already accounted for by the time variation
in the conditional mean ;.Y we suggest a time-varying specification for a transformation of
the shape parameter of the innovation term, i.e. v = % The reparameterized innovation

shape follows the Auto Regressive Shape (ARS) specification
vy =00+ 0101 + 02( 1 (34)

and the innovation (; is given as

RM, 2 )
= <E[RMt|ft_1J) S (35)

Therefore, 7; has an autoregressive behaviour coupled with an innovation term linked
to the squared value of the estimated innovation e;. The form of (; comes from the
properties of the Gamma density. Recall that e;|[;_y ~T'(1,14) =T (1, 1%) we have that
E[e]l;1] = 1 and V[g|I; 1] = 1. In addition, E[e?|I; 1] = 1 + 1. The model with
time varying shape is named AHAR-MEM-v;. The estimates of this model are reported
in Table 6. The point estimates of the parameters governing the dynamics of y; are very
close to those obtained with the AHAR-MEM specification with constant v reported in
Table 3. Interestingly, the parameters governing the dynamics of 7, are significant in most
cases, and the LR test for the joint nullity of 6, and 6, rejects the null in most cases. This
evidence suggests that a restrictive assumption on the distribution of the innovation term,
i.e. g, ~ I'(1,v) with constant v, is rejected by the data. Indeed, despite the AHAR-MEM
with constant v generates time-varying conditional variance through p?, see equation (5),
the results suggests that an extra degree of flexibility is required to model the conditional
second moment.

Finally, we introduce the mixture AHAR-MEM specification (M-AHAR-MEM), ex-
tending the mixture model of Lanne (2006) to allow for HAR dynamics in each volatility

9The conditional mean y; already provides some form of heteroskedasticity, as we have already noted.
However, this might not be sufficiently flexible to capture the volatility-of-volatility effect.
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component,

RM; = mpjey + (1 —mpje)
pr = W'+ B+ o RMy_y + af RMy 145 + of RMy 1401 + v"RM,,
pp = w485 + af RMy_1 + of RMy 145 + of RM; 1,401 +v°RM,_

1

L

€t ~ F<1’I/_L>
1

S

€& ~ F(laﬁ)

Lanne (2006) reports strong evidence in favour of the mixture MEM in capturing not
only the long-memory dynamics of the realized volatility, but also its heavy tail marginal
distribution as generated by the mixture of the two Gamma densities governing e and
¢;. The estimates of the model parameters, reported in Table A.3 in the Web Appendix,
confirm the results in Lanne (2006) supporting the evidence of two volatility factors with
distinct dynamic features. The dynamics of u” are characterized by high persistence and
low variance of the error term; indeed ok and ok are significant and v” lies generally above
25. Conversely, u? is the rapidly moving volatility factor which is characterized by higher
innovation variance, with ¥ below 10 in many cases, and non persistent dynamics, i.e. a5
and of are not different from zero in most cases. The estimates of the mixture parameter
7 are between 0.69 and 0.92, meaning that more weight is given to the persistent volatility
factor.

In the next section, we will evaluate the ability of the MEM specifications considered

in this study to correctly predict the probability of tail events.

6 Volatility-at-Risk

One of the advantages of the MEM-J with respect to multiplicative specifications without
jumps is given by the ability of the model in capturing the evolution of the variance
upper tail. In general, the volatility distribution is heavily skewed to the right with many
more extreme volatility realizations than we would expect if the distribution was normal.
Volatility jumps are responsible of rapid boosts in the volatility which, if not correctly
modeled, would imply model’s residuals with an upper tail fatter than that hypothesized
for the errors.

By analogy to the VaR introduced for quantifying extreme risk on returns, we can

define the VolaR, i.e. the risk of extreme high volatility as
Pr{RM; > v(a)|l;-1} = «

where Pr{-[[;_1} denotes the conditional distribution at date ¢ of the one-step-ahead
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volatility, whereas v(«) defines the volatility level that may occur with probability «.
The VolaR might be of interest for investors trading volatility, see Zhang et al. (2010),
and Euan (2013) and therein cited references. In fact, the knowledge of the probability
that volatility will exceed a given threshold is useful both in designing volatility trading
strategies based on options (allowing for an optimal calibration of the option maturity as
well as the option strike) and for strategies based on volatility indices or exchange traded
volatility products (having an impact on the choice of the investment direction as well as
on the size of the position). In addition, the evaluation of volatility risk might be of interest
for options traders and market makers to define optimal prices and order execution, and,

finally, to portfolio managers willing to determine the need and the amount of a volatility

hedge.

AMEM AHAR AHAR-»» M-AHAR AHAR-GG HAR-V-J AHAR-J AHAR-J-\
SP500 0.0000  0.0000 0.0000 0.0080 0.0000 0.5181 0.6749 0.3456
FTSE 100 0.0000  0.0000 0.0000 0.4882 0.0000 0.7394 0.3289 0.4896
DAX 0.0000  0.0000 0.0000 0.0241 0.0001 0.6660 0.1415 0.1337
DJIA 0.0000  0.0000 0.0000 0.0010 0.0000 0.4189 0.4334 0.5880
NSDQ 0.0000  0.0000 0.0000 0.6016 0.0000 0.6651 0.5216 0.5999
CAC 0.0000  0.0000 0.0000 0.0013 0.0004 0.0984 0.0677 0.3594
BOVESPA  0.0000 0.0000 0.0000 0.5952 0.0519 0.8380 0.0055 0.0145
BA 0.0000  0.0000 0.0000 0.0229 0.0000 0.5486 0.0423 0.1483
BAC 0.0000  0.0000 0.0000 0.0268 0.0000 0.0008 0.1095 0.2011
C 0.0000  0.0000 0.0000 0.0045 0.0000 0.0217 0.1608 0.6656
CAT 0.0000  0.0000 0.0000 0.0921 0.0000 0.5137 0.2131 0.2528
FDX 0.0000  0.0000 0.0000 0.8566 0.0000 0.5309 0.0746 0.0815
HON 0.0000  0.0000 0.0000 0.0013 0.0000 0.0369 0.2604 0.2923
HPQ 0.0000  0.0000 0.0000 0.5133 0.0000 0.0621 0.0601 0.1515
IBM 0.0000  0.0000 0.0000 0.0038 0.0000 0.5957 0.3150 0.0909
JPM 0.0000  0.0000 0.0000 0.0856 0.0000 0.0059 0.1312 0.1218
KFT 0.0000  0.0000 0.0000 0.0112 0.0000 0.6487 0.0000 0.2042
PEP 0.0000  0.0000 0.0000 0.0000 0.0000 0.6652 0.1350 0.9984
PG 0.0000  0.0000 0.0000 0.0123 0.0000 0.9482 0.0267 0.0290
T 0.0000  0.0000 0.0000 0.0078 0.0000 0.5549 0.5883 0.7226
TWX 0.0000  0.0000 0.0000 0.0023 0.0000 0.0487 0.4656 0.3480
TXN 0.0000  0.0000 0.0000 0.0001 0.0000 0.5385 0.1078 0.2782
WEC 0.0000  0.0000 0.0000 0.4959 0.0000 0.0128 0.1071 0.0930

Table 7: P-values of the Berkowitz (2001) test for the in-sample VolaR at 1% level,
corresponding to a value of 2.3263.

In order to evaluate the estimation of the VolaR (i.e. the right tail coverage) obtained

with models with and without jumps, we consider the method introduced by Berkowitz
(2001), which allows testing the adherence of the hypothesised density with the realization
of the modeled variable. The test has been proposed for density forecast evaluation, but
can also be applied in-sample. The test of Berkowitz (2001) makes use of the Rosenblatt
(1952) transformation, and is built within a likelihood framework. Moreover, the test is

flexible and can be applied to the fit of the entire density as well as over specific segments
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AMEM

AHAR AHAR-v,

M-AHAR AHAR-GG HAR-V-J

AHAR-J AHAR-J-\

S&P500 0.0000  0.0000 0.0000 0.0035 0.0002 0.3503 0.0048 0.5133
FTSE 100 0.5577  0.1526 0.0000 0.0615 0.5078 0.0000 0.3551 0.4917
DAX 0.0010  0.0002 0.0000 0.0436 0.4529 0.1246 0.0171 0.1212
DJIA 0.0000  0.0000 0.0000 0.0009 0.0001 0.0260 0.0358 0.5111
NSDQ 0.0000  0.0000 0.0000 0.0025 0.0000 0.0010 0.0293 0.9532
CAC 0.0000  0.0000 0.0000 0.0696 0.1039 0.2384 0.0711 0.4825
BOVESPA  0.0279  0.0117 0.0000 0.3168 0.3036 0.8389 0.4567 0.2591
BA 0.0000  0.0000 0.0000 0.0477 0.0002 0.3503 0.2482 0.4850
BAC 0.0000  0.0000 0.0000 0.9360 0.0000 0.0010 0.0185 0.0768
C 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.1416
CAT 0.0000  0.0000 0.0000 0.0231 0.0003 0.0631 0.0262 0.3891
FDX 0.0000  0.0000 0.0000 0.0362 0.0000 0.1076 0.1889 0.6195
HON 0.0000  0.0000 0.0000 0.0002 0.0006 0.6167 0.6935 0.1595
HPQ 0.0000  0.0000 0.0000 0.0416 0.0000 0.1246 0.0142 0.3614
IBM 0.0000  0.0000 0.0000 0.0000 0.0000 0.8587 0.7541 0.7128
JPM 0.0000  0.0000 0.0000 0.0000 0.0000 0.0260 0.0453 0.1329
KFT 0.0000  0.0000 0.0000 0.3501 0.0000 0.0007 0.7700 0.6569
PEP 0.0000  0.0000 0.0000 0.0356 0.0001 0.0010 0.5746 0.5788
PG 0.0000  0.0000 0.0000 0.0119 0.0000 0.0000 0.3249 0.9246
T 0.0000  0.0000 0.0000 0.0140 0.0000 0.2384 0.7679 0.1859
TWX 0.0000  0.0000 0.0000 0.1001 0.0000 0.0409 0.0117 0.2544
TXN 0.0000  0.0000 0.0000 0.0031 0.0069 0.8389 0.0000 0.0055
WEC 0.0000  0.0000 0.0000 0.0000 0.0000 0.5799 0.0121 0.0002

Table 8: P-values of the Berkowitz (2001) test for the out-of-sample VolaR at 1% level,
corresponding to a value of 2.3263.

of the density support. For our purposes, we apply the test over the upper ¢% tail of the
RM; density. In details, given the density of the RM;, we compute the conditional CDF
Of RMt

RM;
g = F (RMI, ) = / f (2l f,y) da,
0

where F'(RM,|I;_) for the MEM-J is given by the mixture of Gamma and K conditional
CDFs (see Appendix B for the K CDF). Then, under correct model specification, the
empirical CDF values should be distributed according to the standard uniform, i.e. y; ~
U (0,1). Berkowitz (2001) considers the further transformation

2y = ot (yt)

where @ (+) is the standard normal CDF, and z; would be, under correct model specifica-
tion, distributed as a standardized normal. To test the tail coverage of alternative models,

we choose a VolaR level of 1% (i.e. VolaR = 2.3263), and calculate a new truncated vari-

able

VolaR if 2z < VolaR
o= (36)
2 if z > VolaR
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A tail coverage test can be derived using the LR principle. Under the null, the mean
and the variance of z; are 0 and 1, respectively, while under the alternative they are
unrestricted. Under the null of correct tail coverage the test statistic is distributed as
x*(2). See Berkowitz (2001) for further details on this test.

The Berkowitz (2001) test emphasizes the ability of a model specification to well
account for the probability of tail events. In Table 7 the p-values of the Berkowitz (2001)
test based on the in-sample estimates are reported for alternative MEM specifications
considered so far. It clearly emerges that the AHAR-MEM with jumps outperforms the
corresponding specification without jumps. All the MEM specifications without jumps
and Gamma distribution for g; strongly reject the null hypothesis of correct specification
of the upper quantiles. It should be noted that also the AHAR-MEM-v, model is poorly
designed to capture tail events. Letting the conditional variance of €; to be time varying is
not sufficient for a proper characterization of the extremes of the conditional distribution
of RM;, thus suggesting a distinct role of the jumps from pure heteroskedastic effects in
e;. Interestingly, the M-AHAR-MEM of Lanne (2006) provides some evidence of correct
specification of the upper tail, as the Berkowitz test cannot reject the null hypothesis in 3
over 7 cases. Conversely, the AHAR-MEM-GG model fails to give the correct probability
mass on the right tail, in other words, despite the generalized Gamma distribution provides
a good fitting for the entire distribution, it fails to properly account for the probability
of tail events.

It is noteworthy that the introduction of jumps, with constant and time-varying A,
is sufficient for a good characterization of the right tail. In only one case, BOVESPA,
the presence of jumps leads to minor improvements. We still have a rejection of the null
with constant jump intensity, while with time-varying jump intensity the null cannot be
rejected, but only at the 5% significance level. The introduction of the time-varying jump
intensity sensibly improves the performances for the CAC40 index. A possible explanation
for the good performance of the model with jumps in giving the correct probability mass
to the right tail can be derived from a visual inspection of Figure 5. It clearly emerges
that the model with jumps is able to generate large and sudden spikes in the conditional
variance of v/ BPV;, as generated by the jump component Z;, while the model with time-
varying 14, can only generate smooth trajectories, and hence it is not able to assign
enough probability to extreme volatility events. Interestingly, also the HAR-V-J model
of Caporin et al. (2014), which is an HAR specification with time-varying jump intensity
on the log transformed /BPV; series, provides a good fitting of the tails of the volatility
distribution.'® In this case, the null hypothesis cannot be rejected at 5% significance for

all the indexes. This confirms once more the importance to account for the probability of

9Due to space constraints, we do not report a complete discussion of the HAR-V-J model, which can
be found in Caporin et al. (2014). It is however important to note, that, since the HAR-V-J model is
linear in the logarithms of realized volatility, this implies a multiplicative structure for the latter, similar
to that obtained under the AHAR-MEM-J.
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large volatility increments.

Table 8 reports the p-values of the Berkowitz (2001) test based on the out-of-sample
forecasts, for a total of 1,000 observations (the holdout sample starts on February 2,
2009). When AMEM and AHAR are used, the null hypothesis is always rejected with the
exception of FTSE. Better results are obtained when the Generalized Gamma is adopted.
In 4 out of 7 cases, the null hypothesis cannot be rejected. A similar performance is
also achieved with the M-AHAR-MEM and with the AHAR-MEM-J with constant \.
Indeed, by including the jumps (with constant intensity) the null is not rejected for DAX,
DJIA, NASDAQ and CAC40, even if the associated p-values are below 10%. A slightly
better performance is achieved with the HAR-V-J model as the null hypothesis cannot be
rejected in four out of seven cases. A striking improvement is instead associated with the
full model with persistence and time-varying jump intensity. For the AHAR-MEM-J-),
the lowest p-value is associated with the DAX index and equals 12%. The out-of-sample
results confirm the adequacy of our model in capturing the presence of volatility jumps
and support the importance of jumps in VolaR estimation.

The same tail analysis is repeated also on the individual stocks. In this case, the out-
of-sample period starts on July 15, 2008. The introduction of volatility jumps produces
clear improvements. The baseline AMEM as well as its generalizations with persistence
and time-varying shape always reject the null hypothesis of correct tail coverage both
in-sample and out-of-sample. The picture slightly improves when the M-AHAR-MEM
specification is adopted, as the null cannot be rejected at 5% significance in 4 cases
for the in-sample analysis and in 3 cases in the out-of-sample case. Conversely, the
AHAR-MEM specification with the Generalized Gamma distribution always rejects the
null hypothesis at all significance levels. Differently, when the possibility of volatility
jumps is included in the model, we observe a small number of rejections. We have 3 out
16 in-sample and 8 out of 16 out-of-sample rejections for the model with constant jump
intensity. Similarly, we have 5 out of 16 in-sample and 7 out of 16 out-of-sample rejections
when the HAR-V-J specification is adopted. These numbers decrease to 1 and 2 for the
in-sample and out-of-sample cases, respectively, when the jump intensity is dynamic. The
results with single stocks further support our model, highlighting the potential benefits of
accounting for volatility jumps in modeling volatility series. It is also important to stress
the fact that alternative model specifications, allowing for fat-tails, fail in most cases in
correctly estimating the VolaR. This evidence stresses the importance of volatility jumps

in characterizing the extremes of the volatility series.

7 Concluding remarks

We have introduced a new model, the AHAR-MEM-J for realized measures that gen-
eralizes the MEM of Engle and Gallo (2006) by introducing persistence (through HAR
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terms, see Corsi, 2009) and multiplicative volatility jumps. By specifying the volatility
process as a combination of a continuous volatility component and a discrete compound
Poisson process for the jumps, the conditional density of the realized measure is a count-
ably infinite mixture of two random variables: one distributed as a Gamma, and the
second, when the number of jumps is strictly larger than zero, is K distributed. We add
further flexibility considering both time-varying jump intensity and time-varying specifi-
cation for a transformation of the shape parameter of the innovation term. This flexible
parametrization of the dynamics of the realized measure allow to capture the extreme or
abnormal movements in the volatility level. We discuss also the model estimation in finite
samples, by means of a small Monte Carlo simulation, and the effects of misspecification.
The empirical application shows that the AHAR-MEM-J(\;) captures the extreme moves
registered in the last years in the volatilities of individual stocks and equity indexes. We
also provide statistical evidence that, for the sample period analyzed, the model correctly
predicts the probability of occurrence of abnormal volatility levels, i.e. of jumps. We
compare alternative models by means of a new measure called the volatility-at-risk, i.e.
the risk of extreme high volatility. The empirical analysis put in evidence how models that
cannot generate sudden and large movements in the realized variance, i.e. without jumps,
fail in fitting the extreme right tail of the distribution. Moreover, the recent empirical
evidence on the contemporaneous correlation between jumps in price and volatility would
suggest an extension of our set up to include the presence of price jumps. This is left
for future research. Finally, the potential application of this model is not limited to the
study of volatility but it can be employed in the analysis of any positive time series that

features persistence and sudden large variations, e.g. trading volume and durations.
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A Proofs and results

A.1 Proof of Proposition 1

Given g|I;—1 ~ T'(1,v) and Z;|N; = m > 0,I;_1 ~ ['(m,mg), integrating out z; we have
the conditional density of n;

mes+v 1

2
f(mINt =m > 0, [tfl) = E(ThCV) Wngﬂx (2\/7]t§V)-

which is the K density, see Redding (1999). K, (-) is the modified Bessel function of the
second kind. The moments of 7;, conditional on Ny = m > 0 and [;_;, are derived from
the moments of the K density, which are given by

Wl (v +8) T (g + 5)
vl () D ()

Ely’] =
See Appendix B for further details on K distribution. H

A.2 Proof of Proposition 2
From equation (14), the conditional density of RM, is derived as

RM,
F(RMyN, =m > 0,1,_,) = f( LN, =m > O,It_1> -
et ot
Sl 1 M 1
_ 2 (RMt gy) K. |2 &CV L
RM; \ i I'(me)l'(v) it it

2 (RMt ) mety 1 K 5 RM,
= SV T 1 Bme—v 4
RM; \ 1 I'(ms)C(v) ™ Lt

Similarly to the case of 7;, the moments of RM; conditional on N; = m > 0 and [;_; are
derived from the moments function of the K density. B

A.3 Moments of 7,

Lemma A.1 Given the MEM-J in (6) with Assumption 1 and the processes for \; spec-
ified as in (20), the conditional moments of Z; are

E[Z|l-1] = e M+ N (37)
V[ZI] = %+6_)‘t et A2) = (e ) (38)

The filtered expected jumps are

E(Z|L]) =Y _ P (N, =ml|L) x E[Z|N, = m, I,_4] (39)
m=0

Proof To prove this result, we start by computing the expectation (and for completeness
the variance) of the jump term Z;. We distinguish two cases depending on the presence
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of jumps. When we have no jumps, the mean and variance of Z; are

E [Zt|Nt — O, [tfl]
V[Zt|Nt = O,It_l] = O

Differently, when N; > 0 we have

E [Zt|Nt =m > 0, -[t—l] = m
V[Z|N, =m>0,I,_,] = %
Integrating out the dependence on Ny, we obtain
E[Z|li1] = > P(Ny=m|li1) X E[Z|N, = m, I 4]

m=0

= P(N,=0[[i1) x L+ Y _ P (N, =mll,_1) xm

m=1

— Mg, (40)

as, for the Poisson process governing the jumps number we have P (N; = 0|[,_;) = e~
and E [Nt‘[tfl] = E§:0P<Nt = m‘[t,1> xXm = )\t = 22:1 P(Nt = m|[t,1) X m since

for m = 0 we do not have a contribution to the expected value.
For the variance we have

V(21 ] = B[V [ZINy, L) | ] + YV [E[ZIN,, L] [T].

Separately evaluating the two components, we obtain first

EV[Z|N;. L] |Te] = Y P (N, =ml|l_y) x V[Z|N, = m, I, 4]
m=0
= m
= P(N;=0[I;1) x 0+ Y P(N; =m|l_1) x <
m=1
At
. 41
. (41)

For the second element we can write
VIE[Z| Ny, 1] [Iim1] = E [E[Zy| Ny, L-a)* |Iim1] — (BB [Ze| Ny, L] [i-1)?,
where the first term is given as

E [E[Z|N, I [Iia] = ) P(Ny=ml|L_1) x E[Z|N, = m, I,_]°

m=0

= P(N,=0[li1) x L+ Y _ P (N, =ml|l_1) x m
m=1

- 6_)\t + (>\t + )\?) ,
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from the second order moment of a Poisson and using the fact that the contribution of
the zero-jump component to the second order moment is equal to zero. By the law of

iterated expectations,

E [E [Zt|Nt7]t—1] |It—1] =K [Zt|]t—1] — e—)u + )‘t-

|
The filtered expected jumps are given by
E[Z|] = Z P (N, = m|I,) x E[Z,|N, = m, 1]
= ) PN, =m|L) x B[Z|N, = m, I
m=0

where P (N; = m|l;) is derived in equation (29).

A.4 Proof of Proposition 3

(42)

The expected value of RM; conditional on I;_; is obtained, noting that u; is measurable

on I;_1, so that

E[RM|I; 1] = wlE[ne]l;]

= ,LLt Z ]E [nt|Nt =1m, -[t—l] X P (Nt = m|It_1)

m=0

= ,LLtE [Zt|-[t—1] .

It follows that
E[RM;|L1] = pe (e +N),

(43)

where the conditional expected value of Z; is derived in (40). The conditional variance of

RM, is obtained as

V[RM| ) = E[RMZ|L1] —E[RM|I, 1)

= ut{[kﬂe”%u +22) (1+1/_1)—(6_)‘t+)\t)2}. (44)

S

A.5 Proof of Theorem 1
Let y, = RM,, the vector form of the process in (26) is

Zt = bt + AtZt,1
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where

7 -
Yi—-1 w.m
0
2t = | Yt—gq+1 | » by = w
[t )
L 0]
_,Utprrl_
and ) ;
oaqne ... Qg My Oyl Bine ... 5p717h 5p7h
1 . 0 0 0 - 0 0
0 . 0 0 0 - 0 0
: 1 0 0 - 0 0
At —
(03] Qg1 Oy 61 Bpfl Bp
0 0 0 1 0 0
| 0 . 0 0 0 o 1 0 |

A is a (p+ q) X (p+ q) matrix with positive and independent coefficients. Further,
A = E[A;] and b = E[b;] do not depend on t. Because the proof follows closely that of
Theorem 2.5 in Franq and Zakoian (2010) we give only a sketch. Given the condition in
(28), we can construct a stationarity solution. For ¢,k € Z, we define R%-valued vectors

as follows:
0 itk <0
Zi(t) = .
bt + AtZkfl(t - 1) if k Z 0
With a multiplicative norm, i.e. [|A| = )_ |a;j|, we have, for any random matrix A with

positive coefficients, E[|A[| =E>_, ;|a; ;| = [[E[A][|. For k >0
ENZe(t) — Zua(t = 1)) = [E[AA 1 - .. Ao

because the matrix A;A; 1 ... A; b is positive. All the terms of the product are
independent (because the process {rn;} is i.i.d. and every term is function of a variable
m—j). Provided that A = E[A,] and b = E[b;] do not depend on ¢, it follows that

E[|Z(t) = Zi—a(t = 1)|| = || AD]| = /A"
where ¢ = (1,...,1), because all the elements in the vector A¥b are positive. The condi-

tion (28) implies that the eignevalues of A are strictly less than one. The characteristic
polynomial can be expressed as

q p
det(M, sy — A) = Ap+q(1 —( N T =y BM*Z‘)
j=1 i=1
When |A| > 1, using the inequality |a — b| > |a| — |b| we have

<1 — (e + ) Z N — Zﬁi)fi) > 1—(e ™ +N) Z&j—z Bi >0
j=1 i=1 j=1 =1

|det(Alp1q—A)| =
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it follows that the spectral radius of A is less than one, i.e. p(A) < 1. This implies that
A* — 0 at exponential rate as k — oo. For any fixed ¢, Z.(t) converges almost surely
as k — oo. Let z denote the limit of {Zy(t)}rez. For fixed k, the process {Zj(t) hez is
strictly stationary. It follows that the limit process z(t) is strictly stationary and it is a
solution of (27).

[ |

A.6 Proof of Theorem 2

Differently from Theorem 1, now A; is a (p+ ¢) X (p+ ¢q) matrix with positive coefficients
but not independent, since 7, is correlated through \;. The matrix A; can be written as
the Hadamard product of two matrices, i.e.

At = A @ Et
with ) .
aq Qg—1 Oy 51 5p—1 5p
1 0 0 O 0 0
0 0 0 0
A 0O 0 ... 0 0
aq Qg1 QO 61 ﬁpfl ﬁp
0 0 0 1 0 0
0 ... O o o0 ... 1 0 |
and a (p + ¢) x (p+ ¢) matrix
e Ur
1 1 1
Ey = .
1 1 1

The conditional mean of n; is
Eln|li—1] = e + A,

whereas, the unconditional mean satisfies

b1
=0
In the last equality, since 0 < Ele™] < 1, it follows that E[e ] + % <1+ 1?;2.
The sequence {A;,t € Z} is ergodic and strictly stationary. With a multiplicative
norm, i.e. [[A] = 3" |ag], log | Ad| < log || 4] +1og | Bl with log | Bl = log [(p -+ a) (1 + (0 + ) — 1]
Therefore log™® ||A¢]| < log ||A|| + log™ || E;||, where log™ () = max(log(x),0). Given that
the Lyapunov exponent v is equal to, see Franq and Zakoian (2010, Theorem 2.3),

Eln) = Ele™] + E[\] = Ele ] +

1
v = lim a.s.=log [|[A;A;_1 ... A{| (45)
t—o0 t
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and
t
log (| AiAi—1 ... Ail)) < log || A"]| + ) " log || Ei|
i=1

Since, limy_,o 1 log |[|A’|| = log{p(A)}, v < 0 if and only if
p(A) < exp (—=Ellog || E[]). (46)

Now, we turn to the proof of the existence of a stationary and ergodic solution if the
condition in (46) is satisfied, i.e. v < 0. Since the random variable 7, has finite variance,
the components of the matrix A, are integrable. Hence,

Efllog” [|Al] < E[| A < oc.

With v < 0 it follows from (45) that

N
Z(N) = by + Z AAi A b

n=0

converges a.s. when N goes to infinity, to some limit z;. Using the multiplicative norm

12NN < 18l + Y 1A - Aen bl

n=0

and

1 1
1A A1 A | b |7 = exp [ﬁHAtAtfl A+ ﬁ”btfnle]

a.s.

— exp(vy) < 1.

To show that n'log ||b;_n,_1|| — 0 we have used the result that for a sequence X,, of
identically distributed random variables admitting an expectation holds that X,,/n %% 0
when n — oco. In our case this can be applied because E|log ||b;—,,—1]|| < oo, see Franq and
Zakoian (2010, Proof of Theorem 2.4, p.31). Let Z,,1 denote the (¢ + 1)-th element of Z,.
Setting y¢ = Z,4147:, we define a solution of model (6). This solution is nonanticipative
because y; can be expressed as a measurable function of 7, 1m;_1,.... By the ergodicity of
7, this solution is also strictly stationary and ergodic.
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B Web Appendix

Notes on Gamma-distributed random variables

The density of the two-parameter Gamma random variable X ~ I' (0, ) in scale-shape is

=1 (5) Fet w2 (a7)

where v is the shape parameter and 0 is the scale parameter. In this case we have

E[z] = vé and V[z] = v§% Special parameter combination: if we impose § = 1, we

have a Gamma with unit mean and variance % A Gamma in mean-shape representation
. 2 2

X ~T (u,v), is such that E[z] = pand V[z] = (&) v = £

Transformations of Gamma random variables: If the scale-shape Gamma distribu-

tion is multiplied by a scalar we have

X =aX ~T(ad,v)

In that case, mean and variance become E [7] = vad and V [Z] = va?§?. For the mean-
shape Gamma we have .
X =aX ~T(ap,v)

and E[Z] = ap and V [7] = (%)QV = ot

v

Sum of Gamma random variables: The Gamma distribution is closed under aggre-
gation in a specific case: the sum of Gamma distributions must have the same scale
parameter. Under scale-shape Gamma, this translates into

Xi ~T ((57 Vi)

k k
Y= X;~T <5Zy>
i=1 i=1

k
EY]=6) v
=1

k
VY] =6 u.
=1

It follows directly from this properties of the Gamma distribution that

Z Ny =m >0 =Y Y ~T(m,m)

j=1

given that Y;, ~ I'(1,¢).
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The K distribution

If X ~T (i, 1), in mean-shape form, and Y| X ~ I' (X, 1) then we have Y ~ K (u, vy, 1)
such that

vy +vo

YA Vit
10 =3 (42) T a3 vz

where K, (-) is the modified Bessel function of the second kind. Moments of the K density
are given by

'l (v 4+ 8)T (e + 9)
vivsl () T (1)

Ely’] =

viv2

Therefore we have E[Y] = p and V[Y] = 2 (L”QH> Furthermore, with respect to
the scaling we have that u is a scale parameter and therefore if Y ~ K (u, v, 1) then
aY ~ K (ap,vi,vs), E[aY] = ap and V][aY] = o?u? (L”QH> Different K densities,

(282
corresponding to different values of 1y and 15, are plotted in Figure 6. Increasing both
parameters reduces the variance, as it is apparent in both plots.

v.=1

v.=10

v =15| |

=20

v

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(b) K density calculated with v = {1,5,10,15,20} and v; = 10.

Figure 6: K density computed for different values of 4 (upper panel) and v, (lower panel).

Further, as noted by Redding (1999, p.3), the product of two independent Gamma
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random variables, Z ~ I'(1,15) and X ~ I'(u,14), is
Y =7 X~ K(uv,uvs)

with density given by the following integral
f ( )—/ —1f (—y)f ( )
z)dz.
y\Y Z X

Pseudo random numbers with K distribution can be generated from Z ~ T'(1,L) and
X ~T'(p,v), since Y = Z - X is distributed as K(u, v, L).

Setting 6 = 11,05 = v or viceversa, the cumulative distribution function (CDF) of a
K-distributed random variable can be written as

22—01—92 2+/6102y/ 1
F(y;p,601,6:) = W/o

The hypothesis of ; € N instead of 6, € R, is required in order to obtain the previous
expression in closed form. Writing ( = 6 — 0, k = 215 — 1 and z = 24/616y/p

027Ky, o (£)dE,y > 0. (48)

22791792

Fly i, 00,00) = 1+ ———
(y:u 1 2) F(Ql)T(HQ)

9(,¢ k) (49)

where

(y, ¢, k) = —2 " Kcin)(2) k=1
ISR Z 0 (k= 1)(2C+ b = 1)g(y, ¢,k — 2) — 25K 4 (2) — (k — 1) DK (2)  elsewhere

The number of required recursions to compute a single value Fy (y; u,01,02) is 6. The
best parametrization, in terms of computational speed, is 6; = max{vy, 1} and 0, =
min{vy, vo}.
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Tables

Mean St.Dev. Max Min Kurtosis Skewness 1 05 P22 T
S&P500 0.009 0.006 0.078 0.002 21.410 3.255 0.840 0.721 0.540 3261
FTSE100 0.008 0.005 0.072 0.001 21.079 2.957 0.805 0.697 0.531 3280
DAX 0.011 0.007 0.071 0.002 11.827 2.272 0.852 0.728 0.570 3312
DJIA 0.009 0.006 0.080 0.002 24.480 3.480 0.830 0.718 0.530 3263
NASDAQ 0.010 0.007 0.075 0.002 13.385 2.457 0.826 0.704 0.567 3266
CAC 40 0.011 0.006 0.066 0.002 12.991 2.324 0.832 0.714 0.529 3329
BOVESPA  0.013 0.006 0.079 0.003 20.660 3.138 0.755 0.610 0.400 3189
BA 0.014 0.007 0.094 0.004 18.777 3.039 0.828 0.721 0.571 2391
BAC 0.020 0.020 0.262 0.003 22.633 3.565 0.898 0.804 0.695 2391
C 0.023 0.022 0.293 0.004 26.171 3.772 0.904 0.788 0.650 2391
CAT 0.016 0.009 0.127 0.005 22.004 3.389 0.862 0.762 0.578 2391
FDX 0.014 0.007 0.087 0.004 13.938 2.588 0.834 0.737 0.611 2391
HON 0.015 0.008 0.128 0.004 32.393 3.860 0.822 0.711 0.506 2391
HPQ 0.015 0.007 0.097 0.005 22.426 3.256 0.778 0.647 0.455 2391
IBM 0.011 0.007 0.101 0.004 33.984 4.400 0.851 0.762 0.554 2391
JPM 0.018 0.014 0.160 0.004 18.676 3.244 0.905 0.783 0.651 2391
KFT 0.011 0.005 0.078 0.004 21.710 3.224 0.726 0.588 0.411 2391
PEP 0.010 0.006 0.120 0.004 74.624 5.693 0.735 0.645 0.499 2391
PG 0.010 0.005 0.107 0.003 66.383 5.520 0.768 0.656 0.480 2391
T 0.013 0.008 0.127 0.004 32.884 3.982 0.833 0.747 0.577 2391
TWX 0.016 0.008 0.114 0.005 20.938 3.331 0.861 0.766 0.628 2391
TXN 0.018 0.007 0.094 0.006 13.308 2.252  0.757 0.670 0.496 2391
WEC 0.018 0.017 0.154 0.004 15.731 3.124 0.909 0.827 0.700 2391

Table A.1: Descriptive statistics of bipower variation for 7 stock indexes and 16 NYSE
stocks. p1, ps and poy are the autocorrelations at 1, 5 and 22 lags. T is the sample size.
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