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Abstract

In the last 15 years, several Multivariate GARCHINMRCH) models have appeared in
the literature. Some recent research has beguratmiee MGARCH specifications in
terms of their out-of-sample forecasting perfornaanin this paper, we provide an
empirical comparison of a set of models, namely EERCC, Corrected DCC (cDCC)
of Aeilli (2008), CCC, Exponentially Weighted MognAverage, and covariance
shrinking, using the historical data of 89 US egsit Our methods follow some of the
approach described in Patton and Sheppard (20668)cantribute to the literature in
several directions. First, we consider a wide ranfj@nodels, including the recent
cDCC model and covariance shrinking. Second, weausage of tests and approaches
for direct and indirect model comparison, includthg Weighted Likelihood Ratio test
of Amisano and Giacomini (2007). Third, we examimav the model rankings are

influenced by the cross-sectional dimension ofptablem.

Keywords: Covariance forecasting, model confidence set, m@i&king, MGARCH,
model comparison.

JEL codes:C32, C53, Ch2.



1. Introduction

Multivariate Volatility Models (MVM) have attracted considerable interest over the
last decade. This may be associated with the isettavailability of financial data, the
increased computational powers of computers, aaddbt that the financial industry

has begun to realize the possible advantages ¢ thedels.

The recent literature on the topic has moved frbenintroduction of new models to the
efficient estimation of existing models. Among thmst highly cited topics are the
“curse of dimensionality” and “feasible model esiion”. In fact, the feasibility of
model estimation is now of central interest, witlany studies proposing appropriate
parameterizations of known models (Billio et al,080 Billio and Caporin, 2009,
Franses and Hafner, 2009, Caporin and Paruolo,, @%ato et al., 2009, Asai et al.,
2009), or focusing on special estimation methodg(& and Kelly, 2008, Engle et al.,
2008, Fan et al., 2007).

A second strand of the literature has focused ersthtistical or asymptotic properties
of the models and of the proposed estimators (CamteLiebermann, 2003, Ling and
McAleer, 2003, McAleer et al. 2008, Engle et al.020 Aielli, 2008, Caporin and
McAleer, 2009, Hafner and Preminger, 2009). Theseliss point out that only in
special cases the asymptotic properties are knowleruuntestable moment restriction,
or under claimed regularity conditions (see Capand McAleer (2009) for a detailed

discussion).

Despite the theoretical properties typically beisgumed under unstated and untestable
regularity conditions, many proposed models havenbesed widely in empirical

financial studies. Within this framework, a diffateproblem arises: How can we
compare and rank models characterized by a diffesgncture? Some research has
recently appeared in the literature to tackle tmeblem of evaluating alternative

covariance models (see Engle and Colacito (200@ygleEand Sheppard (2008),
Clements et al. (2009), and Patton and Sheppaf@BjR0These papers present limited

comparisons across a small range of models. EmgleCalacito (2006) compare only



the DCC model of Engle (2002) against a constarretaiion model, and in a datasets
with a cross-sectional dimension equal to 2 (twaxlstmarket or bond indices) or 34
(the same series used in Cappiello et al., 2006jleEand Sheppard (2008) is a quite
extensive study for the model considered, but asemgle cross-sectional dimension
(50 sector indices defined within the perimetertlvd S&P 500 index). Patton and
Sheppard (2009) is a theoretical contribution oa #pproaches to be used for the
evaluation of covariance forecasts, and does rotdie an empirical application (even
with low cross-sectional dimensions) showing thguarents for and against the various
methods. Clements et al. (2009) focus on dynamricetadion models, and present
results for a cross-sectional dimension equal tdive US based future contracts).
Laurent et al. (2010) consider a moderately lagi@Emodels, but focus on a 10 assets
example, and place emphasis on the model accurgainsh a DCC benchmark.
Furthermore, all of the previous papers includeRI¥C model of Engle (2002), and are
thereby exposed to the possible estimation (in)stercy problems (see, for example,
Aielli (2008)).

The methods of comparison used in the previousritanibns could be viewed as two
large classes (see Patton and Sheppard (2009))elyatime direct and indirect
evaluation of volatility forecasts. The first groupcludes the Mincer-Zarnowitz
regression (Mincer and Zarnowitz, 1969), Dieboldridiao test (Diebold and Mariano,
1996, and West, 1996, 2006), Reality Check of Wi{#@00), Superior Predictive
Ability (SPA) test of Hansen (2005), and the Mo@einfidence Set (MCS) approach of
Hansen et al. (2005). The second group includesbappes based on the comparison of
loss functions adapted to the needs of covariancecésts. This is the case, for
instance, of asset allocation and risk managem&hgre loss functions could be
defined using global minimum variance portfolioguras, such as in Engle and
Colacito (2006) and Patton and Sheppard (2009)ithin a Value-at-Risk framework,

as in Ferreira and Lopez (2005).

The tests directly comparing the covariance fortsciisthe general framework of loss-
function comparison, as discussed in Clements.gRD9) and Patton and Sheppard

(2009). The Diebold-Mariano and West approachesvalid for pairwise comparisons



of the models, while Reality check and SPA reqthe identification of a benchmark
model, whereas MCS does not require a benchmartifiga¢ion. Overall, the MCS

approach seems to be the preferred one and the appsbpriate as it provides a
statistical test and a method for determining whiobdels are statistically equivalent
with respect to a given loss function. Despite tise of a bootstrap method for the
evaluation of test statistic, MCS is computationdélasible, efficient and statistically

robust.

With respect to the indirect comparison of volgtiliorecasts, an interesting result has
been shown in Clements et al. (2009), that illuegdow utility-based loss functions (in
particular, quadratic utilities) make the impacttbé covariance model very modest.
The approach of Engle and Colacito (2006) shoutvide interesting results, even for

large cross-sectional dimensions.

In this paper we contribute to the literature omar@nce forecast evaluation in several
ways. First, our selection of models to be compatiéfitrs from those of previous
studies. Similarly to the literature we considee BCC model of Bollerslev (1990),
DCC model of Engle (2002), Scalar BEKK model witrgeting of Ding and Engle
(2002), and the naive Exponentially Weighted MoviAgerage approach. We
complement this set by including the cDCC modeAigili (2008), and the covariance
shrinking approach of Ledoit and Wolf (2003, 200%he introduction of the cDCC
model allows evaluation of the impact of both thekl of consistency and the existence
of bias in the estimated parameters of the DCC imotd&ngle (2002). Aielli (2008)
shows that the bias depends on the persistente ®@EC dynamic parameters. We are
interested in evaluating if DCC could be used, reéigas of its inconsistency. This fact
is of interest as DCC has been proposed as a matthetorrelation targeting, whereas
cDCC cannot be targeted, as discussed in Capadifiaaleer (2009).

By including the covariance shrinking method, wealasate its advantages in large
cross-sectional dimensions. Covariance shrinkingomputationally feasible and may
also reduce the problems associated with the iiorersf large covariance matrices,



wherein inversion could be unstable due to thegmes of small eigenvalues in the

empirical covariances.

Furthermore, the presence in the model set of tadaEBEKK allows determining if

the separated estimation of variances and comekttypical of CCC- and DCC-type
models) has to be preferred to the joint estimatibthe entire covariance (as in the
BEKK-type models). This study could provide a camgtion of the result of Zumbach
(2009) that shows evidence of a preference for mawee models with respect to

variance and correlation specifications.

Second, we use the weighted likelihood ratio téstmisano and Giacomini (2007),
which is close to a loss-function based comparafaequal predictive ability based on a
likelihood loss function. The test will be applidmbth in the direct evaluation of
covariance forecasts and as an alternative to iledll-Mariano test.

Third, we will evaluate and rank the alternativedals over different cross-sectional
dimensions, starting from two assets, and up ta$$ets, which we select from the
S&P100 constituents (a similar dataset has beed ws&ngle et al., 2008). By this
additional study, we will determine if the crossts@nal dimension has a role in
determining the preference ordering across modelsother words, by comparing
models over an increasing number of variables, Wleewamine if estimation error and
model error play a role in the forecasts of coondiil covariance models. The financial
literature has discussed extensively the impaestifnation error for the mean returns,
leading to results suggesting its strong impaat, making naive allocations preferable
to optimal allocations because of the reduced itnpkestimation error (see De Miguel
et al., 2009). We draw a parallel within the MGARGtédel set, and attempt to answer
the question: If the cross-sectional dimensionaigyd, does estimation error affect
model performance? If simple or naive models ae¢epred, we could interpret this as

preliminary evidence in this direction.

We stress that we are comparing alternative feasibbdels for the evaluation of

conditional covariance and/or correlation matricBse models we consider all belong



to the GARCH and Dynamic Conditional Correlatiormflies, thereby excluding
Multivariate Stochastic Volatility models. From operspective, these models, despite
being theoretically appealing, suffer for the cuofaedimensionality in a stronger way
than MGARCH specifications, and their estimationarge cross-sectional dimensions
is likely to be even more complicated than the nodensidered in this paper. For a
survey of Multivariate Stochastic Volatility modekee Asai et al. (2006), and Chib et
al. (2009).

Furthermore, we focus on extremely simple moddlsafa scalar representations), and
follow the quasi-maximum likelihood estimation apach. We do not consider more
complex parameterizations because we focus on itypMWe are not interested in the
determination of an optimal model or estimation moeff but rather on baseline
specifications, namely those that are the most comamong practitioners, and try to
verify if they are equivalent. Clearly, 89 assetsfar from the traditional problem

dimension for portfolio managers, but this shedaesdight on a comparison of model
performance across an increasing number of adsetly, we stress that our focus in
on empirical application, and is not intended tovile a methodological contribution
on the most appropriate methods for model compayriadich will be left for future

research based on a simulation approach.

Our empirical results show that many models prowiteilar forecasting performance,
both with direct and indirect evaluation methodswdver, the set of preferred models
IS not stable over alternative approaches and sapgiods. Furthermore, estimation
error of model parameters plays a relevant roleJ aould be amplified when
covariances are used to determine portfolio weigthtss referring to indirect model
comparison). Finally, we note a marginal prefereiocenodels separately capturing the
variance and correlation dynamics with respect todets directly estimating the

covariance dynamics.

The paper proceeds as follow. Section 2 presemtanibdel to motivate our choice,
discuss the issue of covariance and correlatigreteng and show the specifications we

will estimate. Section 3 discusses the methods appioaches used to compare the



models. Section 4 presents the dataset used aadsé¢pe empirical results. Section 5

gives some concluding comments.

2. Feasible covariance and correlation models foaige cross-

sectional dimensions

This section briefly introduces the models thatl visé compared in the empirical

application.Let x denote a-dimensional vector of financial variables (retyrng,

represent the expected mean»ffrom a conditional mean model, a®l the mean

innovation vector. The following relations hold:

x 1" ~D(x.%,)
x -1 =¢£]1""~D(0,%,) (1)

I t-1

where is the information set at tintel, D(.) denotes a multivariate density aad

represents the covariance matrix determined camditiy on the information set at time
t-1.

In the following, we do not consider the effectsdifferent mean specifications. The
mean is fixed at the sample mean determined owersdme sample used for the

t-1
estimation of the parameters, such tiiat t—12>q . The mean could be based on a
e
variety of time series or financial models, whigk aot the main concern in this paper.
What is relevant is that, for each pair of covacteamodels compared, the mean models
are identical. As a result, all forecast discreesmare due to differences in the expected
covariances, while all in-sample differences are duo differences in the estimated

covariance models.

2.1 Scalar BEKK



The first model we estimate is the Scalar BEKK wtdihgeting constraint (see Engle
and Kroner, 1995; Ding and Engle, 2001; Caporin Bhleer, 2008, 2009, 2010).
The fully parameterized BEKK model with all ordees to 1 is given as

> =CC+ A &, A+ B B 2)

whereA andB are square parameter matrices, @ng lower triangular. In the scalar
BEKK model without targeting, the parameter masideandB in (2) are replaced by

A=a*l and B=p4"l, wherel is an identity matrix, ancx and p are scalar
coefficients. When we introduce targeting, thencgpt becomes an explicit function of

the unconditional covariance matx= E[Eté‘t ] and the model becomes
2 =2+ a(£t—1£t—1' _i) + ﬁ(zt—l _i) : 3)

Scalar BEKK in (3) is feasible even for very largmss-sectional dimensions as it
contains only two parameters that must be estimayethaximum likelihood, namely

the parameters driving the model dynamics. The mpaters in the unconditional

covariance matrix could be estimated by the saneglamator. Notably, the Scalar
BEKK model has standard asymptotic propertieshasva in Jeantheau (1998), Comte
and Lieberman (2003), and McAleer et al. (2009)dainthe existence of"8order

moments.

Diagonal BEKK and VECH parameterizations are nohsidered as they are not
feasible for large cross-sectional dimensions. Nb& the VECH model adopted by
Engle and Sheppard (2008) is equivalent to a s&##&K model.

2.2 Variance and correlation models
We will estimate three models based on a decomposf the covariance matrices into

variances and correlations. The first is the CCGlehaf Bollerslev (1990) which,

starting from (1), assumes that the covarianceixsdatisfies



s, =DRQ 4)

where Dt:diag(alyt,aa,..akyt) is a diagonal matrix of conditional standard

deviations, andR is an unconditional correlation matrix (the operatiag(a) generates

a diagonal matrix, with the vectaralong the main diagonal). We assume that all the
conditional variances follow a simple GARCH(1,1ppess without asymmetry in order
to make the model directly comparable with Scal&KE. The addition of an

asymmetric term would require an asymmetric BEKKdeldor a fair comparison.

In the CCC model, the correlation matfkis determined using a traditional sample
estimator. The model is estimated using a two-sigmroach, namely the conditional
variances on each specific series, and then estithatunconditional correlation matrix
using the standardized residuals. This approachesmtiie model feasible, even with a
large number of assets. The CCC model is a speas¢ of the VARMA-GARCH
model of Ling and McAleer (2003).

The DCC model of Engle (2002) was proposed as argépation of the CCC model,
and replaces the correlation matrix in (4) withiretvarying conditional correlation.

The DCC is given as:

2,=DRQ )
R=Q'QQY Q= diad d¢ Q)° (6)
Q = S+a W Wi~ 9+6( Q- $ ™)

where D; is the same as for the CCC model, the operdtgA) extracts the main
diagonal from matriXA, Sis the unconditional correlation matrix, ancand(3 are the
scalar parameters driving the model dynamics. Ratlg Engle (2002), the model is

estimated with a three-stage approach, namely atginthe conditional variance

parameters and filter them, estim&tesing the standardized residud@s's, to obtain a
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sample estimator, and then conditionally on theviptes estimates, maximize the
conditional correlation log-likelihood with respetv the parameters driving the
dynamics in (7). The introduction of a multi-stegtimation method clearly reduces the
efficiency, as shown in Engle and Sheppard (20di) makes the model feasible with
large cross-sectional dimensions. Note that theehwd(5)-(7) includes targeting, as
defined by Caporin and McAleer (2010) under assionptwhich are deeply analysed
and criticized in Aielli (2008). Without targetinghe model is inextricably exposed to
the curse of dimensionality as the matfixontains0.5k(k-1)parameters to be jointly

estimated withx andf3.

Aielli (2008) shows that the sample estimatoiSafsed in the second step of the DCC
estimation method is inconsistent, thereby alsecafig the consistency of the third
step. In order to resolve this serious issue, A{ED08) introduces the cDCC model,
which replaces (7) with

Q= S+O’( d—zl D_—llgt—lgt—ll Q—lld—zl_ é"'ﬁ( Qi 33
Q~t—1 = diag( dg( Q-l))

(8)

where the parameter matr&is symmetric, has unit elements over the mainatad
and is now the covariance matrix of the innovati@Qf, s, , which are not observable.

The modification restores consistency, under uedtaissumptions, but again exposes
the model to the curse of dimensionality as therimn&in (8) has to be estimated (see
Aielli (2008) for further details). As noted in Gayqn and McAleer (2010), correlation
targeting is excluded for the cDCC model &g not a correlation matrix and is not
estimated using the available sample informatiorelliA(2008) suggests a feasible

estimation method.

For purposes of comparison with the other multat@iGARCH models examined, we

will discuss briefly the estimation method of cDCIivo steps are now required. In the

first stage, we filter the conditional variancesengin the matriced, are estimated.

The second step jointly determines the parametersd the dynamicsg and g, and

11



the parameters i8, by maximizing the likelihood of (8). The core thie method is in
the steps for the evaluation of the log-likelihoodlissuming normality, the log-

likelihood of (8) is given as

LogL(a, B, s):i(—%m H-2( o) ® pl.stj ©)

t=1

where the conditional correlation matrig;, follows from (6) and (8), and the

innovations are given by the standardized resid@ifs, . Generally, to evaluate (9)
conditionally on a set of paramete(rs, B, S), we run the recursion associated with (8),

determine the sequences of conditional correlatatricesR;, and then compute the
log-likelihood. A numerical optimization algorithrthen iteratively evaluates (9) to

determine the optimal estimates far, 3,S).

In order to resolve the curse of dimensionalitysealibyS Aielli (2008) suggests the
following alternative steps for the evaluation loé¢ fikelihood in (9):

) Conditionally on a set of paramete(rzs, ,8) , run the recursions
G, =(1-a-B)+aq, .0 & +BF -» 1=12.k
and compute the residua@’D ¢, ;

i) Evaluate S conditionally on the choice(rm‘, ,8) using the sample estimator

S(a.p)=1 X I s DY

1
=

i) Conditionally on(a, ) and the estimaté(a, B), evaluate the recursions

12



Q;; :(1_0'_:8)% +a9ﬁ—1a|;,1—1‘$t,—f%t,—pj-;,l—191:2,— A9 -
Lbj=12,.k,j>i;

V) Evaluate the likelihood in (9).

Note that step i) does not depend on the elemarfisas, by constructior§ has unit

elements along the main diagonal. Furthermore, it@vations Q*D", do not

depend, by construction, on the off-diagonal eleseari Q. The evaluation of the

likelihood in (9) under the cDCC model requires #valuation of a sample covariance,
a limited additional effort with respect to therelard DCC model of Engle (2002).

Note that the estimator db provided by maximizing (9) following steps i)-ivi§
conditional on the optimal choice o(fa',,B). In order to determine the optimal
parameter values, a numerical algorithm should mepda (9) with respect to the

parameters(a,,é’) and the recursions in steps i)-v). The estimatiotput provides the

optimal values fo{@, B) and the estimate & associated with the optimal parameters

driving the model dynamics. The cDCC model usesfi@rdnt targeting approach,
which we may define as “implicit targeting”, asugses a sample estimator conditional

on a parameter choice within the evaluation ofitigelikelihood function.

Finally, Aielli (2008) shows that the lack of cosigncy of the three-step DCC
estimator depends strictly on the persistence efpdwrameters driving the correlation
dynamics and on the relevance of the innovatiohs. ias is an increasing function of
both o and a + 8. Not surprisingly, standard estimates obtained nwhitéing DCC

models are small, and are close to Odoto 1 for a + 3, thereby leading to an opposite
effect on the size of the bias. Therefore, in faper we will determine if the bias is
relevant in practical applications as a commentarythe inconsistent estimates of the

standard scalar DCC model.

2.3 Naive specifications

13



The last two models considered are the Exponept#ighted Moving Average model
and the Covariance Shrinking approach of Ledoit\&fid (2003, 2004). The EWMA
model provides a recursion for the evaluation & tonditional covariance matrix,

which is based on a single paraméter

2, = (1_ A ) Enbin HAZ, (10)

The covariance matrix in (10) could be represemexcompanion form highlighting its
relationship with exponentially weighted sums otpanovation cross-products. In the
empirical application, contrary to standard pragtiwe estimate the parametercalled
the smoothing coefficient, as it requires a limitetnputational effort. By construction,

the EWMA is feasible even for very large cross-e&al dimensions.

Finally, we consider the covariance shrinking applo of Ledoit and Wolf (2003,

2004). The authors proposed a method that is degigmfind a compromise between
the large estimation errors in the sample covagara the misspecification error in the
estimators of the covariance. Ledoit and Wolf (200Bygest determining a covariance
by combining a sample estimator of the covarianed a single index covariance
(Ledoit and Wolf, 2003), or a constant correlatamvariance (Ledoit and Wolf, 2004).

Following the covariance shrinking approach, wergethe expected covariance for

timet as follows:
Zt :(1_/])51—1+/] Ft—l (11)

where S_; is the sample covariance matrix determined upne t-1, and F_, is a

structured estimator determined using the inforomatset to timet-1, and is called
shrinkage target. The coefficieit the shrinkage constant, has to be estimated, and
depends on the form of the shrinkage target (fothé&r details, see Ledoit and Wolf
(2003, 2004)). In the following, we will consides the shrinkage target the covariance

with constant correlation, as described in Ledod ®/olf (2004).

14



3. Comparing competing covariance and correlation mdels

We will present briefly the approaches to be usedomparing the models described in
the previous section. Before moving to the methaagsintroduce some notation.

It is assumed that the models are to be compared osit-of-sample forecasts, where
forecasts are made one period ahead and for anatiead period fromT+1 to T+h.
Information to timeT is used to estimate the various models and tousedhe
conditional forecasts for tim@+1. The estimation sample is rolled forward, and
information from time2 to T+1 is used to forecast the covariance matrix for time,
and so on, to timé&+h. In order to avoid any dependence on the meanndigsawe fit
the mean using its sample estimator across all lmdtee sample mean is estimated

with the same rolling approach). The one-step-alveadriance forecasts for tinferi
are denoted byi?ﬂ, where m is the model indexnf=1,2,...N). Note that, by
construction, the forecasts are conditional onittiermation set at tim&+i-1. The

mean forecasts are denoted f3y;, and do not depend on the model. For simplicity, w

suppress the conditioning information set fromftirecast notation.

We follow Patton and Sheppard (2009) and considparstely the direct and indirect
evaluation methods. Within the first group, we udg two approaches based on
common loss functions, namely the Diebold-Mariaest,tand the MCS approach of

Hansen et al. (2005), and the test proposed by &misnd Giacomini (2007).

For the Diebold-Mariano test, we consider the M®EsI function (see Patton and
Sheppard, 2009):

LI :k_].21k2: (Vec(i¢+i T & ¢+i' )’ Ve(ﬁ?ﬂ - & T@i’)] (12)

where e.,; = X, — [&,. (note that the observed tinTeri return is used), and the time

T+i true volatility is approximated bg,, e, . The MSE loss function belongs to the

15



class of robust loss functions defined in Pattoth 8heppard (2009) (see also Clements
et al. (2009) and Laurent et al. (2009)). They a@snosider the QLIKE loss function of
Patton (2010), but in the multivariate frameworg,ira Patton and Sheppard (2009), the
QLIKE loss function is infeasible when the voldiiliproxy is the cross-product of

realized returns (see also Laurent et al., 200fierdative realized covariance proxies
could be used instead @, e, . A common choice is the realized covariance, as in

Laurent et al. (2010). However, high frequency dataa large dimension dataset were
not available to us, and we prefer to focus on rhodmparison for model dimensions

larger than in Laurent et al. (2010).

The test of equal predictive ability correspondshecking the null hypothesis of zero
loss function differentials,H, : E[ If, ~Tf ]:E[EH}ZO, wherei andj are two
_ h — —
different model indiceslf, :%ZIfJYT+i ,andLFj =If, =If, The test statistic is given
i=1

as

~N(0,) (13)

where a(\/ﬁﬁu) is the heteroskedasticity and autocorrelation (HA®nsistent

estimate of the asymptotic variance LF il -

The Amisano-Giacomini (2007) is based on the Idagaric scores of two competing
models over the forecast evaluation period. W¢ fienote the modeh log-scores as:

log f == |Og‘i$+i _eT+i' (irTnﬂ) l Cis (14)

m,T+i

where all symbols have the same meaning as in f8)sano and Giacomini (2007)
then consider the following quantity:

16



I-jl,‘l'+i :W(Q'H)I:IOQ fi,‘l'+i _|Og fTﬁ] (15)

wherej and| represent two different models, am:{er+i) Is a weighting function. The

null hypothesis of equal predictive ability of ttveo models isH,, : E[ij ] =0, where

_ h
L+ :%Z L, r » While the alternative hypothesis refers to déferpredictive ability.
i=1

The test statistic is given as:

Lir _
t, _W N(0,1) (16)

where J(EM) is the heteroskedasticity and autocorrelation isterst estimate of the

asymptotic variancé/ar JhL, . |. If the null hypothesis is rejected, the testistiat
1T

sign could be used to determine the model prefergpositive values suggests a
preference for modegl(see equation (22)). Amisano and Giacomini (200&pduce in

(15) a weighting function which may be used to othe test on a specific region of the
forecast density, such as the tail area. Withindinect model evaluation framework, we

consider equal weights for all points over the ¢ast horizon W(er+i) = h*). Note that

the quantity in (14) can be considered as a gainthat positive values of the test
statistic in (16) are associated with a preferefiocehe first model. In considering the
Diebold-Mariano test, positive values of the teatistic show evidence for a preference

for the second model (that is, with smaller losses)

The Diebold-Mariano and Amisano-Giacomini testsnpermairwise comparisons of
models. However, the test outcomes do not ensuae @h optimal test is clearly
identified. For this reason, we consider the Mo@einfidence Set approach, which
performs a joint forecast comparison across all @drhe MCS performs an iterative

selection procedure, testing at stepe null hypothesis of equal predicting abilityadif

17



models included in a selZ, (the starting sefi, contains all models) under a given loss

function. The null hypothesis has the form
Ho: E[T, —m]zE[EJ.]zo, P> 01 0%, (17)

where the notation is the same as for the Diebaddidho test in (12) and (13).

Note that the same procedure, as well as all theeguent statistics and tests, could
also be used with the Amisano-Giacomini log-scongt the caution of changing their
sign (thereby translating them from gains to logsdansen et al. (2005) propose two

statistics to test the null hypothesis:

tR =max LTJI (18)

o= Y | (19)
Q ()

where s(ﬁn) is a bootstrap estimate of the variancd__Efu , and the p-values of the

test statistics are determined using a bootstrgpoaph. If the null hypothesis is
rejected at a given confidence level, the worsfqoeting model is excluded from the
set (rejection is determined on the basis of boagisp-values under the null). Such a

model is identified as follows:

j =argmax,, [ > LF; JLVar [ > LFy D (20)

10%M, 10M,

18



where the variance is computed again using a baptshethod. In the empirical
analysis given below, we will use both the Diebbldriano loss function in (12), as
well as of the Amisano-Giacomini log-scores in ({#)nus the log-scores to transform
them into losses) (see Hansen et al. (2005) fohdéurdetails on MCS).

For the indirect evaluation of the multivariate retsd we consider an asset allocation
framework and compare the impact of model choicedntrasting the performances of
specific portfolios: (i) equally weighted portfolidenoted as EW, which is not exposed
to the asset return mean estimation error, andpsrgr to many other portfolios (see
De Miguel et al. (2009)); and (ii) global minimunanance portfolio with and without
short selling constraints, denoted as GMV and GMK&pectively. The weights of the
equally weighted portfolio arav =k™1, where 1 is ak-dimensional vector of unit
elements. The GMV weights are time- and model-ddeet) and are based on the

covariance forecasts:

Zm -1
wn = ) 1 o

r(sm )1
Finally, GMVB weightswy,, are determined by solving the optimum problem:

argmin, w's", w
stwz20 =12k 22)
andw'l=1

for each forecast evaluation period and for eactieho
We then define the following quantities for theetlportfolio strategies (based on the

weights EW, GMV and GMVB, respectively):
(a) realized portfolio returns:

m —_

Resiew =W Riiow SWohi X Riiowe =W X1 =1,2,3.h ) m=1,2,3,.M ;
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(b) expected portfolio returns:

~ A ~

Review =W ik Rliow =Woi frei Riviowe Wi i 1=1,2,3.h m=1,2,3,.M;

(c) realized portfolio variances:

2
S|'+i,EW = (W’(XT+i_/[[T+i))2’ SIr'n+i,GMV :(W?H (Xr+i _i&T+i)) ’
2

SP+i,GMVB = (wrrrli' ( )(T+i _ﬂT+i)) 1 I = 1! 2! 3h 1m = 1! 21 31 M ;
(d) expected portfolio variances:

m e m m M 'S m m m —wym'esm gy, mo s
hr+i,EW _WZTHW’ hl'+i,GMV _WT+iZT+iWT+i’ hT+i,GMVB _WT+iZT+iWT+i’ i=1,2,3.h,
m=12,3,.M.

Given the portfolio mean and variance forecasts thedrealized portfolio returns, we
define the following logarithmic scores (recalltitize vectorx;,, contains the tim@&+i

observed returns for the analyses assets):

A

log f,, ew, i(RT+ i EW) = _% In(”% i EW) __;( Ry iew™ Ry E\/)Z( Ay | E\)/_l (23)

wherem is the model index, and the portfolio strateg¥W. Equation (23) represents
the logarithmic score when mean and variances #&stecare made conditionally on
time T+i-1. Note that the logarithmic score is evaluatedhattrue observed values at

time T+i. Such a quantity can be evaluated only for the Affolio strategy, which is

the only strategy that provides a ‘true’ vall,; ., . In fact, the GMV and GMVB

strategies allow a determination of the realizewirres, but these are exposed to the
estimation error implicit in the determination afrfolio weights. As a result, in order
to avoid introducing distortions in the test st#tis we consider only the EW strategy.
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Note that portfolio weights do not have a propeurse of estimation error. In fact,
GMV weights are an analytical non-linear functiohcovariance forecasts, and are
influenced by the estimation error of the modelapagters. Moreover, GMVB weights
are a non-linear function of covariance forecastst their evaluation is purely
numerical, and this may include optimization andpragimation errors. The
dependence of weights on covariance forecasts cautdtiuce an amplification
of parameter estimation error, given that portfelamiances are functions of covariance

forecasts and portfolio weights.

The second approach we apply for the indirect medaluation uses the MSE and

QLIKE univariate loss functions:

lfn:k p,T+i = (h1m+i,p_s1r1 i, p)2 (24)
lf nf p,T+i = |Og (h_f:_l i, p) + S'In'l i, p( h_frTl i, p)_l (25)

The indirect evaluation of the models then proceesiag the Diebold-Mariano-type
tests desicussed previously. Similarly, the losgfions in (24) and (25) are also used
for the indirect evaluation by the MCS approach.teNthat we do not compare
multivariate models indirectly by mean of utilityded loss functions because Clements
et al. (2009) show that these functions make thgach of the models very limited,

thereby reducing the possibility of detecting deg@ncies across models.

Finally, in the indirect comparison we also consideme of the model comparison

approaches suggested in Engle and Colacito (20@®jarticular, we report the out-of-
sample averages of the expected variarﬁgés(with a preference for a lower average

variance), and we also test the significance ofritexcept of the regressions in:

ST
m E-1=p+&, (26)
hT+i,p ﬂ
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where &;,; is an innovation term, and robust HAC standardrsrare required. If we

consider (26), accurate models should have a méeocept. Engle and Colacito (2006)
also propose pairwise comparisons based on DiéHaliano type tests but, as they are
closely related to the methods already describesl,de not consider them in the

empirical analysis below.
4. Data description and selected models

In order to compare the models presented in theique sections, we have selected a
dataset similar to that of Engle et al. (2009). Wvnloaded from Datastream the
S&P100 constituents at the end of March 2009. Werselected only those assets with
total return indices available from the beginnirid 897 to the end of March 2009. The
selected period contains 3194 daily returns. T$teoli the 89 selected stocks is reported
in Appendix A.

We fit the following models (acronyms are givenparentheses): Scalar BEKK with
covariance targeting (BEKK); Scalar DCC with coatedn targeting (DCC); Scalar
cDCC with implicit correlation targeting (cDCC); ponentially weighted moving
average, with estimated smoothing coefficient (EWMAconstant conditional
correlation model (CCC); and covariance shrinki®HR) with constant correlation
shrinkage target, as in Ledoit and Wolf (2004). BieKK, DCC and cDCC models are
estimated under both Multivariate Normal and Mutiate Student densities, using the
Multivariate Student density adopted by Kawakat2006), where the covariance
forecast is not a function of the degrees of freeddhe covariance shrinking case and
the EWMA with calibrated smoothing coefficient pide distribution-free covariance
forecasts. Finally, in the CCC specification, tluerelation matrix is, by construction,
identical under both Multivariate Normality and Muériate Student of Kawakatsu
(2005), thereby providing identical covariance t@ss.

For the Multivariate Student cases, the degreéseetfiom are estimated jointly with the

other model parameters. When Normal or Studentiiehsire used, model acronyms

will be matched with N or T. Overall, we considedBferent specifications, namely
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EWMA, SHR, CCC, DCC(N), DCC(T), cDCC(N), cDCC(T), ERK(N), and
BEKK(T). In order to avoid dependence of the moctahparison procedures with the

mean return forecasts, these are always fixeceagample mean.

The previous 9 specifications are evaluated fdedsht problem dimensions, such that
each model is estimated for 2, 3, 4, 5, 10, 1528030, 35, 40, 45, 50, 60, 70, 80 and
89 assets. In these empirical applications, asmetsordered alphabetically, and we
progressively enlarge the number of variables usedhe model estimation and

evaluation steps.

We estimate the models with a rolling approach, toeh compare the out-of-sample
forecasts for one year of daily observations. Adidels for all problem dimensions are
estimated daily and are used to produce one-stepdaforecasts. We consider two
different out-of-sample evaluation periods. In firet, we focus on extreme market
conditions and compare models for the period A2008 — March 2009. This could be
considered as a model stress-test to determineré mmighly parameterized models are
preferred to simpler or naive specifications asythee not exposed to parameter
uncertainty and instability. For this forecast range also perform a robustness check
by inverting the asset order to verify the abseuicdistortions due to asset order. The
second forecast evaluation period is for 2006, wihenmarket was in a low volatility
state and was trending upward. This second conguaalows verification of whether

the model ranking might be affected by overall nedidonditions.
In the following section, we summarize the resuit¥ables 3 and 7, and report selected

tables for model comparison. All the empirical lesware collected in an Appendix,

which is available from the authors upon request.

4.1 Results for direct model comparisons

The first result provided by the Diebold-MarianodaAmisano-Giacomini tests is the

negative performance of the covariance shrinkin@gch over both evaluation periods
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(see Table 1 and 2 for Diebold-Mariano resultshie two forecast evaluation ranges -

these results are not affected by assets ordegrdsmed by the robustness check).

Table 1: Diebold-Mariano model comparison basedS8E loss function in the crisis

range

EWMA
EWMA
EWMA
EWMA
EWMA
EWMA
EWMA
EWMA
SHR
SHR
SHR
SHR
SHR
SHR
SHR
Cccc
Cccc
Cccc
Cccc
Cccc
Cccc
DCC(N)
DCC(N)
DCC(N)
DCC(N)
DCC(N)
cDCC(N)
cDCC(N)
cDCC(N)
cDCC(N)
BEKK(N)
BEKK(N)
BEKK(N)
DCC(T)
DCC(T)
cDCC(T)

SHR
ccc
DCC(N)
cDCC(N)
BEKK(N)
DCC(T)
cDCC(T)
BEKK(T)
ccc
DCC(N)
cDCC(N)
BEKK(N)
DCC(T)
cDCC(T)
BEKK(T)
DCC(N)
cDCC(N)
BEKK(N)
DCC(T)
cDCC(T)
BEKK(T)
cDCC(N)
BEKK(N)
DCC(T)
cDCC(T)
BEKK(T)
BEKK(N)
DCC(T)
cDCC(T)
BEKK(T)
DCC(T)
cDCC(T)
BEKK(T)
cDCC(T)
BEKK(T)
BEKK(T)

-1.8
-1.8
-1.8
-1.1
-1.6
-1.7
0.7
3.7
3.7
3.7
5.9
3.4
3.6
5.8
-0.2
-0.1

1.7
-1.2
-1.2

2.1
0.8

1.5

1.6

-1.9
-1.8
-1.8
-0.6
-1.6
-1.8

1.1
-0.5
-1.5

1.6

1.1
-0.4
-1.4

1.6

-1
-1.3

2.3
-1.8

1.4

1.6

-1.5
-1.5
-1.5
-0.1
-1.6
-1.9
0.1
8.2
8.1
8.1
9.3
7.7
7.7
9.3
0.8
0.6
1.3

-1.6
14

1.2
-1.3

14
-1.3
-1.5

1.9
-0.6

1.4

1.6

-2.1
-2.1
-2.1
-0.6
-2.2
-2.2
-0.4
10
9.9
9.9
11.5
9.4
10
11.6
0.9
0.9
1.5
-1.4
-0.1
1.5
-1.2
1.4
-1.7
-0.6
1.5
1.5
-1.7
-0.6
1.5
-1.6
-1.6
1.3
1.6
1.6
1.6

-1.7
10.1
10.1
10.1
13.9
10.2
10.3
14.9
0.1
0.4
2.7
1.6
1.9
1.9

2.7
1.9
1.9
1.9
2.7
1.7
1.9
1.9

15

9.6
9.6
9.6
15.1
9.6
9.6
17.1
1.7

2.2
0.9

0.7
11
2.1
-0.4
0.1
0.7
21
-0.5

0.7
-2.1

20 25

1.7 18 15 0.9

10.2 12.7

10.2 12.7

10.2 128

15.3 16.7

10.2 127

10.2 128

18.4 20.9
3.2 5
31 49
1.8 21
21 44
2.2

-1.5

-1.3
1.7 1.8
-06 -05
-03 04
-1.6

-04 -0.1
-0.2 0.6
-1.6

-1.7  -1.9

-1.8

30

13.7
13.8
13.8
17.3
13.8
13.8
22.3
4.4
4.3
1.8
3.9

1.5
-0.5
-1

-0.1

-0.6

-1.5
-1.5

35

-1.3

15.2
15.2
15.2
18.2
15.2
15.2
23.8
5.8
5.5
1.2
5.4

0.8
-0.8
-1.6

0.1
-0.8

-0.8
-0.9

40 45 50

-2 -2.1
-1.6 -1.7
-1.7

-1.4 -2
21 16 -1.7
-1.7

14.8 153 15.8
149 154 15.9
149 154 15.9
18 183 189
149 154 159
149 154 159
23.8 244 253
71 57 5.9
69 54 55
1 -04 -14
6.5 53 55
5.1

06 -08 -1.7
-05 -01 -01

-16 -14 -1.6

06 -08 -1.7
0.6 1.1 13
-0.5 -0.2 -0.2

-0.6 038 1.7
-06 0.8 1.7

60

-2.2
-1.8
-1.8

-1.8
-1.8

15.6
15.8
15.8
19.2
15.8
15.8
25.1
6.3
5.9

6.1
5.7

0.4
-1.6

2.4

0.2

3.2
3.2

70

-1.8
-1.5
-1.5

-1.4
-1.5

16.2
16.3
16.3
20.3
16.4
16.4
26
6.1
5.8

5.9
5.5

1
-1

3

0.8

4.5
4.5

80

-1.8
-1.4
-1.4

-1.4
-1.4

17
17.2
17.2
21.8
17.2
17.2
26.8

5.8
5.4

5.9
5.5

2.1
0.4

3.4

6

89

-1.5
-1.2
-1.3

-1.2
-1.2

16.7
16.8
16.9
21.8
16.8
16.8
26.3
5.5
5.2

5.5
5.2

0.7
-0.4

1.5

6.8

The table reports in the first and second colurhescbmpared models. The first row reports the
cross-sectional dimension. Bold dark-grey shadedbaus identify a preference for the first
model, while bold numbers identify a preferencetfar second model.
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Table 2: Diebold-Mariano model comparison baseM&f loss function over 2006

2 3 4 5 10 15 20 25 30 35 40 45 50 60 70 80 89
EWMA  SHR -21 -25 -23 -21 -24 -33 -36 -35 -34 -33 -32 -31 -31 -28 -3 -28 -29
EWMA CCC -07 -04 -1 -09 -1.1 -12 -14 -14 -15 -14 -14 -14 -14 -13 -13 -12 -13
EWMA DCC(N) 02 07 01 03 0 -05 -08 -07 -09 09 09 -1 -1 -1 -1 -1 -11
EWMA ¢DCC(N) 03 09 03 05 01 -04 -07 -07 -09 09 09 -1 -1 -1 -1 -1 -11
EWMA  BEKK(N) 03 -1 -09 -09 -11 -1.7 -2 -21 -21 -21 -21 -21 -21 -2 -21 -21 -22
EWMA DCC(T) 03 08 02 03 O -05 -08 -08 -09 -1 -09 -1 -11 -1 -11 -1 -11
EWMA  cDCC(T) 08 1 04 07 01 -04 -07 -07 -09 09 09 -1 -1 -1 -1 -1 -11
EWMA  BEKK(T) -1 -11 -1 -1 -1.3 -19 -23-24 -24 -25 -24 -24 -24 -23[-24 -24 -25

SHR Ccc 26 27 24 24 29 4 43 4 4 4 39 39 39 35 38 38 39
SHR DCC(N) 24 26 23 23 28 39 42 39 39 39 39 38 38 35 37 37 38
SHR cDCC(N) 24 26 23 22 28 38 42 39 39 39 39 38 38 35 37 37 38
SHR BEKK(N) 24 28 25 24 29 4 43 43 43 43 44 44 44 43 45 44 45
SHR DCC(T) 25 26 23 23 28 39 42 39 39 4 39 38 38 35 37 37 38
SHR cDCC(T) 23 26 23 22 28 38 42 39 39 39 39 38 38 35 37 37 38

SHR BEKK(T) 2.4 2.8 27 26 32 42 46 45 45 46 46 46 46 45 47 4.6 4.7
cce DCC(N) 1.7 16 17 16 22 26 3 29 3 29 29 29 29 28 29 28 28
cce eDCCN) 1.7 15 1.6 15 21 26 3 29 29 29 29 29 29 28 29 28 28
cce BEKK(N) 1.4 -11 03 03 01 -1 -1.4 -21 -23|-25 -25 -2.6 -2.6 -2.3 | -2.6 -2.8 -2.9
cce DCC(T) 1.8 16 17 1.6 22 26 31 29 29 29 29 29 29 28 28 27 2.7
cce eDCC(T) 1.3 15 1.6 1.6 21 26 31 29 3 3 29 29 29 28 28 2.7 2.7
cce BEKK(T) -0.1 -1.2 -04 -05 -09 -2 |-2.6 -2.8 -29 -3.1 -3.1 31 -32 -28 -3.1 -32 -34
DCC(N) ¢DCC(N) 09 1 11 1 13 2 26 24 25 25 26 2.6 27 2.6 27 28 29
DCC(N) BEKK(N) -0.1 -15 -09 -1 -1.4 -18 -2.1 |-2.4 -2.5 2.6 -2.6 -2.7 -2.7 -2.4 -2.7 -2.8 -2.9
DCC(N) DCC(T) 09 1.3 1.6 1.3 -1.7[-23 -2.1-29 -2.9 29 29 -3 -3 -26 -24 -05 -1.1
DCC(N) cDCC(T) 09 1 1.2 1.3 12 22 31 25 21 04 08 14 03 1.7 03 15 01
DCC(N) BEKK(T) -1.1 -15 -1 -11 -16 -23|-2.8 -28 2.9 3.1 31 31 32 -29 -3.1 -32 -3.4
¢DCC(N) BEKK(N) -03 -1.5 -09 -1 -15 -1.8 -2.1 |-2.4 -25 -2.6 -2.6 -2.7 -2.7 -2.4 -2.7 -2.8 -2.9
¢DCC(N) DCC(T) O -0.6 -09 -08 -1.4 -2.1 -2.6 -2.6 -27 -2.7 -2.8 -2.8 -29 -2.8 -27 -19 -17
¢DCC(N) cDCC(T) 0.8 1.1 13 11 -1.3 04 -04 -15 -21 -2.3 -25 -27 -28 -2 -19 -01 -09
¢DCC(N) BEKK(T) -12 -1.5 -1.1 -1.2 -1.6 -2.3 -2.8 -2.8 -29 -31 -3.1 -31 -3.2 -29 -3.1 -3.2 -3.4
BEKK(N) DCC(T) 02 15 09 1 14 18 21 23 25 26 26 27 27 24 26 28 29
BEKK(N) cDCC(T) 0.7 1.4 09 11 15 18 21 24 25 26 26 27 27 24 26 28 29
BEKK(N) BEKK(T) -15 -13 -12 -12 -15|-25 -3.2 -3.4 -3.5 -3.6 -3.7 -3.8 -3.8 -3.8 -41 -4 -4.1
DCC(T) cDCC(T) 0.8 09 1.1 1.3 13 23 29 29 3 3 28 28 28 27 29 28 29
DCC(T)  BEKK(T) -1.1 -15 -1 -12 -1.6 -2.3 |-2.8 -2.8 -2.9 -3.1 -3.1 -3.1 -3.2 -28 -3.1 -32 -34
¢DCC(T) BEKK(T) -1 -15 -1.1 -1.2 -16 -2.3 -2.8 -28 -3 -31 -3.1 -31 -3.2 -29 -31 -32 -3.4

The table reports in the first and second colurhescompared models. The first row reports the
cross-sectional dimension. Bold dark-grey shadedbaus identify a preference for the first
model, while bold numbers identify a preferencetfa second model.

For both tests and all problem dimensions, SHR ydwaovides higher losses (lower
log-scores) compared with the other models, aparh EWMA. In this last case, the
tests are discordant: the Diebold-Mariano testvimgs in favour of EWMA, while the

Amisano-Giacomini test provides evidence of modgliealence for medium problem

dimensions, and a preference for SHR for largelproldimensions.
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The previous finding is confirmed by MCS where{let 5% level, the SHR model is
included in the confidence set only for problem elivsions up to 5 during the crisis
period, and are generally excluded in 2006 (undé$srently specified results for MCS

are equivalent under both test statistics).

With respect to EWMA, we note a striking differenmg comparing the results of the
Diebold-Mariano test with those of the Amisano-®iaini procedure. With the latter,
EWMA provides larger losses than all the other n®dehen the number of assets
exceeds 10 (it is also worse than SHR when the pumibassets exceeds 35), and this
result holds for both evaluation periods. If we sider the Diebold-Mariano test,
EWMA is always equivalent to all the other modedgpart from SHR, which is
outperformed for more than 5 assets, but only duitire crisis period. During the 2006
evaluation sample, there is additional evidenca pfeference for EWMA for medium
problem dimensions. Such behavior is confirmedhieyMCS results, where EWMA is
excluded from the confidence set at the 1% levelearthe Amisano-Giacomini loss
function for more than 5 assets (for simplicity, emhwe refer to the Amisano-
Giacomini loss function, this means minus the logres used in the Amisano-

Giacomini test). For MSE loss, the confidence geags includes EWMA.

Considering the non-naive models, the Diebold-Meriand Amisano-Giacomini test

results are substantially similar, which leadshi® following observations:

1)  All models are equivalent if we consider up to H3ets when the models are
compared over extreme market conditions, whileaufpd if we compare models
over the year 2006; if we consider the 2006 evalngteriod, many more models
are statistically equivalent, even for medium peobl dimensions; when the
overall market volatility is lower, more parametex specifications would seem

to be equivalent to the naive models;

i)  Moving from the Normal to the Student density doe$ improve the forecast
accuracy of the BEKK, DCC and cDCC specificatiomhdther, in sample, the
Student density outperforms the Normal by informmtcriteria; these are not

reported);

26



iii) Scalar BEKK is always inferior to the CCC, DCC, acldCC specifications,
irrespective of the density; DCC and cDCC outpenfd@CC, even for smaller
dimensions (from the 4 assets case); cDCC outpesf@CC under both Normal
and Student densities over the extreme market tondtase, while the reverse

holds for the 2006 forecast evaluation period.

These findings are confirmed by the MCS approaalt, dnly for the Amisano-
Giacomini log-scores (minus). In fact, in this casel the crisis forecast range, the
following results hold: the confidence set includes the 1% level) both DCC(N),
cDCC(N), and cDCC(T) for large cross sectional disiens (from 60 to 89); cDCC(T)
is included in the confidence set only up to modeith 25 assets, while DCC(T) is
included only up to 10 assets. For the MSE los<tian under the crisis forecast
evaluation range, and at the 1% level, all modeds saibstantially equivalent for all
problem sizes. Some models are excluded only ab%héevel, in particular SHR, and
BEKK(T).

If we compare models during the year 2006, residtsthe MSE and Amisano-
Giacomini loss functions are much closer: SHR mat always excluded from the
confidence set; EWMA and BEKK(T) are excluded foedium and large problem
dimensions; for large problem dimensions, the $etquivalent models includes only
DCC and cDCC for the Amisano-Giacomini loss fungtiavhile it contains DCC only
for the MSE loss function. In comparing directlyetimodel forecasts, the Diebold-
Mariano, Amisano-Giacomini, and MCS approaches igewnteresting elements for

model rankings.

The main message is the equivalence across manglsnatien the market is in a low
volatility state, and the preference for dynamicnditonal correlation models.
Moreover, when the market is experiencing large andden changes in volatility,
dynamic conditional correlation models may be pref# but the results are not
consistent across all model comparison methodshé&umore, DCC and cDCC are

substantially equivalent. Table 3 reports a summétire previous results.
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Table 3: Summary of results for direct model corgmars

Forecast sample
and comparison

January to December 2006

April 2008 to March 2009

DM test (MSE loss)

Most models are equivalent uplfo
asset dimension;
SHR  underperforms
(EWMA excluded);
EWMA outperforms in some cases;
Student density does not improve o
Normal;
CCC outperforms BEKK;
DCC outperforms BEKK and CCC;
cDCC outperforms BEKK, CCC an
DCC;

all  mode

Most models are equivalent up to

asset dimension;
sSHR  underperforms

(EWMA excluded);

EWMA is equivalent to most models;
éBtudent density does not improve o

Normal;

CCC outperforms BEKK;

DCC outperforms BEKK and CCC;
dcDCC outperforms BEKK, CCC an

DCC;

all  mode

er

AG Most models are equivalent up to 1Most models are equivalent up to 10
asset dimension; asset dimension;
SHR underperforms all mode|sSHR underperforms all models
(EWMA excluded); (EWMA excluded);

EWMA underperforms with more tha
10 assets;

Student density does not improve o
Normal;

CCC outperforms BEKK;

DCC outperforms BEKK and CCC;
cDCC outperforms BEKK, CCC an
DCC;

arEWMA underperforms with more tha
10 assets;
éBtudent density does not improve o
Normal;
CCC outperforms BEKK;
DCC outperforms BEKK and CCC;
dcDCC outperforms BEKK, CCC an
DCC;

AN

er

MCS with MSE loss

SHR is not included (at the 1% level);
EWMA is always included;

DCC is the best model for large
problem dimensions;
Many models equivalent for mediy
problem dimensions;

SHR and BEKK(T) are included on

for small problem dimensions (at the

2r5% level);
All models are equivalent at the 1
ntevel;

ly

o

MCS with AG loss

SHR is included only for small proble|
dimensions;

problem dimensions;

DCC and cDCC are the best models
larger problem dimensions;

Many models are equivalent
medium problem dimensions.

fq

EWMA is included only for smallDCC(N) and cDCC(N) are the be

mMAIl models are equivalent up to
assets;

models for larger problem dimensios.
or

pr

Notes: The first column reports the quantities usedhe direct model comparisons. In
the table, AG Amisano-Giacomini, DM Diebold-N&ro, MSC Model
Confidence Set, and MSE = Mean Squared Error. €hersl and third columns report
a summary of results for the two out-of-sample gusi When the density is not
reported for DCC, cDCC and BEKK, the comments rédeboth densities. Comments
in italics identify different behavior across saegpbr loss functions.
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4.2 Results for indirect model comparisons

As discussed in Section 3, we compare indireciyfitted models by focusing on three
portfolio allocation strategies, namely EW, GMV &BMW\VB. In particular, we evaluate
the discrepancies between the expected and realem@ahces of portfolios managed

using the three allocation strategies.

We start by analyzing the results obtained usimgghantities suggested by Engle and

Colacito (2006). The average expected portfoliaarere ﬁ;“ is a measure of model

appropriateness, such that the lower is the qyanli¢ better is the model. We use the

values of ﬁ,;“ to rank models over several cross-sectional dimess and report in

Table 4 the average rank of the models over tbblpm dimension.

We note a difference with respect to the direct gansons: DCC and cDCC
specifications have high ranks, while SHR and CQE eespectively, the first and
second most preferred models over the three part$tlategies during the crisis period.
On the contrary, SHR is the worst model if we corapgle results over the year 2006,
while EWMA performs the best. Several checks hasenbmade on the estimates and
implementation of the models, which confirm thessutts. A common pattern is
observed for CCC and DCC, which are associated lonttranks.

A more complete picture would be obtained by tgstimodel accuracy. The results are
even more puzzling: most models are inaccuraterechsting portfolio variances from
moderate cross-sectional dimensions, 10 assetsardnwnder all portfolio strategies;
few exceptions are given by EWMA under the EW and\B strategies, and by
BEKK specifications under GMV and GMVB strategies the crisis period; all models
underestimate portfolio variances during the crasiod (an expected result); during
2006 all models overestimate variances under the di\ategy (EWMA excluded),
while the results are mixed under GMV and GMVB t&lgges; in the last case, the
overestimation of portfolio variances increaseswiodel dimension. We may link this
result to the reduced model estimation error afigctthe BEKK and EWMA
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specifications compared with CCC, DCC, and cDCCyegi these also include
univariate GARCH components (note these are midges estimation approaches).
Differently, the results for SHR may reveal inagpiateness of the model, where the
underlying covariance is dynamic (rolling estimatimethods of shrinkage target and
covariance are not sufficient to quickly capture tbvolution of the covariance).
Therefore, SHR could be better exploited by commgnit to dynamic covariance

models, for instance, following Hafner and Rezné&k@2010).

If we consider the Diebold-Mariano tests, the rssalre somewhat similar to those
obtained from the direct model comparisons. Fastjng both the crisis and the 2006
out-of-sample periods, the SHR model underperfathsther specifications, even for
small cross-sectional dimensions when we consleQLIKE loss function (the result
is slightly weaker for the GMV strategy and largelgem dimensions). Such a finding
is confirmed by the MSE loss function for the 2@16-of-sample period, while during
the crisis period, the underperformance of SHRoisfioned but only under the EW
portfolio strategy. This is likely to be an outcowfethe large increase in the variances

during the 2008 financial crisis.

Table 4: Summary of results for model rankings baseaverage out-of-sample
portfolio variances

EWMA SHR CCC DCC(N) cDCC(N) BEKK(N) DCC(T) cDCC(T) BEKK(T)
Out-of-sample period: January to December 2006

EW 1.00 9.00 6.29 3.35 4.41 571 3.35 5.24 6.65
GMV 1.00 9.00 2.94 412 4.35 7.18 4.35 4.82 7.24
GMVB 1.00 9.00 3.12 3.41 471 7.18 3.82 5.53 7.24
Out-of-sample period: April 2008 to March 2009

EW 9.00 1.00 3.00 6.06 7.53 4.59 4.59 6.35 2.88
GMV 2.71 2.41 2.88 7.29 7.18 4.35 5.59 5.71 6.88
GMVB 9.00 1.00 2.00 4.88 6.29 7.71 3.29 4.88 5.94
Out-of-sample period: April 2008 to March 2009 @ssn reverse order)

EW 9.00 1.00 2.76 5.59 7.06 6.00 4.53 5.88 3.18
GMV 459 1.82 241 5.41 6.82 7.00 412 5.53 7.29
GMVB 9.00 1.00 2.00 4,71 6.00 8.00 3.47 4.76 6.06

Note: The first row reports the fitted models, whthe first column reports the three portfolio
strategies considered. Bold values denote lowekimga (first to third), with lower values
associated with better models.

In turn, this makes the estimation of portfolio glais extremely noisy, particularly
affecting the results based on the MSE loss functin support of this interpretation,

we observe that the Diebold-Mariano test resultsbfith loss functions for the GMV
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and GMVB strategies during the two different outsample periods behave differently.
With the exclusion of SHR and EWMA for the QLIKESk functions, all models are
equivalent when compared for April 2008-March 200%hile some statistically
significant differences appear when the comparisoibased on 2006 (with BEKK

providing statistically greater losses than theepttlynamic models).

These results raise some doubts about the usefulbeslynamic covariance and
correlation models of a relatively complex naturbew they are used to determine
portfolio weights. The joint effect of the estin@tierror on the model coefficients and
of their amplification made by estimated portfolWeeights would seem to make
complex models virtually equivalent to simple magebkuch that increasing the
complexity of a model does not improve the efficigiof an allocation strategy. On the
contrary, when one of the two sources of estimagioor is sterilized, by means of an
EW strategy, some discrepancies seem to appear:aD@BEKK underperform DCC

and cDCC; cDCC outperforms DCC for large problemmehisions during the crisis,

while the opposite holds during 2006 for the MSEsldunction; the Multivariate

Student-based models underperform Multivariate Ndibased models. We presume
this last finding is due, in addition to the motiea made for the direct comparison, to
the aggregation of many variables (the assets)argimgle element (the portfolio) by a

weighted average, where a central limit theorem piay a role.

Following the direct comparison, we determine thedel confidence sets over several
problem dimensions (see Tables 5 and 6 for two gi@sh For the crisis period (April
2008 to March 2009) and the EW strategy, the modefidence set includes all models
at the 1% level for the MSE and QLIKE loss funcsoMinor differences appear at the
5% level: for MSE, with only SHR marginally exclulefor QLIKE, the set of
equivalent models includes only EWMA, cDCC(N), d&d@C(N) (the last is marginally

included in the confidence set).

Considering the MCS results for both test stassamd for the GMV and GMVB
strategies, all models are equivalent, apart fioeneixclusion of EWMA at the 5% level
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under the GMV allocation rule. This result confirmgr earlierresults that models are
equivalent when portfolio weights are estimated.

Table 5: Model confidence set — QLIKE loss functtoBA006 evaluation period
EWMA SHR CCC DCC(N) cDCC(N) BEKK(N) DCC(T) cDCC(T) BEKK(T)

Equally weighted

O O O O OO0 OO0 o o o o o

o

The first row reports the fitted models while thestf column the cross-sectional dimension. The two
panels report the p-values for the constructionthef model confidence set for the statistic R fag th
equally weighted strategy and the global minimumaree without short selling strategy. Bold dark\gr
shaded number over rows denote models includedhiénconfidence set at the 5% confidence level.
Additional models included in the confidence settted 1% confidence level are identified by bold
numbers.
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Table 6: Model confidence set — QLIKE loss functioarisis period
EWMA SHR CCC DCC(N) cDCC(N) BEKK(N) DCC(T) cDCC(T) BEKK(T)

Equally weighted

The first row reports the fitted models while thestf column the cross-sectional dimension. The two
panels report the p-values for the constructionthef model confidence set for the statistic R far th
equally weighted strategy and the global minimumaree without short selling strategy. Bold dark\gr
shaded number over rows denotes models includdbeirconfidence set at the 5% confidence level.
Additional models included in the confidence setttet 1% confidence level are identified by bold
numbers.

We then analyze the results for the 2006 out-ofpdarperiod. First, if we focus on both
the GMV and GMVB strategies, we note the followigHR is always excluded from
the confidence set, apart for very small problematisions under MSE loss; EW and

BEKK(T) are excluded from the confidence set fagéproblem dimensions; all other
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models are equivalent. Overall, the results confiha previous findings that many
models are equivalent for estimated portfolio wesghHowever, we presume that the
greater flexibility in separately estimating vaigas and correlations provides some
benefits over naive and general covariance spatidits, in particular, when the

problem dimension is large.

If we consider the EW portfolio strategy, the résare slightly different; first, we have
a confirmation of the exclusion of the SHR and BElKecifications; second, for
medium problem dimensions, EWMA seems to be thé imeslel (at the 5% level),

while for large problem dimensions, the confidesee also includes DCC and cDCC,;
and CCC is generally excluded from the confideretefar medium and large problem

dimensions.

We interpret the results as follows: for small anddium problem dimensions, the
estimation error has a relevant role, making mammex covariance and correlation
models almost equivalent, if not worse, than EWMven the number of variables is
increased, the flexibility of DCC and cDCC modeé&cbmes even more relevant than

the estimation error.

In summary (see also Table 7), the indirect conspas suggest that model
performances are affected by several sources of.€Fhe estimation error of model
parameters is always present. Estimation erroodfgio weights may play a relevant
role during extreme market conditions, and be devemt as to make many models
statistically equivalent in terms of forecasts.dfiyy the choice of the covariance proxy
may also have a role, and may affect the resultsveder, since we compared models
using the same proxy, namely the returns crossyato{ivhich was the only one
available), it has the same effect on all the tesuHowever, additional studies
evaluating the impact of the proxy could shed aoldi#l light on cases where many
models have been labelled as equivalent (for icstatihe model confidence set for the

EW strategy).
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Table 7: Summary of results of indirect model corigmans based on Diebold-Mariano
and Model Confidence Set

Forecast sample
and comparison

January to December 2006

April 2008 to March 2009

DM test (MSE loss)

SHR underperforms all models;
BEKK underperforms under GMV ar
GMVB;

DCC and cDCC outperform BEKK
and CCC under EW;

DCC outperforms cDCC under EW;

Student density does not improve o
Normal under EW,;

SHR underperforms all models und
EW,

are equivalent;

DCC and cDCC outperform BEK}
and CCC under EW;

erDCC outperforms DCC under EW;
Student density does not improve o
Normal under EW;

Under GMV and GMVB all models

er

D

er

DM test (QLIKE loss)

SHR underperforms all models;
EWMA underperforms under GMV;
BEKK models underperform und
GMVB;

DCC and cDCC outperform BEKK
and CCC under EW;

DCC outperforms cDCC under EW;
Student density does not improve o
Normal under EW,;

SHR underperforms all models;
EWMA underperforms under GMV;
piMost models are equivalent und
GMV and GMVB;

DCC and cDCC outperform BEK}
and CCC under EW;

c¢DCC outperforms DCC under EW;
eéBtudent density does not improve o
Normal under EW;

er

MCS (MSE loss)

SHR is always excluded;

EWMA and BEKK(T) are excluded f
large problem dimensions under GM
and GMVB;

BEKK and CCC are excluded und
EW;

EWMA, DCC and cDCC are include
for large problem dimensions;

All models are equivalent at the 1
pilevel;
excluded for
edimensions;

large problen

d

\At the 5% level under EW, SHR |i

o

=)

MCS (QLIKE loss)

SHR is always excluded,;

EWMA and BEKK(T) are excluded f
large problem dimensions under GM
and GMVB,;

BEKK and CCC are excluded und
EW,

EWMA, DCC and cDCC are include
for large problem dimensions.

All models are equivalent at the 1
Dievel;

\At the 5% level under EW, the s
includes only EWMA, DCC(N) an
ecDCC(N).

d

Do

et

o

Notes: The first column reports the quantities usedhe indirect model comparisons.
In the table, DM = Diebold-Mariano, MSC = Model Gioence Set, MSE and QLIKE
denote the two loss functions, while EW, GMV and @/lidentify the portfolio

strategies considered. The second and third colueptst a summary of results for the
two out-of-sample periods. When the density is regorted for DCC, ¢cDCC and

BEKK, the comments refer to both densities. If foib strategies are not reported, the
comments apply to all strategies. Comments incgalilentify different behavior across
samples or loss functions.
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5. Concluding Remarks

From the empirical point of view, Multivariate GARCCmodels suffer seriously from
the so-called curse of dimensionality. For thissoeg several simple specifications are
typically used, including the CCC, DCC and Scal&KB models. Alternatively, naive
methods could be used, such as EWMA or the CowiaBhrinking approach.
However, few studies have considered a detaileebbsample comparison of these
models. This paper has shed light on this topit tihe outcome is far from conclusive.
By using alternative evaluation methods, includihg direct and indirect approaches,
pairwise and multivariate methodologies, and d#fer out-of-sample evaluation
periods, the results are mixed. The only commodirig is that covariance shrinking
methods underperform the dynamic models, evenrf@llscross-sectional dimensions,
at least for the dataset and periods considerdgtiegnpaper. Less common outcomes
suggest, for small problem dimensions, there iSghen probability that alternative

approaches will provide substantially equivalentar@ance forecasts.

This finding is less evident for large problem dims®ns, where simple dynamic
specifications, despite being highly restrictivegynbe superior to naive specifications
based on calibrated coefficients. In this case, efsodeparately capturing the variance
and correlation dynamics are marginally preferred pure covariance models.
Furthermore, the impact of several sources of ggoch as estimation error of the
model parameters, possibly amplified by estimatedif@io weights for indirect
comparison, and errors associated with the choigeraxy, come into play and can
affect the outcomes, thereby suggesting the needifiner analysis. Overall, we do not
find confirmation of the result of Zumabch (2009)hich suggested a preference for
covariance models. Furthermore, we provide evideghae naive allocation strategies
are less affected by estimation error of covarianoeels; this is a result similar to that

obtained by Uppal et al. (2009) in a different feamork.
Finally, it should be emphasized that the main mgsd$rom this analysis of the paper is

that there is no optimal model. The best model rhasthosen with respect to a sample

period and by using selection criteria that matah purpose of the analysis. It is clear
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that direct and indirect evaluations can providekedly different results. This may be
read as further confirmation of the widely heldwiéhat “all models are wrong, but
some are useful”, wherein usefulness may change twee and for different
applications.

Additional research on the topic is needed, andishéocus on the methodological

approaches for model comparison, on the rubustokessodel ranking over different

forecast horizons (longer that the one-day horieruses), and for even larger problem
dimensions.
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Appendix A: List of equities included in the empirical analysis

The following list contains the names of the 89 pamies whose stock total returns
have been used in the empirical analysis of thempap

3M, ABBOTT LABORATORIES, ALCOA, ALLSTATE, ALTRIA GROUP,

AMER.ELEC.PWR., AMERICAN EXPRESS, AMGEN, APPLE, AT& AVON

PRODUCTS, BAKER HUGHES, BANK OF AMERICA, BANK OF NEE YORK MELLON,

BAXTER INTL., BOEING, BRISTOL MYERS SQUIBB, BURL.NAN.SANTA FE C,

CAMPBELL SOUP, CAPITAL ONE FINL.,, CATERPILLAR, CHERON, CISCO
SYSTEMS, CITIGROUP, COCA COLA, COLGATE-PALM., COMGHN ‘A,

CONOCOPHILLIPS, COSTCO WHOLESALE, CVS CAREMARK, DEL DOW

CHEMICAL, E | DU PONT DE NEMOURS, EMC, ENTERGY, EXION, EXXON MOBIL,

FEDEX, FORD MOTOR, GENERAL DYNAMICS, GENERAL ELECTR, GILEAD

SCIENCES, HALLIBURTON, HEWLETT-PACKARD, HJ HEINZ, @GME DEPOT,

HONEYWELL INTL., INTEL, INTERNATIONAL BUS.MCHS., JBNSON & JOHNSON,
JP MORGAN CHASE & CO., LOCKHEED MARTIN, LOWE'S COMNIES,

MCDONALDS, MEDTRONIC, MERCK & CO., MICROSOFT, MORGA STANLEY,

NATIONAL OILWELL VARCO, NIKE 'B', NORFOLK SOUTHERN,OCCIDENTAL PTL.,

ORACLE, PEPSICO, PFIZER, PROCTER & GAMBLE, QUALCOMNRAYTHEON 'B',

REGIONS FINL.NEW, SARA LEE, SCHERING-PLOUGH, SCHLWBERGER,

SOUTHERN, SPRINT NEXTEL, TARGET, TEXAS INSTS., TIMBVARNER, UNITED

TECHNOLOGIES, UNITEDHEALTH GP., us BANCORP, VERIZON
COMMUNICATIONS, WAL MART STORES, WALGREEN, WALT DISIEY, WELLS

FARGO & CO, WEYERHAEUSER, WILLIAMS COS., WYETH, XEBX
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