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Abstract

We propose a novel identiÖcation-robust test for the null hypothesis that an
estimated new-Keynesian model has a reduced form consistent with the unique
stable solution against the alternative of sunspot-driven multiple equilibria. Our
strategy is designed to handle identiÖcation failures as well as the misspeciÖcation
of the relevant propagation mechanisms. We invert a likelihood ratio test for the
cross-equation restrictions (CER) that the new-Keynesian system places on its
reduced form solution under determinacy. If the CER are not rejected, sunspot-
driven expectations can be ruled out from the model equilibrium and we accept the
structural model. Otherwise, we move to a second-step and invert an Anderson
and Rubin-type test for the orthogonality restrictions (OR) implied by the system
of Euler equations. The hypothesis of indeterminacy and the structural model are
accepted if the OR are not rejected. We investigate the Önite sample performance
of the suggested identiÖcation-robust two-steps testing strategy by some Monte
Carlo experiments and then apply it to a new-Keynesian AD/AS model estimated
with actual U.S. data. In spite of some evidence of weak identiÖcation as for the
ëGreat Moderationí period, our results o§er formal support to the hypothesis of
a switch from indeterminacy to a scenario consistent with uniqueness occurred in

!We thank Jonathan Wright (co-Editor) and two anonymous referees for detailed comments and
useful suggestions. We also thank Hashem Pesaran, Frank Schorfheide, Luca Sala, Marco Sorge, and
participants to the ë10th Workshop on Macroeconomic Dynamics: Theory and Applicationsí (Bologna),
the ëThird Conference in memory of Carlo Gianninií (Bank of Italy, Rome), CSEF seminar (Napoli),
the ë66th European Meeting of the Econometric Societyí conference (Malaga), and the ë23rd (EC)2-
conference on Hypothesis Testingí (Maastricht) for valuable suggestions. A previous versions of this
paper circulated with the title: ëMonetary Policy Indeterminacy in the U.S.: Results from a Classical
Testí. The usual disclaimers apply.
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the late 1970s. Our identiÖcation-robust full-information conÖdence set for the
structural parameters computed on the ëGreat Moderationí regime turn out to
be more precise than the intervals previously reported in the literature through
ëlimited-informationí methods.

Keywords: ConÖdence set, Determinacy, IdentiÖcation failures, Indetermi-
nacy, MisspeciÖcation, new-Keynesian business cycle model, VAR system.

J.E.L.: C31, C22, E31, E52.

1 Introduction

The U.S. ináation and output growth processes have experienced dramatic breaks in the
post-WWII. In particular, a marked reduction of the U.S. macroeconomic volatilities
has been documented by Stock and Watson (2002), who coined the popular term ëGreat
Moderationí to indicate this stylized fact. A possible explanation for such phenomenon
hinges upon the hypothesis of the switch to an aggressive monetary policy conduct
occurred with the appointment of Paul Volcker as Chairman of the Federal Reserve at
the end of the 1970s. With his appointment, the argument goes, the Fed moved from a
weakly aggressive reaction to ináation to a much stronger one. Such a switch anchored
private sectorís ináation expectations, therefore leading the U.S. economy to move from
an indeterminate equilibrium to determinacy. This story, popularized by Clarida et al.
(2000), has subsequently been supported by Lubik and Schorfheide (2004), Boivin and
Giannoni (2006), Benati and Surico (2009), Mavroeidis (2010), and Inoue and Rossi
(2011a).
The above mentioned contributions implicitly assume the new-Keynesian model one

works with to be correctly speciÖed and, with the remarkable exception of Mavroei-
dis (2010), to feature identiÖable parameters. As concerns the Örst issue, albeit new-
Keynesian models can display several types of misspeciÖcation (An and Schorfheide,
2007), the omission of propagation mechanisms from the structural equations is a ma-
jor concern in the empirical assessment of determinacy/indeterminacy. As discussed
by Lubik and Schorfheide (2004) and Fanelli (2012), indeterminacy generally entails a
richer correlation structure of the data. Therefore, the risk run by an econometrician
is to confound a determinate case in which relevant propagation mechanisms are not
embedded by the structural model at hand with the indeterminate scenario. In conduct-
ing their Bayesian analysis, Lubik and Schorfheide (2004) tackle this issue by analyzing
versions of a small-scale new-Keynesian model featuring di§erent dynamic structures,
while Fanelli (2012) proposes a frequentist test of determinacy/indeterminacy that ex-
plicitly controls for the omission of propagation mechanisms from the speciÖed system
of structural Euler equations.
As concerns the identiÖability of the structural parameters, aside from Mavroeidis

(2010), who adopts a single-equation ëlimited-informationí approach, all existing em-
pirical contributions in which the determinacy/indeterminacy issue of U.S. monetary
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policy is investigated assume that the structural parameters are identiÖable. In gen-
eral, both Önite sample and asymptotic distributions for estimators and tests can be
strongly a§ected if identiÖcation conditions are not satisÖed, see e.g. Sargan (1983),
Phillips (1989), Staiger and Stock (1997) and Stock and Wright (2000). Many authors
have recently argued that estimated new-Keynesian systems like or similar to the one
considered in this paper can be a§ected by ëweak identiÖcationí issues. IdentiÖcation
problems in a system of variables featuring highly nonlinear restrictions may involve
the rank condition of the information matrix or suitable transformation of moments
(Iskrev, 2008, 2010; Komunjer and Ng, 2011), or the relationship between the struc-
tural parameters and the sample objective function, which may display ësmallí curvature
in certain regions of the parameter space, see e.g. Canova and Sala (2009). The former
concept of identiÖcation is also referred to as ëpopulation identiÖcationí, as opposed
to the latter, often termed ësample identiÖcationí, because it is speciÖc to a particu-
lar dataset and sample size (for proponents of this terminology, see Canova and Sala,
2009). Our paper is concerned with this second phenomenon, which we characterize
as the situation in which the criterion used to estimate the structural parameters and
test hypotheses on these parameters exhibit ëlittle curvatureí in all or some directions of
the parameter space, with the consequence of being nearly uninformative about these
parameters. Weak identiÖcation of all or part of the estimated parameters can a§ect
negatively the Önite sample performances of the testing procedures commonly used by
ëfrequentistí practitioners. Robust inference under possible identiÖcation failure has re-
ceived increasing attention by the literature on dynamic stochastic general equilibrium
(DSGE) models, see e.g. Canova and Sala (2009), Dufour et al. (2009, 2013), Kleiber-
gen and Mavroeidis (2009), Mavroeidis (2005, 2010), Guerron-Quintana et al. (2013)
and Andrews and Mikusheva (2014), among others.1

This paperís contribution is twofold. On the methodological side, we propose a novel
identiÖcation-robust test for the null hypothesis that an estimated new-Keynesian model
has a reduced form consistent with the unique stable solution, against the alternative
of sunspot-driven multiple equilibria. The test (i) can be applied regardless of the
strength of identiÖcation of the modelís structural parameters, and (ii) controls for the
case of ëdynamic misspeciÖcationí, where by this term we mean the omission of relevant
propagation mechanisms from the speciÖed system of structural Euler equations. On
the empirical side, we use the small scale new-Keynesian model discussed in Benati and
Surico (2009) and apply the proposed method to post-WWII U.S. data to investigate
indeterminacy issues in the conduct of monetary policy on our selected ëpre-Volckerí
and ëGreat Moderationí samples.
As regards the methodological contribution, the proposed testing strategy is based

on two steps. In the Örst-step, we use an identiÖcation-robust ëfull-informationí method
to test the cross-equation restrictions (CER) that the new-Keynesian model places on
its unique stable reduced form solution under determinacy. This requires the (numeri-
cal) inversion of a likelihood-ratio test for the CER implied by the new-Keynesian model

1Inoue and Rossi (2011b) and Andrews and Cheng (2012) tackle the issue from a more general
perspective but their analysis can be adapted to the context of DSGE models.
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along the lines recently suggested by Guerron-Quintana et al. (2013) and Dufour et al.
(2013). If the CER are not rejected, we can rule out the occurrence of sunspot-driven
expectations and arbitrary nuisance parameters from the modelís equilibrium. Impor-
tantly, in this case we cannot rule out the possibility of a Minimum State Variable
(MSV) equilibrium (McCallum, 1983), i.e. a solution nested within the class of indeter-
minate equilibria observationally equivalent to the determinate reduced form, see Evans
and Honkapohja (1986), Lubik and Schorfheide (2004) and Fanelli (2012). Notably, the
non-rejection of the CER amounts to an implicit acceptance of the hypothesis of cor-
rect speciÖcation of the new-Keynesian system. If instead the CER are rejected, we
move to a second-step to determine whether the outcome obtained in the Örst-step de-
pends on the multiple equilibria hypothesis, or to the omission of relevant propagation
mechanisms from the speciÖed structural equations. We apply an identiÖcation-robust
ëlimited-informationí method and invert a test for the orthogonality restrictions (OR)
implied by the system of Euler equations under the rational expectations hypothesis
(and the assumption of correct speciÖcation). In principle, if the new-Keynesian system
is correctly speciÖed, the OR are valid irrespective of whether the implied equilibrium is
determinate or indeterminate. However, conditional on the result in Örst-step, the non-
rejection of the OR is in our framework evidence of indeterminacy, while their rejection
suggests that the speciÖed structural equations do not capture the dynamic of the data
su¢ciently well. The test inverted in this second-step is an Anderson Rubin-type test
(Anderson and Rubin, 1949) that can be implemented in the multivariate framework
along the lines suggested by Dufour et al. (2009, 2013).2

The tests computed in both steps are based on asymptotically pivotal test statistics
regardless of the strength of identiÖcation of the modelís structural parameters. The
overall testing strategy is asymptotically correctly sized. We investigate its Önite sample
performance by some Monte Carlo experiments, using the new-Keynesian model by
Benati and Surico (2009) as data generating process.
As regards the empirical contribution, the application of our testing strategy on U.S.

quarterly data using Benati and Suricoís (2009) model as benchmark, leads us to the
following Öndings. The identiÖcation-robust test for the CER computed in the Örst-
step implies the rejection of the hypothesis of determinacy on the ëpre-Volckerí sample.
Conditional on this Örst-step, our identiÖcation-robust test for the OR computed in the
second-step does not reject the new-Keynesian framework at hand. Therefore, our re-
sults support the multiple equilibria scenario, which acknowledges a role for self-fulÖlling
expectations as a driver of the U.S. macroeconomic dynamics during the 1970s. Instead,
when considering our ëGreat moderationí sample, the identiÖcation-robust test for the
CER computed in the Örst-step clearly supports the CER implied by the hypothesis
of determinacy. While being unable to interpret this result as conclusive evidence of
determinacy (recall the observational equivalence between the determinate and the in-
determinate MSV solution), the case of sunspot shocks-driven expectations is clearly

2Alternatively, one can apply the ëS-testí approach by Stock and Wright (2000) or the ëK-LM testí
approach by Kleibergen (2005), which require the evaluation of the criterion function associated with
the continuos-updating version of the generalized method of moments.
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ruled out by the data. In line with Mavroeidis (2010), the ëlimited-informationí ap-
proach we implement in the second-step delivers wider projected conÖdence intervals
for the policy parameters during the ëGreat Moderationí, as opposed to those com-
puted for the ëGreat Ináationí period. If taken in isolation, the projected conÖdence
intervals of the policy parameters would be considered as uninformative as for the is-
sue of determinacy. Di§erently, our ëfull-informationí inferential approach enables us
to interpret such evidence as consistent with an economic system under determinacy,
hence not a§ected by sunspot shocks. Therefore, our testing procedure is inherently
more informative than a single-equation approach (even when the latter is designed to
deal with weak identiÖcation), in that it allows the econometrician to go a step further
in assessing (and, in this case, ruling out) the role of sunspot áuctuations as possible
drivers of the U.S. economic dynamics.
The remained of this paper is organized as follows. Section 2 introduces the reference

small scale new-Keynesian structural model, reports the time series representations of
its reduced form solutions under determinacy (Sub-section 2.1) and indeterminacy (Sub-
section 2.2), and analyzes the conditions under which observational equivalence occurs
(Sub-section 2.3). Section 3 discusses how inference can be conducted under identi-
Öcation failure in a ëfull-informationí framework (Sub-section 3.1) and in a ëlimited-
informationí (Sub-section 3.2) framework, and then combines these two approaches in
a coherent testing strategy (Sub-section 3.3). Section 4 investigates the Önite sample
performance of the suggested testing strategy by some simulation experiments. Section
5 presents our empirical results obtained on U.S. quarterly data. Section 6 relates our
work to the existing literature, and Section 7 contains some concluding remarks. Our
Supplementary Material derives (i) the time series representations of the reduced form
solutions associated with the new-Keynesian model, (ii) some asymptotic properties of
the testing strategy and (iii) provides further Monte Carlo results on the Önite sample
properties of the testing strategy.

2 Structural model and reduced form solutions

This section presents the reference small-scale new-Keynesian business cycle model,
summarize its time series representations under determinacy and indeterminacy, and
discusses the conditions which give rise to observational equivalence. This is useful to
understand the mechanics of the testing approach presented next.
Our reference new-Keynesian model is taken from Benati and Surico (2009). It

features the following three equations:

~yt = "Et~yt+1 + (1" ")~yt!1 " $(Rt " Et&t+1) + !~y;t (1)

&t =
(

1 + ()
Et&t+1 +

)

1 + ()
&t!1 + *~yt + !$;t (2)

Rt = +Rt!1 + (1" +)('$&t + '~y~yt) + !R;t (3)
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where

!x;t = +x!x;t!1 + "x;t , -1<+x<1 , "x;t #WN(0; 02x) , x = ~y; &;R (4)

and expectations are conditional on the information set Ft, i.e. Et%:=E(% j Ft). The
variables ~yt, &t, and Rt stand for the output gap, ináation, and the nominal interest
rate, respectively; " is the weight of the forward-looking component in the intertemporal
IS curve; ) is price settersí extent of indexation to past ináation; $ is householdsí
intertemporal elasticity of substitution; * is the slope of the Phillips curve; +, '$, and
'~y are the interest rate smoothing coe¢cient, the long-run coe¢cient on ináation, and
that on the output gap in the monetary policy rule, respectively; Önally, !~y;t, !$;t and
!R;t in eq. (4) are the mutually independent, autoregressive of order one disturbances
and "~y;t, "$;t and "R;t are the structural (fundamental) shocks. This or similar small-scale
models have successfully been employed to conduct empirical analysis concerning the
U.S. economy. Clarida et al. (2000) and Lubik and Schorfheide (2004) have investigated
the ináuence of systematic monetary policy over the U.S. macroeconomic dynamics;
Boivin and Giannoni (2006), Benati and Surico (2009), and Lubik and Surico (2010)
have replicated the U.S. Great Moderation, Benati (2008) and Benati and Surico (2008)
have investigated the drivers of the U.S. ináation persistence; Castelnuovo and Surico
(2010) have replicated the VAR dynamics conditional on a monetary policy shock in
di§erent sub-samples; Inoue and Rossi (2011a) have analyzed the role of parameter
instabilities as drivers of the Great Moderation.
We compact the system composed by eq.s (1)-(4) in the representation

(0Xt = (fEtXt+1 + (bXt!1 + !t (5)

!t = )!t!1 + "t , "t #WN(0;*") (6)

):=dg(+~y; +$; +R) , *":=dg(0
2
~y; 0

2
$; 0

2
R)

where Xt:=(~yt; &t; Rt)0, !t:=(!~y;t; !$;t; !R;t)0, "t:=("~y;t; "$;t; "R;t)0 and

(0:=

0

@
1 0 $
"* 1 0

"(1" +)'~y "(1" +)'$ 1

1

A , (f :=

0

@
" $ 0

0 *
1+*+

0

0 0 0

1

A , (b:=

0

@
1" " 0 0
0 +

1+*+
0

0 0 +

1

A :

Let 6:=("; $; (; ); *; +; '~y; '$; +~y; +$; +R; 0
2
~y; 0

2
$; 0

2
R)
0 be the m'1 vector of structural

parameters (m:=dim(6)). The elements of the matrices (0, (f , (b and ) depend non-
linearly on 6 and, without loss of generality, the matrix (&0 :=((0 + )(f ) is assumed to
be non-singular. The space of all theoretically admissible values of 6 is denoted by P.
For future uses, we consider the partition 6:=(60s, 6

0
")
0, where 6" contains the non-zero

elements of vech(*") and 6s all remaining elements. The ëtrueí value of 6, 60:=(6
0
0;s,

600;")
0, is assumed to be an interior point of P : Given the partition 6:=(60s, 6

0
")
0, we

also consider the corresponding partition of the parameter space P:=P-s ' P-". This
distinction is important for two related reasons. First, the determinacy/indeterminacy
of the system depends only on the values taken by 6s, and not by 6". Second, the
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sub-vector 6" is not directly recoverable (identiÖable) from the estimation of the system
of Euler equations (5)-(6) through ëlimited-informationí methods, and our procedure
for testing determinacy/indeterminacy also relies on the direct estimation of 6s from
system (5)-(6).
Throughout the paper, we use the notations ëM(6)í and ëM :=M(6)í to indicate that

the elements of the matrixM depend nonlinearly on the structural parameters 6, hence
in our setup (0:=(0(6), (f :=(f (6), (b:=(b(6) and ):=)(6): Moreover, we call ëstableí
a matrix that has all eigenvalues inside the unit disk and ëunstableí a matrix that has
at least one eigenvalue outside the unit disk. Thus, denoted with =max(%) the absolute
value of the largest eigenvalue of the matrix in the argument, we have =max(M(6)) < 1
for stable matrices and =max(M(6)) > 1 for unstable ones.
The solution properties of the system of Euler equations (5)-(6) depend on whether

6s lies in the determinacy or indeterminacy region of the parameter space. Thus, the the-
oretically admissible parameter space P-s is decomposed into two disjoint subspaces, the
determinacy region, PD-s , and its complement P

I
-s
:=P-snPD-s . We assume that 86s 2 P-s ,

an asymptotically stationary (stable) reduced form solution to system (5)-(6) exists,
hence the case of non stationary and ëexplosiveí (unstable) indeterminacy is automati-
cally ruled out. Since we consider only stationary solutions, PI-s contains only values of
6s that lead to multiple stable solutions. The whole set of regularity conditions assumed
to hold in the speciÖed structural system are reported in our supplementary material,
where we show that the stability/instability of the matrix G(6s):=((&0 " (f.1)!1(f ,
where (&0 :=((0+)(f ), and .1 is a matrix that will be discussed below, can be associated
with the determinacy/indeterminacy of the system.
Determinacy/indeterminacy is a system property that depends on all elements in 6s.

There are cases in which the new-Keynesian system is highly restricted and it becomes
relatively simple to identify the region PD-s (P

I
-s
) of the parameter space. For instance,

if system (1)-(4) is restricted such that ":=1; ):=0, and +:=0, +x:=0, x = ~y; &;R, the
model collapses to a ëpurely forward-lookingí model. In this particular case, it can be
shown that the inequality

'$ +
1" (

*
'~y > 1 (7)

is su¢cient and ëgenericallyí necessary (Woodford, 2003, Proposition 4.3, p. 254) for
determinacy. Consequently, the determinacy region of the parameter space is given by
PD-s :=

%
6s 2 P-s , '$ +

1!*
0
'~y > 1

&
. However, it is in general not possible to work out

a set of closed-form inequality constraints from system (5)-(6) that are both necessary
and su¢cient for determinacy (indeterminacy) and that can potentially be used to test
whether 60;s lies in PD-s or P

I
-s
:3

3The following example shows that the condition in eq. (7) is not su¢cient for determinacy, if the
structural model in eq.s (1)-(4) involves lags of the variables, other than leads. Consider the system
based on !:=0:99, #:=0:085, $:=0:40, %:=0:25, &:=0:05, ':=0:95, '~y:=2, '":=0:77, '~y:='":='R:=0:9:
In this case, the condition '" +

1"$
% '~y > 1 is valid but the rational expectation-solution to system

(1)-(4), while being stable, is not unique. Recall that we assume the existence of at least a solution
under rational expectations.
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2.1 Time series representation under determinacy

For values of 6s such that the matrixG(6s):=((&0"(f.1)!1(f is stable, i.e. =max(G(6s))<1,
the system (5)-(6) has a unique stable reduced form solution that can be represented
as the Önite-order VAR

(I3 " .1(6s)L" .2(6s)L2)Xt = ut , ut:=/(6s)!1"t (8)

where L is the lag/lead operator (LhXt:=Xt!h), X0 and X!1 are Öxed initial conditions,
.1(6s), .2(6s) and /(6s) are 3 ' 3 matrices whose elements depend nonlinearly on
6s and embody the cross-equation restrictions implied by the small new-Keynesian
model (Hansen and Sargent, 1980, 1981). As shown in the Supplementary Material,
the matrices .1(6s) and .2(6s) in eq. (8) are obtained as the unique solution to the
second-order quadratic matrix equation

1.=(1(0 "1(f1.)!11(b (9)

where 1(f , 1(0, 1(b and the stable matrix 1. are respectively given by

1(0:=
'
(&0 03#3
03#3 I3

(
, 1(f :=

'
(f 03#3
03#3 03#3

(
, 1(b:=

'
(&b;1 (&b;2
I3 03#3

(
, 1.:=

'
.1 .2
I3 03#3

(
;

and (&b;1:=((b + )(0), (
&
b;2:=")(b and /(6):=((0 " (f.1(6)). The matrix .1:=.1(6s)

is the one entering the deÖnition of G(6s). The constrained covariance matrix of the
reduced form disturbances ut, denoted with ~*u, is given by

~*u(6)=/(6s)!1*"(6")/(6s)0!1: (10)

Equations (9) and (10) deÖne the CER implied by our new-Keynesian structural model
on its reduced form solution under determinacy.

2.2 Time series representation under indeterminacy

For values of 6s such that the matrixG(6s):=((&0"(f.1)!1(f is unstable, i.e. =max(G(6s))>1,4

the class of reduced form solutions associated with the new-Keynesian system (5)-(6)
becomes more involved from a dynamic standpoint, see Lubik and Schorfheide (2003,
2004) and Fanelli (2012).
In particular, when =max(G(6s))>1, the matrix G(6s) can be decomposed in the form

G(6s)=P (6s)
'

21 0n1#n2
0n2#n1 22

(
P!1(6s)

where P (6s) is a 3 ' 3 non-singular matrix, 21 is the n1 ' n1 (n1 < 3) Jordan normal
block that collects the eigenvalues of G(6s) that lie inside the unit disk and 22 is the

4The case in which the matrix G(+s) has eigenvalues equal to one is deliberately ignored because it
can be associated with the case of non-stationary processes.
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n2 ' n2 (n2 , 3) Jordan normal block that collects the eigenvalues of G(6s) that lie
outside the unit disk. Notice that n1+n2=3, where n2:=dim(22) determines the ëdegree
of multiplicityí of solutions, see below. In the Supplementary Material we prove that in
this case the reduced form solutions can be given the VARMA-type representation:

(I3"3(6s)L)(I3".1(6s)L".2(6s)L2)Xt = (M(6s;  )"3(6s)L)V (6s;  )!1"t+ G t
(11)

G t:=(M(6s;  )" 3(6s)L)V (6s;  )!1P (6s)Ht + P (6s)Ht: (12)

In this system, the matrices .1(6s) and .2(6s) are deÖned as in the case of determinacy,
see eq. (9), while the matrices 3(6s), M(6s;  ) and V (6s;  ) are given by

3(6s):=P (6s)
'
0n1#n1 0n1#n2
0n2#n1 2!12

(
P!1(6s) , M(6s;  ):=P (6s)

'
In1 0n1#n2
0n2#n1 4

(
P!1(6s)

V (6s;  ):=((0(6s)" (f (6s).1(6s))" )(6s)(f (6s)(I3 "M(6s;  )):

In this framework, 4 is a n2'n2 matrix (n2 , 3) containing a set of arbitrary auxiliary
parameters unrelated to 6s. We collect these parameters in the vector  :=vec(4). The
ëadditionalí moving average term G t which enters system (11)-(12) depends on a 3 ' 1
martingale di§erence sequence (MDS) vector Ht which collects the ësunspot shocksí,
and may be unrelated to the fundamental shocks. We assume Ht has a time-invariant
covariance matrix *4 . The speciÖc features of the Ht component are discussed in detail
in the Supplementary Material.
While the determinate equilibrium in eq. (8) depends only on the state variables

of the structural system (5)-(6), there are two sources of indeterminacy featured by
the equilibria in eq.s (11)-(12). First, there is the ëparametric indeterminacyí that
springs from the auxiliary parameters in the vector  . Such parameters index solution
multiplicity and may amplify or dampen the áuctuations of Xt governed by the VMA
part of the reduced form solution. Second, there is the ëstochastic indeterminacyí that
stems from the term G t, which in turn depends on the sunspot shocks Ht (when *4 6=
03#3). These shocks may arbitrarily alter the dynamics and volatility of the new-
Keynesian system, see Lubik and Schorfheide (2003, 2004) and Lubik and Surico (2009)
for discussions.

2.3 Observational equivalence

The structure of the two reduced form solutions reported above reveals that, under
indeterminacy, the parameter space associated with the new-Keynesian model is wider
compared to the case of determinacy. Indeed, in addition to the structural parameters
6, the dynamics of the system is also governed by  and 0+4 , where 0

+
4 collects the free

elements of the covariance matrix *4 . Both  and 0+4 are unrelated to 6 and are not
identiÖed under determinacy.
Let N be the open sub-space of R(n2)2 of all possible values taken by  , and let

Z be the open sub-space of R6 of all possible values taken by the elements in 0+4 ; the
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ëcompleteí parameter space associated with indeterminacy is5

I:=
%
6$:=(60;  0; 0+04 )

0, 6s 2 PI-s ,  2 N , 0
+
4 2 Z

&
: (13)

In the special case in which  and 0+4 fulÖl the conditions

 =vec(I(n2)2) ()M(6s;  )=I3) , 0+4 =06#1 () G t=03#1 a.s. 8 t), (14)

system (11)-(12) collapses to a MSV solution (McCallum, 1983), i.e., a reduced form
solution which has the same time series representation as the determinate VAR solution
in eq. (8), and it is subject to the same set of cross-equation restrictions, see Evans
and Honkapohja (1986), Lubik and Schorfheide (2003, 2004), and Fanelli (2012).6 This
observational equivalence reáects on the properties of the testing strategy we present
below.

3 Inferential issues

Let X1, ..., XT be a sample of T observations that are supposed to be generated by
a solution of the new-Keynesian system (5)-(6). Our task is to decide whether the
observations X1, ..., XT are consistent with the case of a unique stable equilibrium,
or the case of multiple stable equilibria, controlling for two factors: (i) the possible
identiÖcation failures, where by this term we denote the case in which the objective
functions used to estimate the structural parameters and derive the test statistics may
be poorly informative about 6 or some of its components; (ii) the possible ëdynamic
misspeciÖcationí, where by this term we denote the situation in which the system (5)-
(6) omits relevant propagation mechanisms.
An ideal test for the null H0 : 60;s 2 PD-s against the alternative H1 : 60;s 2 PI-s

should be based on testing the set of inequality restrictions that identify the region
PD-s (P

I
-s
) of the parameter space. For instance, Mavroeidis (2010) uses the standard

ëTaylor principleí condition in eq. (7) to address the determinacy/indeterminacy issue

5For given a +s 2 PI(s , the auxiliary parameters  might in principle lie in a region of N such that
the VMA components of system (11)-(12) are non-invertible. Under this scenario, the possibility of re-
covering the structural shocks from the history of Xt is compromised even when the econometrician can
observe all components of Xt. Thus, indeterminacy can be a further source of ënon-fundamentalnessí
in business cycle analysis.

6Observational equivalence between determinate and indeterminate reduced form solutions may be
also obtained from system (5) when the vector of fundamental shocks is absent, i.e. when ,"=03#3
("t=03#1 a.s. 8 t). In this case, under a set of restrictions, including -=0n#n, the structural model
can be solved and represented as in eq. (8). Thus, there exists an intrinsic identiÖcation problem
once we consider also ëexactí DSGE models: an indeterminate equilibrium of an ëexactí model (i.e.
featuring "t=03#1 and -=0n#n), can be observationally equivalent to the determinate equilibrium of
an DSGE model with "t 6= 03#1 but richer dynamic structure, see Beyer and Farmer (2007) and Fanelli
(2012) for a comprehensive discussion. While being interesting from a theoretical standpoint, the case
of absence of fundamental shocks in the structural equations is empirically unpalatable, and it will not
be considered in our analysis.
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in U.S. monetary policy by estimating a Taylor-type monetary policy rule in isolation
from other structural equations. The typical risk with this ësingle-equationí approach
is that the ëTaylor principleí holds with certainty in the form of eq. (7) only if the
structural system (5)-(6) fulÖlls e.g. the restrictions ":=1; ):=0, and +:=0, +x:=0,
x = ~y; &;R. Our estimates reported in Section 5 show that these restrictions are
invalid. In our framework, a ëgenericí characterization of the indeterminacy region of
the parameter space PI-s is given by P

I
-s
:=f6s 2 P-s , =max(G(6s))>1g ; see Section 2

and the Supplementary Material. Unfortunately, even under strong identiÖcation, the
condition =max(G(6s))>1 can hardly be used for testing purposes. Indeed, aside from
very special cases, it is not easy to map the inequalities restrictions that characterize
the unstable eigenvalues of the G(6s) matrix onto a set of ëmanageableí restrictions on
the elements of 6s.7 Even working out the inequalities associated with the condition
=max(G(6s))>1 on a case-by-case basis, the resulting testing problem would involve
nonstandard inference, see e.g. Silvapulle and Sen (2005) and references therein.
To circumvent the above mentioned di¢culties, we address the testing problem from

another viewpoint. We consider the following hypotheses:

H 0
0 : Xt is generated by the VAR system (8) under the CER in eq.s (9)-(10) (15)

H 0
1 : Xt is generated by the VARMA-type system (11)-(12), with 6$2I0 (16)

where I0 is a subset of I in eq. (13), deÖned by

I0:=
%
6$:=(60;  0; 0+04 )

0, 6s 2 PI-s ,  2 N n
%
vec(I(n2)2)

&
, 0+4 2 Zn f06#1g

&
4 I: (17)

Under H 0
0, the new-Keynesian system admits the same time series representation as

the unique stable solution but is observationally indistinguishable from the indeter-
minate MSV equilibrium obtained from the system (11)-(12) when  and 0+4 satisfy
the conditions in eq. (14). Under H 0

1, instead, the new-Keynesian system generates
indeterminate non-MSV equilibria. A key observation is that the null of determinacy,
H0: 60;s 2 PD-s , implies the hypothesis H

0
0, while the converse is not true. Hence, the

rejection of H 0
0 is evidence against determinacy, while the non-rejection of H

0
0 can not

be considered conclusive evidence of determinacy. Indeed, the non-rejection of H 0
0 is

only su¢cient to rule out the case of ëparametric indeterminacyí generated by the pres-
ence of the auxiliary parameters  , and the ëstochastic indeterminacyí generated by the
sunspot shocks (0+4 6= 06#1), but is not su¢cient to rule out the case of a MSV solution
nested in the class of models in eq.s (11)-(12).
To build our identiÖcation-robust test for H 0

0 against H
0
1, we exploit the well known

fact that the construction of conÖdence sets is a dual problem to hypothesis testing,
i.e. conÖdence sets are obtained by inverting tests, see e.g. Aitchison (1964).8 In

7Farmer and Guo (1995) use the inequality restriction that identify the indeterminacy region of
the parameter space in their stylized business cycle model, and show that their point estimates of the
structural parameters fulÖl the restriction. However, no inference is provided is such paper.

8This approach has been used in the recent literature on inference in weakly identiÖed DSGE
models, see Dufour et al. (2009, 2013), Kleibergen and Mavroeidis (2009), Mavroeidis (2010), Qu
(2011), Andrews and Mikusheva (2012) and Guerron-Quintana et al. (2013).
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turn, inverting a test means considering all parameter values that are not rejected
by the test at a pre-Öxed signiÖcance level. Our robust testing strategy combines
the information deriving from two types of identiÖcation-robust inferential approaches.
The former, presented in Sub-section 3.1, is a ëfull-informationí identiÖcation-robust
approach which allow us to build a conÖdence set for 6s exploiting the CER implied by
the new-Keynesian system under determinacy. The latter, summarized in Sub-section
3.2, is a ëlimited-informationí identiÖcation-robust approach which allow us to build a
conÖdence set for 6s exploiting the OR implied by the new-Keynesian system system
under the rational expectations hypothesis. These two methods are condensed in Sub-
section 3.3 in a coherent testing strategy for H 0

0 against H
0
1:

3.1 Full-information approach for the CER

We consider the reduced form Önite-order VAR solution of the new-Keynesian model
in eq. (8), and the vector of reduced form coe¢cients L:=(L$0; vech(*u)0)0, where
L$:=vec(.u), and the matrix .u:=[.1;.2] collects the VAR coe¢cients. In our setup,
L is assumed to be strongly identiÖed. This assumption valid when all components of
Xt are observed. For cases in which Xt features unobserved components, it is necessary
to refer to the minimal state-space representation associated with the new-Keynesian
system under determinacy on a model-by-model basis, see Komunjer and Ng (2011)
and Guerron-Quintana et al. (2013) for examples and discussion. We denote with
logLT (L) the log-likelihood function associated with the Önite-order VAR in eq. (8)
before imposing the CER.
The CER that the new-Keynesian model places on its determinate reduced form

solution in eq.s (9)-(10) can conveniently be compacted in the expression

f(L; 6) = 0dim(6)#1 (18)

where f(%; %) is a continuous, twice di§erentiable, vector function. By the implicit func-
tion theorem, the restrictions in eq. (18) can also be written in explicit form as follows
(see Iskrev, 2008):

L=g(6) (19)

where g(%) is a nonlinear twice di§erentiable function and the mapping from 6 to L is
valid in a neighborhood of the true parameter values. Under the CER in eq. (19),
the VAR log-likelihood depends on 6 and is denoted with logLT (g(6)). In our setup,
the shape of logLT (g(6)) may be poorly informative (or uninformative) about 6 or
some of its components, violating one of the standard regularity conditions behind ML
estimation, see, inter alia, Andrews and Mikusheva (2012). Throughout the paper we
maintain that 6" in 6:=(60s; 6

0
")
0 is strongly identiÖed, and that identiÖcation failure

may solely a§ect 6s or some of its components. This assumption reáects the situation
we typically observe in practice, where weak identiÖcation or unidentiÖcation typically
involve the elements in 6s and not the elements in 6".9 Under this assumption, for any

9This assumption might be relaxed without changing the logic of the proposed testing strategy.
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given value of 6s=;6s 2 P-s , the log-likelihood function logLT (g(;6s; 6")) depends on 6"
alone, and fulÖlls the regularity conditions discussed in e.g. Guerron-Quintana et al.
(2013).
Keeping these observations in mind, we face the problem of computing a LR test

for the null hypothesis that there exists a 6" such that

H0;cer: L0-s=g(
;6s; 6") , 6s=;6s 2 P-s (20)

(against the alternative H1;cer : L0-s 6= g(;6s; 6")). The hypothesis H0;cer in eq. (20) is
composite: it specializes the CER in eq. (19) to the ëguessí 6s=;6s about the parameters
value. The notation ëL0-s í used in eq. (19) remarks that under the CER, the VAR
reduced form coe¢cients depend on the choice 6s=;6s. When H0;cer is valid, also the
hypothesis H 0

0 in eq. (15) is valid for 6s=;6s. Likewise, when H
0
0 in eq. (15) is valid

for some 6s=;6s, the hypothesis H0;cer in eq. (20) will be automatically valid. However,
whileH 0

0 is accepted if there exists at least one 6s=;6s such thatH0;cer holds, it is rejected
if and only if H0;cer is rejected for all possible parameter values.
Let LRT (L̂0-s):="2(logLT (L̂0-s)" logLT (L̂)) be the likelihood-ratio test statistic for

the hypothesis H0;cer, where the vector L̂0-s is deÖned by L̂0-s :=g(
;6s; 6̂

0-s

" ), and 6̂
0-s

" is the
ML estimate of 6" obtained for 6s=;6s. Under H0;cer, the asymptotic null distribution of
LRT (L̂0-s) is pivotal and N

2
d1
, where d1:=dim(L) " dim(6"), regardless of whether 6s is

identiÖed or not, see e.g. Guerron-Quintana et al. (2013). In practice, there might be
many possible choices 6s=;6s not rejected by the test LRT (L̂0-s). Since the components of
6s typically lie within bounded (theoretically admissible) intervals, one can test H0;cer

for many possible choices of ;6s within a Öne grid G-s in P-s , giving rise to a ëgrid
testingí procedure. The numerical inversion of the test LRT (L̂0-s) for H0;cer gives rise to
the identiÖcation-robust conÖdence set (or acceptance region of the test):

CLR1!<1:=
)
;6s 2 G-s , LRT (L̂0-s) < c

<1
=2d1

*
(21)

where c<1
=2d1
is the O1-level cut-o§ point associated with the N

2
d1
distribution, and 0<O1<1

is the pre-Öxed nominal level of signiÖcance (or type-I error) of the test.10 The identiÖcation-
robust conÖdence set CLR1!<1 has asymptotic coverage 100(1 " O1) (see Supplementary
Material). A point estimate of 6s can be obtained from the (nonempty) conÖdence set
CLR1!<1 by

6̂s;ML := argmin
0-s2CLR1!&1

LRT (L̂0-s); (22)

10Dufour et al. (2013) have proposed another identiÖcation-robust ëfull-informationí approach for the
structural parameters of DSGE models based on the (numerical) inversion of a test for zero coe¢cients
in the multivariate regression of the quantity ut(/+s):=(I3"01(/+s)L"02(/+s)L2)Xt (which correspond
to the disturbance of the VAR system (8) under the CER) on the regressors Zt:=(X 0

t"1; X
0
t"2)

0.
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i.e. considering the parameter point within CLR1!<1 with associated largest p-value (or
the ëleast rejectedí models at the pre-Öxed level O1).

11

The identiÖcation-robust conÖdence set CLR1!<1 in eq. (21) is built in a ëfull-informationí
framework, in the sense that inverting the test for the null in eq. (20) requires comput-
ing the determinate rational expectations solution associated with the new-Keynesian
system.

3.2 Limited-information approach for the system of structural
Euler equations

We now focus on the system of Euler equations (5)-(6), and consider the problem of
testing the simple hypothesis

H0;spec: 6s=;6s , ;6s 2 P-s (23)

against the alternative H1;spec: 6s 6= ;6s, abstracting from the knowledge of the reduced
form solution of the model. H0;spec is the hypothesis that the system of Euler equations
(5)-(6) is valid in correspondence of the ëguessí 6s=;6s about the parameters value.
Following Dufour et al. (2013), a test for H0;spec can be computed as follows. By

simple algebraic manipulations, we re-write system (5)-(6) in the form

(&0Xt = (fXt+1 + (
&
b;1Xt!1 + (

&
b;2Xt!2 + )(fPt + "t " (fPt+1;

where Pt:=Xt " Et!1Xt is a vector MDS, and then deÖne the 3' 1 vector function

v(Xt; 6s):=(&0Xt " (fXt+1 " (&b;1Xt!1 " (&b;2Xt!2 = )(fPt + "t " (fPt+1: (24)

Under H0;spec, the term v(Xt; ;6s) follows a VMA(1)-type process and fulÖlls the OR:

E
+
v(Xt; ;6s) j Ft!1

,
= 03#1: (25)

Therefore, we can associate the multivariate linear regression model:

v(Xt; ;6s) = 30-sZt + Rt , Zt 2 Ft!1 , t = 1; :::; T (26)

to the hypothesis H0;spec: In eq. (26), 30-s is a 3'r matrix of coe¢cients, Zt is a r ' 1
vector of regressors selected from the information set Ft!1, and Rt is a disturbance
term whose covariance matrix, *@, can possibly be non-diagonal. The notation ë30-s í
for the regression coe¢cients remarks that we have a multivariate regression system
like that in eq. (26) for each choice 6s=;6s. Under H0;spec, additional information from
predetermined variables should be irrelevant, hence the associated problem

H$
0;spec : 30-s=03#r vs H$

1;spec : 30-s 6= 03#r (27)

11The point estimates in eq. (22) can be interpreted as ëHodges-Lehmanní estimates of +s, see e.g.
Dufour et al. (2006, 2009, 2010).
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should lead us to accept H$
0;spec: We have thus transformed the problem of testing the

hypothesis H0;spec (against H1;spec) into the problem of testing the hypothesis H$
0;spec

(against H$
1;spec) in the multivariate linear regression system (26). Standard asymptotic

theory applies for the testing problem in eq. (27) irrespective of whether 6s is identiÖable
or not.
Let ART (;6s) be any asymptotically pivotal test statistic for the problem in eq. (27).

In practice, ART (;6s) can be a Wald-type, a Lagrange Multiplier or (quasi-)LR test,
and can be interpreted as an Anderson Rubin-type test (Anderson and Rubin, 1949).12

Under H0;spec, the asymptotic null distribution of ART (;6s) is N2d2, d2:=3r and also in
this case there might be many choices 6s=;6s not rejected by the test ART (;6s). The
numerical inversion of the test ART (;6s) for H0;spec leads to the identiÖcation-robust
conÖdence set (or acceptance region):

CAR1!<2:=
)
;6s 2 D-s , ART (;6s) < c

<2
=2d2

*
(28)

where D-s is a Öne grid in P-s , c
<2
=2d2

is the O2-level cut-o§ point associated with the

N2d2 distribution, and 0<O2<1 is the pre-Öxed nominal level of signiÖcance (or type-I
error) of the test. The identiÖcation-robust conÖdence set CAR1!<2 has asymptotic coverage
100(1 " O2) (see Supplementary Material) and deÖnes the set of parameter points in
P-s which are consistent with the new-Keynesian model at the signiÖcance level O2
regardless of the multiplicity/uniqueness of its solutions. A point estimate of 6s can be
obtained from the (nonempty) conÖdence set CAR1!<2 by

6̂s;LI := argmin
0-s2CAR1!&2

ART (;6s): (29)

It is worth observing that both methods discussed in this and in the previous sub-
section refer to estimation of the full system of equations. However, while the ëfull-
informationí method presented in Sub-section 3.1 imposes the additional restriction that
the reduced form is a Önite-order VAR and exploits the CER implied by the structural
model, the ëlimited-informationí approach summarized here ignores, by construction,
any information stemming from the reduced form solutions. Mavroeidis et al. (2014),
Section 3, discuss the di§erence between the two approaches in the context of a single
structural equation.

12Since the 5t term follows a VMA-type process in system (26), HAC-type versions of the tests can
be applied as suggested by Dufour et al. (2013). Alternatively, one can use the ëS-testí method by
Stock and Wright (2000), or the ëK-LM testí by Kleibergen (2005), both based on the evaluation of the
criterion function corresponding to the continuos-updating version of generalized method of moments.
Some computational issues make us prefer the approach in Dufour et al. (2009, 2013). Kleibergen and
Mavroeidis (2009) discuss weak instrument robust statistics for testing hypotheses on +s or its subset
in the GMM framework, and then apply these methods to the new-Keynesian Phillips curve.
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3.3 Testing strategy

The two estimation/testing methods discussed in the previous sub-sections form the
basis of our identiÖcation-robust testing strategy for H 0

0 in eq. (15) against H
0
1 in eq.

(16).
Our approach is based on the following two steps:

Step 1: LR test for the CER. Invert the test LRT (L̂0-s) for H0;cer discussed in Sub-
section 3.1 at the level O1, considering points 6s=;6s taken from a Öne grid G$-s in
P-s . This yields the identiÖcation-robust conÖdence set

C$LR1!<1
:=
)
;6s 2 G$-s , LRT (L̂0-s) < c

<1
=2d1

*
(30)

whose asymptotic coverage is at least 1 " O1 (see Supplementary Material). If
C$LR1!<1

is nonempty, the null H 0
0 is accepted and the analysis is stopped. If instead

C$LR1!<1
is empty, i.e. the hypothesis H0;cer is rejected for all possible parameter

values in the grid implying the rejection of H 0
0, we move to the next step.

Step 2: Anderson-Rubin test for the OR. Conditional on the conÖdence set CLR1!<1
being empty, we invert the test ART (;6s) for H0;spec discussed in Sub-section 3.2
at the level O2, considering points 6s=;6s taken from a Öne grid D$-s such that

D$-s :=
n
;6s 2 P-s , =max(G(;6s))>1

o
. This yields the identiÖcation-robust conÖdence

set

C$AR1!<2
:=
)
;6s 2 D$-s , ART (;6s) < c

<2
=2d2

*
(31)

whose asymptotic coverage is at least 1"O2 (see Supplementary Material). If C$AR1!<2
is nonempty, we accept the hypothesis H 0

1 in eq. (16). If instead C$AR1!<2
is empty,

i.e. H0;spec is rejected for all possible parameter values in the grid, we reject H 0
1

and conclude that the new-Keynesian system (5)-(6) omits relevant propagation
mechanisms.

Hereafter, we conventionally denote the testing strategy obtained by combining the
two steps described above with the symbol ëLRT ! ART í. Several remarks are in order.
Remark 1. The idea underlying the ëLRT ! ART í approach is that if the

identiÖcation-robust conÖdence set C$LR1!<1
computed in the Örst-step is nonempty, there

exists at least one point in the parameter space consistent with H 0
0: This means that

the time series representation of the new-Keynesian model summarized in eq.s (8)-(10)
is supported by the data for some 6. If instead the identiÖcation-robust conÖdence set
C$LR1!<1

is empty, H 0
0 is rejected and a second-step is run to decide between H

0
1 and the

dynamic misspeciÖcation of the structural new-Keynesian system (5)-(6). The second-
step is therefore run conditionally on the rejection of the CER in the Örst-step. If
the identiÖcation-robust conÖdence set C$AR1!<2

computed in the second-step is nonempty,
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there exists at least one 6 in the parameter space consistent with H 0
1. Finally, when

both C$LR1!<1
and C$AR1!<2

are empty, the new-Keynesian system omits relevant propagation
mechanisms and is rejected.

Remark 2. The procedure is asymptotically valid irrespective of the strength of
identiÖcation, hence it can be applied also when 6 is strongly identiÖed. Notably, it
does not require the identiÖcation of the set of parametric inequality restrictions that
deÖne the sub-regions PD-s (P

I
-s
) of the parameter space. The practitioner is therefore not

committed to the use of nonstandard asymptotic inference. Moreover, it is not necessary
to specify prior distributions for 6 and the auxiliary parameters  (and 0+4 ) that govern
solution multiplicity in eq.s (11)-(12). In this respect, the suggested approach can be
regarded as an identiÖcation-robust alternative to the test proposed by Fanelli (2012)
assuming strongly identiÖed models.

Remark 3. Many NK-DSGE models feature unobserved states and reliable proxies
for these states are not always available. In these situations, we can still compute the
LR test in the Örst-step along the lines suggested by Guerron-Quintana et al. (2013),
but the implementation of the Anderson Rubin-type test in the second-step may become
problematic. Thus, if LR test for the CER rejects H 0

0 in the Örst-step, then it is not
possible to decide whether the rejection is due to the occurrence of multiple equilibria
(H 0

1), or to the omission of relevant propagation mechanisms. The extension of the
ëLRT ! ART í testing strategy towards this direction is the subject for future research.

Remark 4. The hypothesis of no dynamic speciÖcation of the NK-DSGE model
is given by the composite hypothesis H$ = H 0

0 _ H 0
1. In the Supplementary Material

we prove that as a test for H$, the ëLRT ! ART í sequential procedure has signiÖcance
level which is bounded above by the maximum of the nominal type-I errors used for the
LRT (L̂0-s) test in the Örst-step and the the ART (

;6s) test in the second-step. Thus, if e.g.
O1 = O2:=0.10, the signiÖcance level of the procedure as a test for H

$ is asymptotically
no larger than 10%.

4 Monte Carlo simulations

In this section, we use Benati and Suricoís (2009) new-Keynesian system in eq.s (1)-(4)
to investigate the Önite sample size performance of the ëLRT ! ART í testing strategy
through some Monte Carlo experiments. Further Monte Carlo results about the rejec-
tion frequency of the testing strategy under indeterminate equilibria that belong to the
class of models deÖned by H 0

1, and the case of ëdynamic misspeciÖcationí are conÖned
in the Supplementary Material.
It is worth noting that we work with a ësemi-structuralí expression for the NKPC in

eq. (2). Such expression features a slope parameter, *. According to the new-Keynesian
theory of the business cycle, * is a composite parameter ináuenced by the Calvo-price
stickiness parameter, the discount factor, householdsí risk aversion, and the elasticity
of labor. IdentiÖcation issues are likely to be (even) more severe when referring to such

17



a ëfully-microfoundedí version of the NKPC, see Fukaàc and Pagan (2006, p.17). Our
focus on eq. (2) is justiÖed by our willingness to work with a representative version of
the NKPC. This is intended to maximize the comparability of our results to the vast
literature dealing with speciÖcations similar to ours.13

ArtiÖcial data sets are generated from the reduced form solutions discussed in Sec-
tion 2. In all experiments, we consider M = 1; 000 replications and samples of length
T = 100 (not including initial lags). The chosen sample size corresponds roughly to
the number of quarterly observations we consider for the ëpre-Volckerí (1954q1-1979q2)
and ëGreat Moderationí (1985q1-2008q2) samples in the empirical section (see Section
5). For each generated data set, we treat the output gap as observable, reproducing the
situation we face in Section 5.
To evaluate the empirical size of the ëLRT ! ART í test for the hypothesis H 0

0, the
Monte Carlo design is calibrated to match the model estimated by Benati and Surico
(2009) using U.S. data with Bayesian methods. The discount factor (:=0.99 is treated
as known and estimation involves 13 free parameters, 10 of which are collected in the
sub-vector 6s, and 3 in the sub-vector 6". The true vector of parameters 60:=(6

0
0;s; 6

0
0;")

0

is calibrated to the medians of the 90% coverage percentiles of the posterior distri-
bution reported in Table 1 of Benati and Surico (2009) (see the ëAfter the Volcker
stabilizationí column). The data are generated from the reduced form VAR solution
in eq. (8) subject to the CER in eq.s (9)-(10), using a Gaussian distribution for the
structural shocks "t and a diagonal covariance matrix *" (hence the elements of the
sub-vector 60;" correspond to the diagonal components of *"). With this calibration,
=max(G(60;s))=0.964.
The numerical inversion of the LRT (L̂0-s) test (Örst-step) is obtained on each simu-

lated dataset by using a grid of points described in detail in Table 1. We refer to Andrews
and Mikusheva (2014) for practical details about the implementation of grid-testing
methods.14 The log-likelihood maximization algorithm under the CER is adapted from
the grid-search numerical method discussed in BÂrdsen and Fanelli (2014). The em-

13The same choice is adopted by e.g. Mavroeidis et al. (2014) in their recent review of the NKPC
empirical literature. Moreover, severe identiÖcation issues a§ect even the ësemi-structuralí version
of the NKPC we focus on (at least in the widely adopted uni-equational context), as documented
and discussed by, among others, Kleibergen and Mavroeidis (2009) and Mavroeidis et al. (2014).
Hence, while not fully exploiting the restrictions coming from the theory, our version of the NKPC
and the chosen new-Keynesian system in general, represents an interesting data generating process to
investigate the properties of the proposed identiÖcation-robust testing strategy.
14To invert the LRT (7̂%(s) test numerically, we should consider a multi-dimensional grid search for

the log-likelihood logLT (g(/+s; +")) on a large number of evenly spaced parameter points. Since in our
setup dim(+s)=10 is relatively large, this approach is computationally cumbersome. For instance, if
one considers only 10 evenly spaced points within each of the 10 intervals that deÖne the admissibe
parameter space (see the last column of Table 1), then it is necessary to evaluate the log-likelihood
1010 times for each simulated dataset. To speed up computation time and line with what suggested
by Andrews and Mikusheva (2014), we decided to select only 300 points randomly (using the uniform
distribution) from the rectangle formed by the Cartesian products of the 10 intervals. Of course, the
employment of more sophisticated and e¢cient algorithms could lead to an even more satisfactorily
empirical size-control of the test.
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pirical size of the test for H 0
0 is evaluated by Öxing the type-I error of the test at the

level O1=0.10. The results are reported in Table 1, where we summarize the rejection
frequency of the LRT (L̂-̂s;ML

) test and the average point estimates of the structural
parameters (along with the corresponding Monte Carlo standard errors) obtained from
the problem in eq. (22) by replacing CLR1!<1 with C

$LR
0:90 . For completeness, Table 1 also

reports the empirical size of the LRT (L̂-0;s) test for the hypothesis H0;cer in eq. (20)

evaluated at the speciÖc point ;6s = 6s;0, see the Supplementary Material for details.
The inverted LRT (L̂0-s) test for H

0
0 tends to be slightly conservative, as the empirical

size is 7.9% as opposed to the nominal size of 10% (instead the empirical size of the
test LRT (L̂-0;s) for H0;cer: L0-s=g(

;6s; 6"), ;6s = 6s;0 is 12.1%). Moreover, the grid-testing
procedure delivers point estimates of the structural parameters relatively close to the
true values. Table 1 also reports the average projected 90% conÖdence intervals for the
individual structural parameters (fourth column), and these intervals are contrasted
with the actual intervals used to deÖne the parametric grid (Öfth column).

5 Empirical evidence

In this section, we apply the ëLRT ! ART í testing strategy to post-WWII U.S. mon-
etary policy. We employ quarterly data, sample 1954q3-2008q3, and three observable
variables, Xt:=(~yt; &t; Rt)0. The output gap ~yt is computed as percent log-deviation
of the real GDP with respect to the potential output estimated by the Congressional
Budget O¢ce. The ináation rate &t is the quarterly growth rate of the GDP deáator.
For the short-term nominal interest rate Rt we consider the e§ective Federal funds rate
expressed in quarterly terms (averages of monthly values). The source of the data is the
Federal Reserve Bank of St. Louisí web site. The beginning of the sample is due to data
availability (in particular, of the e§ective Federal Funds rate. The end of the sample is
justiÖed by our intention to avoid dealing with the ëzero-lower boundí phase began in
December 2008, which triggered a series of non-standard policy moves by the Federal
Reserve whose e§ects are hardly captured by our standard new-Keynesian framework.
Our reference structural model is given by the new-Keynesian system (1)-(4). Fol-

lowing most of the literature on the ëGreat Moderationí, we divide the post-WWII
U.S. era in two periods, roughly corresponding to the ëGreat Ináationí and the ëGreat
Moderationí samples. We take the advent of Paul Volcker as Chairman of the Federal
Reserve to identify our Örst sub-sample, i.e. 1954q3-1979q2, which we call ëpre-Volckerí
sample. As for the ëGreat Moderationí sample, we consider the period 1985q1-2008q3.
McConnell and PÈrez-QuirÛs (2000) Önd a break in the variance of the U.S. output
growth in 1984q1. Our empirical investigation deals with a measure of the output gap,
ináation, and the federal funds rate. Signs of the ëVolcker disináationí are still evident
in 1984. This is possibly due to the ëcredibility build-upí undertaken by the Federal
Reserve in the early 1980s, a period during which private agents gradually changed
their view on the Federal Reserveís ability to deliver low ináation (Goodfriend and
King, 2005). Moreover, the Örst years of Volckerís tenure (until October 1982) were
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characterized by non-borrowed reserves targeting. Hence, the Öt of our policy rule
would substantially worsen if we included the Volcker disináation (Estrella and Fuhrer,
2003; Mavroeidis, 2010), a fact that would carry consequences on the estimates of all
parameters of the system. To circumvent this problem, we postpone the beginning of
our second sub-sample to 1985q1. A similar choice is undertaken by Christiano et al.
(2013). Thus, our ëGreat Moderationí sample is given by the period 1985q1-2008q3 and
will be denoted as ëpost-1985í sample throughout this section.
The Örst-step of the ëLRT ! ART í testing strategy requires computing the ëfull-

informationí LRT (L̂0-s) test discussed in Sub-section 3.1. As is common in the literature,
we pre-Öx the nominal level of signiÖcance at the 10% level (O1=0.10). The log-likelihood
maximization algorithm is inspired to the grid-search approach discussed in BÂrdsen and
Fanelli (2014). Table 2 summarizes the results of the LRT (L̂0-s) test on the ëpre-Volckerí
and ëpost-1985í samples, respectively. In the upper panel of Table 2, we summarize the
projected 90% conÖdence intervals for the individual elements of 6s derived from the
identiÖcation-robust conÖdence set C$LR0:90 (see eq. (21)) and the point estimate of 6s. The
projected conÖdence intervals are computed using Dufourís (1997) method. In the lower
panel, we indicate whether the grid-testing procedure leads to an empty or nonempty
identiÖcation-robust conÖdence set, and report the value of LRT (L̂0-s) associated with
;6s;ML and corresponding p-value.
Table 2 suggests two important facts. First, the CER that the new-Keynesian sys-

tem implies under determinacy are Örmly rejected on the ëpre-Volckerí sample (the set
C$LR0:90 is empty), and are Örmly accepted on the ëpost-1985í sample by the data (the set
C$LR0:90 is nonempty and the p-value associated with the ëleast rejectedí model is 0.36).
We reject the hypothesis of determinacy on the ëpre-Volckerí sample and do not reject
the hypothesis H 0

0 in eq. (15) on the ëpost-1985í sample. Despite we can not interpret
the result relative to the chosen ëGreat Moderationí regime as conclusive evidence of
determinacy (see the discussions in Sub-section 2.3 and Sub-section 3.3), our inference is
su¢cient to rule out the scenario according to which the U.S. business cycle was driven
by sunspot expectations extraneous to fundamental shocks. Interestingly, the fact that
the CER entailed by the hypothesis of determinacy are not rejected on the period
1985q1-2008q3, suggests an implicit non-rejection of the new-Keynesian system (1)-(4)
on that sample. Second, the 90% projected identiÖcation-robust conÖdence intervals for
the policy (feedback) parameters '~y and '$ are surprisingly tighter than the conÖdence
sets documented by e.g. Mavroeidis (2010). In particular, the estimation of the value
of the parameter '$, which captures the systematic reaction of the Federal Reserve to
ináation, has attracted a lot of attention. The debate has been intense also because of
the lack of precision surrounding the estimates of such parameter. A prominent exam-
ple in the literature is represented by Mavroeidis (2010). He convincingly shows that,
in a single-equation context, the estimation of '$ tends to be imprecise, and the formal
evidence in favor of an aggressive systematic policy response to ináation is scant. Possi-
ble reasons include (a) the absence of sunspot shocks under determinacy, which implies
a lower volatility of ináation and output and, therefore, a harder identiÖcation of the
systematic relationship between the policy rate and the policy relevant-macroeconomic
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variables, and (b) a higher degree of interest rate smoothing, which limits the reaction
of the policy rate in presence of shocks hitting ináation and output. Interestingly, our
empirical analysis allows us to formally rule out any role for sunspot áuctuations in
the ëpost-1985í period on the one hand, and a fair amount of interest rate smoothing
(ranging from 0.569 to 0.697, according to our 90% conÖdence interval) by the Federal
Reserve, on the other hand. Importantly, our identiÖcation-robust approach does not
lead us to reject the correct speciÖcation of the speciÖed new-Keynesian model during
the ëGreat Moderationí. Our Öndings are particularly important in light of a recent pa-
per by Cochrane (2011), who argues that the parameters of Taylor-type rules like that
in eq. (3) are not identiÖable in prototypical new-Keynesian models. Cochrane (2011),
however, considers formulations of the new-Keynesian system which are ëless involvedí,
from a dynamic standpoint, than our ëhybridí model in eq.s (1)-(4). Table 2 shows
that the ëfull-informationí approach delivers relatively tight conÖdence sets not only for
'~y and '$, but also for $ (intertemporal elasticity of substitution), ) (indexation to
past ináation), and * (slope of the NKPC), which are notoriously di¢cult to estimate
precisely from the data.15

We then proceed with the ëlimited-informationí second-step of the ëLRT ! tRT í
testing strategy, which requires the inversion of the Anderson and Rubin-type ART (;6s)
test for the OR implied by the system of Euler equations (1)-(4) on the ëpre-Volckerí
sample. Recall, indeed, that the CER implied by the new-Keynesian model under the
hypothesis of determinacy have been rejected by the data on the ëpre-Volckerí sample.
The second-step is conducted to establish whether the rejection of the hypothesis of
determinacy can be ascribed to the multiple equilibria hypothesis, or to the inability
of the estimated system to capture the propagation mechanisms at work in the data.
For completeness, we invert the ART (;6s) test not only on the ëpre-Volckerí sample, but
also on the ëpost-1985í sample, albeit this calculation would not be required by our
testing strategy (recall that we have accepted the new-Keynesian system on the ëpost-
1985í sample in the previous step). We pre-Öx the nominal type-I error O2 at the level
O2=0.10.
The results of this second-step are summarized in Table 3. In the upper panel, we

report the projected conÖdence intervals for the individual elements of 6s derived with
Dufourís (1997) method from the identiÖcation-robust conÖdence set C$AR0:90 , along with
the point estimate obtained from the problem in eq. (29) replacing CAR1!<2 with C

$AR
0;90 .

In the lower panel, we indicate whether the grid-testing procedure leads to an empty
or nonempty identiÖcation-robust conÖdence set and, in the second case, we report the
value of the test statistic associated with the point estimate 6̂s;LI and corresponding
p-value.
Table 3 shows that the new-Keynesian model is not rejected by the ART (;6s) test on

the ëpre-Volckerí sample (the set C$AR0:90 is nonempty and the p-value associated with the

15It can be noticed that some of the elements of +̂s;ML (Öfth column of Table 2) lie exactly on the
boundaries of the corresponding intervals used to deÖne the grid (e.g. the point estimate of &). This
is perfectly consistent with the identiÖcation-robust inference approach, see, e.g., Dufour et al. (2006,
2009, 2010, 2013).
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ëleast rejectedí model is 0.14). As expected, we also Önd that the new-Keynesian model
is not rejected by the ART (;6s) test on the ëpost-1985í sample (the set C$AR0:90 is nonempty
and the p-value associated with the ëleast rejectedí model is 0.37). This is a ëreassuringí
result, as it corroborates the outcome obtained with the LRT (L̂0-s) test in the Örst-step.
Moreover, if we compare the projected identiÖcation-robust conÖdence intervals built
with the ëfull-informationí method (sixth column of Table 2) with the corresponding
intervals built with the ëlimited-informationí method (sixth column of Table 3), we Önd
that the former are remarkably more informative than the latter. This result conÖrms
that ëfull-informationí methods designed to deal with identiÖcation failure provide more
precise information than ëlimited-informationí approaches.
By combining the evidence in Table 3 with that in Table 2, we argue that if one

interprets the U.S. business cycle through the lens of the estimated (and not rejected)
new-Keynesian system (1)-(4), any inference based on Önite-order structural VARs on
the ëpre-Volckerí sample is inherently misspeciÖed. Indeed, our test suggests that the
ërightí time series model for Xt:=(~yt; &t; Rt)0 on the ëpre-Volckerí period belongs to the
class of VARMA-type systems in eq.s (11)-(12). Accordingly, any Önite-order VAR for
Xt would represent a truncated approximation to the actual equilibrium and might in
principle return largely incorrect estimates of the impulse response function and the
parameters of interest; see e.g. Ravenna (2007) for a similar point.
Overall, we can conclude that the ëLRT ! ART í testing strategy leads us to accept

the hypothesis of indeterminacy (H 0
1 in eq. (16)) on the ëpre-Volckerí sample, for which

the set C$LR0:90 is empty and the set C$AR0:90 is nonempty, and not to reject the hypothesis
H 0
0 in eq. (15) on the ëGreat Moderationí sample, for which the set C$LR0:90 is nonempty.

Our conclusions are consistent with the occurrence of a policy switch in the late 1970s.
Our prior-free approach maximizes the role attached to the data in determining these
results.16

6 Relation to the literature

Our paper has several connections with the literature. On the methodological side, our
analysis is related to the recent works of Guerron-Quintana et al. (2013) and Dufour et
al. (2013) on identiÖcation-robust frequentist inference in DSGE models. The Örst-step
of our testing procedure is essentially based on the pointwise inversion of the likelihood

16An approximate and purely indicative measure of the extent of the change characterizing the pa-
rameters of the model across the two regimes can be broadly obtained by comparing the identiÖcation-
robust conÖdence intervals and the point estimates reported in Table 2 and Table 3. For instance,
we Önd that as for the parameters $ (intertemporal elasticity of substitution) & (indexation to past
ináation), '" (long run reaction to ináation) and '" (ináation shock persistence), the ëfull-informationí
point estimates computed on the ëpost-1985í sample (see the Öfth column of Table 2) do not lie within
(or lie on the border of) the corresponding ëlimited-informationí identiÖcation-robust conÖdence inter-
vals computed on the ëpre-Volckerí sample (see the fourth column of Table 3). Evidence of instability
in the parameters of the private sector, other than the policy parameters, has also been found, among
others, by Canova (2009), Inoue and Rossi (2011a), Canova and Menz (2011), Canova and Ferroni
(2012), Castelnuovo (2012a), and Cantore et al. (2013).
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ratio test proposed by Guerron-Quintana et al. (2013) as a tool to build identiÖcation-
robust conÖdence sets for the structural parameters. Our methodology is also connected
to the contributions by Stock and Wright (2000), Kleiberger and Mavroeidis (2009) and
Dufour et al. (2006, 2009, 2010, 2013), among others. Indeed, conditional on the Örst-
step, the second-step of the suggested testing strategy requires the pointwise inversion
of an Anderson Rubin-type test for the OR implied by the system of Euler equations.
Compared to Fanelli (2012), who proposes a test for determinacy/indeterminacy in
new-Keynesian models controlling for the omission of propagation mechanisms, our
procedure is robust to identiÖcation failures and can be applied regardless of the strength
of identiÖcation. Moreover, the logic of the test and its properties are completely
di§erent: while we test the OR in the system of Euler equations only if the CER
obtained under determinacy are rejected in the Örst-step, in Fanelli (2012) the CER
obtained under determinacy are tested in a second-step, conditionally on the OR implied
by the system of Euler equations not being rejected in the Örst-step.
Finally, it worth stressing that our testing approach is not related to situations in

which the agents know that an economy áuctuates between determinate and indeter-
minate states driven by a Markov-switching process as in e.g. Farmer et al. (2009).
On the empirical side, Lubik and Schorfheide (2004) test for determinacy in the U.S.

economy with a model similar to ours, by undertaking a Bayesian investigation in which
posterior weights for the determinacy and indeterminacy regions of the parameter space
are constructed and compared. Our paper implements a frequentist approach, which
neither requires the use of a-prior distributional assumptions, nor the commitment to
non-standard inference. In particular, we are not forced to choose a prior distribution
for some arbitrary auxiliary parameters that index the multiplicity of solutions under
rational expectations as in Lubik and Schorfheide (2004). With respect to Boivin and
Giannoni (2006), our method is based on the direct estimation of the structural new-
Keynesian model and provides a direct control for the cases of identiÖcation failure and
dynamic misspeciÖcation. Hence, we need not minimize the distance between some
selected impulse responses taken from a VAR modeling the macroeconomic variables
of interest and the structural model-based responses, a methodology which is unfortu-
nately bias-prone as for expectations-based models like ours (Canova and Sala, 2009).
More importantly, we need not make restrictive assumptions on the solution under in-
determinacy, as opposed to the MSV solution assumed by Boivin and Giannoni (2006).
While being plausible, such solution is anyhow arbitrary, and it may importantly a§ect
the simulated moments of interest (Castelnuovo, 2012b).
Mavroeidis (2010) applies identiÖcation-robust ëlimited-informationí methods to in-

vestigate the determinacy/indeterminacy of U.S. monetary policy conditional on the
estimation of the policy rule in isolation. Compared to Mavroeidis (2010), we inves-
tigate the issue of macroeconomic stability of U.S. monetary policy by using a fully
speciÖed ëhybrid new-Keynesian modelí ‡ la Benati and Surico (2009), and apply a
testing strategy which combines ëlimited-í and ëfull-informationí methods and is robust
to identiÖcation failure. Mavroeidis (2010) conjectures that the di§erence between the
(precise) conÖdence intervals in the ëpre-Volckerí period and the (imprecise) ones in the
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ëpost-Volckerí phase may be interpreted as (a) absence of sunspot áuctuations during
the ëGreat Moderationí; (b) increase in the policy inertia; (c) larger variability of the
policy shocks during the Örst years of the Volcker era. Our methodology formally shows
that sunspot áuctuations are unlikely to have played a role during the ëGreat Modera-
tioní. We therefore o§er statistical support to Mavroeidisí conjecture (a). Di§erently,
we do not Önd clear evidence in favor of an increase in the policy inertia when moving
from our Örst to our second sub-sample. However, the conÖdence interval surrounding
the point estimate of the degree of interest rate smoothing during the ëGreat Moder-
ationí does not exclude Mavroeidisí second conjecture (b) either. Finally, our ëGreat
Moderationí sub-sample begins in 1985, i.e., after the end of the ëVolcker experimentí
related to the targeting of non-borrowed reserves by the Federal Reserve. Hence, our re-
sults are not necessarily driven by a large volatility of the policy shocks, whose variance
has drastically reduced since 1985 (see Mavroeidis (2010), Figure 3 - left panel). More
importantly, however, we show that, when applying a system based ëfull-informationí
approach designed to handle weak identiÖcation, the precision of the estimates obtained
for the ëGreat Moderationí sample is higher than the one achieved via a single-equation
approach.

7 Concluding remarks

This paper has proposed and implemented a novel identiÖcation-robust approach to
test the null hypothesis that a fully speciÖed small-scale new-Keynesian monetary pol-
icy model has a reduced form consistent with the unique stable solution, versus the
alternative of indeterminacy. The testing strategy is designed such that when the null
hypothesis is rejected, a second-step is run to establish whether the rejection is due to
the occurrence of multiple equilibria or to the omission of relevant propagation mecha-
nisms from the speciÖed system of structural Euler equations. Our methodology can be
applied regardless of the strength of identiÖcation of the structural parameters, and it
requires neither the use of prior distributions nor that of nonstandard inference. Hence,
our procedure works in favor of reducing the degree of arbitrariness of our empirical
results.
We have applied our novel methodology to a standard dataset of U.S. macroeconomic

data by using the new-Keynesian framework recently employed by Benati and Surico
(2009) as our reference structural model. The results of our testing strategy conform to
the case of a switch from indeterminacy to a framework consistent with determinacy,
in correspondence to the advent of Paul Volcker as Chairman of the Federal Reserve.
Nevertheless, it is not possible to claim that our analysis supports the hypothesis of a
unique equilibrium after Volcker. With respect to Mavroeidis (2010), who works with
a single-equation ëlimited-informationí approach, we Önd tighter conÖdence bands for
our estimated parameters. We attribute this di§erence to the ëfull-informationí nature
of the Örst-step of our robust test and to the fact that the estimated new-Keynesian
model is not rejected by the data on the ëGreat Moderationí period.
To be clear, our Öndings, which line up with a number of previous contributions in
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the literature, are consistent with, but do not necessarily point to, the ëgood policyí
explanation of the U.S. Great Moderation. In light of the recent Önancial crisis, our
analysis as for the period mid-1980s-onwards may very well be over. When enough data
become available, our methodology will help to shed further light on this issue.
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TABLES
Table 1. Empirical size of the ëLRT! ART í testing strategy when the data are generated

from the new-Keynesian system (5)-(6) under the hypothesis H 0
0 in eq. (15).

ëtrueí 60;s T=100 O1=0.10

=max(G(60;s)):=0.964 Interpret. 6̂s;ML Avg. proj. 90% c.i. & grid int.

"0:=0.744 IS, forward looking term 0.694
(0.206)

[0.728-0.784] [0.688-0.822]

$0:=0.124 IS, inter. elast. of substitution 0.117
(0.038)

[0.113-0.141] [0.090-0.160]

)0:=0.059 NKPC, indexation past ináation 0.058
(0.026)

[0.047-0.081] [0.030-0.099]

*0:=0.044 NKPC, slope 0.041
(0.013)

[0.039-0.051] [0.035-0.056]

+0:=0.834 Rule, smoothing term 0.747
(0.224)

[0.772-0.841] [0.515-0.877]

'ey;0:=1.146 Rule, reaction to output gap 0.925
(0.434)

[0.705-1.237] [0.383-1.610]

'$;0:=1.749 Rule, reaction to ináation 1.463
(0.637)

[1.228-1.917] [0.700-2.570]

+ey;0:=0.796 Output gap shock, persistence 0.729
(0.215)

[0.765-0.818] [0.738-0.834]

+$;0:=0.418 Ináation shock, persistence 0.378
(0.126)

[0.356-0.462] [0.300-0.520]

+R;0:=0.404 Policy rate shock, persistence 0.371
(0.125)

[0.354-0.453] [0.289-0.518]

Rej(LRT (L̂-̂s;ML
))=0.079 Rej(LRT (L̂-s;0))=0.121

NOTES. Results are obtained using M=1,000 replications. Each simulated sample is initi-
ated with 200 additional observations to get a stochastic initial state and then are discarded.
The structural parameters are calibrated to the medians of the posterior distributions reported
in Table 1 of Benati and Surico (2009), column ëAfter the Volcker stabilizationí. The numerical
inversion of the LRT (L̂0-s) test for the CER (Örst-step) is obtained on each generated dataset

by considering 300 points /+s randomly chosen (using the uniform distribution) from the grid
delimited by the rectangle formed by the Cartesian product of the intervals reported in the
last column. ë+̂s;MLí is the point estimates of 6s obtained from the problem in eq. (22) replac-
ing CLR1!<1with C

$LR
0:90 , and the associated values in parentheses are the corresponding Monte

Carlo standard errors. ëAverage proj. 90% c.i. & grid intervalsí reports the average projected
90% conÖdence interval computed as in Dufour (1997) and the actual intervals used for the
individual structural parameters in the grid testing procedure. ëRej(%)í stands for ërejection
frequencyí. LRT (L̂-s;0) is the test statistic for the hypothesis H0;cer in eq. (20) evaluated at

the speciÖc point /+s= +s;0.
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Table 2. Projected 90% identiÖcation-robust conÖdence intervals, point estimates of the
structural parameters 6s:=("; $; ); *; +; '~y; '$; +~y; +$; +R)

0 and results of the Örst-step of the
ëLRT! ART í testing strategy on U.S. quarterly data.

1954q3-1979q2 ëpre-Volckerí 1985q1-2008q3 ëGr. Moder.í

Parameter Interpretation 6̂s;ML proj. 90% c.i. 6̂s;ML proj. 90% c.i.
" IS, forward looking term - - 0.729 0.652-0.772
$ IS, inter. elast. of substitution - - 0.082 0.082-0.154
) NKPC: indexation past ináation - - 0.020 0.020-0.059
* NKPC: slope - - 0.048 0.042-0.098
+ Rule, smoothing term - - 0.666 0.569-0.697
'ey Rule, reaction to output gap - - 0.339 0.127-0.479
'$ Rule, reaction to ináation - - 5.439 2.318-5.445
+ey Output gap shock, persistence - - 0.920 0.720-0.978
+$ Ináation shock, persistence - - 0.925 0.748-0.970
+R Policy rate shock, persistence - - 0.794 0.730-0.806

identiÖcation-robust c.s. C$LR0:90 empty nonempty
(card(C"LR0:90 )=15)

9max(G(+̂s;ML)) " 0.946

LRT (L̂-̂s;ML
) test (Örst-step) " 19.54

[0.36]

NOTES. The projected 90% identiÖcation-robust conÖdence intervals (proj. 90% c.i.)
have been obtained from the 90% identiÖcation-robust conÖdence set C$LR0:90 (see eq. (30)) as
in Dufour (1997). The set C$LR0:90 has been obtained by inverting numerically the LRT (L̂0-s)

test considering 5,000,000 points /+s chosen randomly (using the uniform distribution) from
the rectangle formed by the Cartesian product of the following intervals: [0.65, 0.85] for ",
[0.08, 0.16] for $, [0.02, 0.10] for ), [0.04, 0.10] for *, [0.50, 0.70] for +, [0.05, 1.5] for '~y,
[0.5, 5.5] for '$, [0.40, 0.98] for +~y; +$ and +R. ë+̂s;MLí is the point estimate derived from the

problem in eq. (22) replacing CLR1!<1 with C
$LR
0:90 . LRT (7̂-̂s;ML

) correspondes to the value of the

test statistics obtained in correspondence of the ëleast rejectedí model within C$LR0:90 . P-values
in brackets. Estimation on each sub-period is carried out by considering within-periods initial
values and variables are demeaned within each sub-period.
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Table 3. Projected 90% identiÖcation-robust conÖdence intervals, point estimates of the
structural parameters 6s:=("; $; ); *; +; '~y; '$; +~y; +$; +R)

0 and results of the second-step of
the ëLRT! ART í procedure on U.S. quarterly data.

1954q3-1979q2 ëpre-Volckerí 1985q1-2008q3 ëGr. Moder.í

Parameter Interpretation 6̂s;LI proj. 90% c.i. 6̂s;LI proj. 90% c.i.
" IS: forward looking term 0.841 0.660-0.845 0.821 0.650-0.850
$ IS: inter. elast. of substitution 0.088 0.084-0.160 0.132 0.080-0.160
) NKPC: indexation past ináation 0.025 0.020-0.070 0.097 0.020-0.099
* NKPC: slope 0.042 0.040-0.058 0.087 0.040-0.100
+ Rule, smoothing term 0.520 0.500-0.698 0.699 0.500-0.700
'ey Rule, reaction to output gap 0.138 0.050-0.325 0.295 0.050-1.043
'$ Rule, reaction to ináation 0.687 0.500-0.906 2.123 0.500-5.499
+ey Output gap shock, persistence. 0.900 0.620-0.964 0.911 0.400-0.980
+$ Ináation shock, persistence. 0.578 0.414-0.793 0.907 0.400-0.980
+R Policy rate shock, persistence 0.798 0.565-0.916 0.795 0.674-0.980

identiÖcation-robust c.s. C$AR0:90 nonempty
(card(C"AR0:90 )=26)

nonempty
(card(C"AR0:90 )=41891)

9max(G(+̂s;LI)) 1.012 0.965

ART (6̂s;LI) test (second-step) 24.44
[0.14]

19.27
[0.37]

NOTES. The projected 90% identiÖcation-robust conÖdence intervals (proj. 90% c.i.)
have been obtained from the 90% identiÖcation-robust conÖdence set C$AR0:90 (see eq. (31))
as Dufour (1997). The conÖdence sets have been obtained by inverting the test ART (/+s)
(second-step); in practice, ART (/+s) is computed as a quasi-LR test using Zt:=(X

0
t!1; X

0
t!2)

0

in the auxiliary multivariate regression system (26), considering 5,000,000 points /+s randomly
chosen (using the uniform distribution) from the rectangle formed by the Cartesian product
of the same intervals as in Table 2 and imposing the condition 9max(G(/+s))>1 on the 1954q3-
1979q2 period. ë+̂s;LI í is the point estimate derived the problem in eq. (29) by replacing CAR1!<2
with C$AR0:90 . ART (+̂s;LI) reports the value of the test statistics obtained in correspondence of
the ëleast rejectedí model within C$AR0:90 . P-values in brackets. Estimation on each sub-period
is carried out by considering within-periods initial values and variables are demeaned within
each sub-period.
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Technical Supplement of "Monetary Policy Inde-
terminacy and IdentiÖcation Failures in the U.S.:
Results from a Robust Test" by Efrem Castelnuovo
and Luca Fanelli

Introduction

In this supplementary material, we (i) specify all assumptions underlying the new-
Keynesian system analyzed in the paper, (ii) derive its reduced form solutions, (iii)
formalize some asymptotic properties of the ëLRT ! ART í testing strategy and (iv)
complete the Monte Carlo experiment presented in the paper with further results.

Structural model, assumptions and time series rep-
resentations

The structural model is given by

(0Xt = (fEtXt+1 + (bXt!1 + !t (32)

!t = )!t!1 + "t , "t #WN(0;*") (33)

where the matrices (0, (f , (b, ) and *" depend nonlinearly on the m ' 1 vector of
structural parameters 6, Xt is the vector of modeled variables, !t stands for the vec-
tor of autoregressive stochastic processes hitting the system, and "t is the vector of
orthogonal martingale di§erences which we interpret as structural shocks. The space of
all theoretically admissible values of 6 is denoted by P and is assumed to be compact.
Expectations are conditional on the information set Ft, i.e. Et%:=E(% j Ft). We consider
the partition 6:=(60s, 6

0
")
0, where the sub-vector 6" contains the non-repeated, non-zero

elements of vech(*"). Given the partition 6:=(6
0
s, 6

0
")
0, we also consider the correspond-

ing partition of the parameter space P:=P-s 'P-" :The true value of 6, 60:=(6
0
0;s, 6

0
0;")

0,
is an interior point of P.
Throughout the paper it will be maintained that dim(Xt) = dim("t):=n > 1: More-

over, we use the notations ëA(6)í and ëA:=A(6)í interchangeably to indicate that the
elements of the matrix A depend nonlinearly on the structural parameters 6. In our
setup, (0:=(0(6s), (f :=(f (6s), (b:=(b(6s), ):=)(6s) and *":=*"(6"):
We consider the following assumptions.

Assumption 1 The matrix (&0 :=((0+)(f ) is non-singular and ) is stable; the matrix
((&0 " (f.c;1) is non-singular, where .c;1:=.c;1(6) is a 3' 3 matrix.

Assumption 2 For 6 2 P, any reduced form solution to system (32)-(33) is covariance
stationary.
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Using some algebra, system (32)-(33) can written in the form

(&0Xt = (fEtXt+1 + (
&
b;1Xt!1 + (

&
b;2Xt!2 + "&t (34)

(&0 :=((0 + )(f )

(&b;1:=((b + )(0)

(&b;2:=" )(b

where the ëcompositeí structural disturbance "&t :="t + )(fOt, Ot:=(Xt " Et!1Xt) is a
Martingale Di§erence Sequence (MDS) with respect to Ft, because of the MDS property
of Ot:
We rewrite system (34) in canonical form (Binder and Pesaran, 1995). To do this,

deÖne the 2n ' 1 state vectors 1Xt:=(X 0
t; X

0
t!1)

0 and 1"t:=("&0t ; 0
0
n#1)

0, and then express
the system in the form

1(01Xt =1(fEt1Xt+1 +1(b1Xt!1 +1"t (35)

where

1(0:=
'

(&0 0n#n
0n#n In

(
, 1(f :=

'
(f 0n#n
0n#n 0n#n

(
, 1(b:=

'
(&b;1 (&b;2
In 0n#n

(
:

By inverting 1(0 (Assumption 1) in system (35) we obtain

1Xt = 1DEt1Xt+1 + 1B1Xt!1 + 1wt (36)

where 1D:=1(!10 1(f , 1B:=1(
!1
0
1(b and 1wt:=1(!10 1"t: In general, the matrices 1D and 1B can be

singular.

A solution to system (36) is any process
n
1X$
t

o1
t=0
such that (a) the quantity Et1X$

t+1

exists and (b) when 1Xt:=1X$
t is substituted into the model, the equations of the system

are veriÖed at any time t for given initial conditions 1X0:=(X 0
0; X

0
!1)

0: If
n
1X$
t

o1
t=0

is a

solution of system (36), then Xt:=H 1X$
t , where H:=[In , 0n#n], is a known selection

matrix, will be a solution to system (34). We deÖne a reduced form solution of system
(32)-(33) any member of the solution set such thatXt can be expressed as linear function
of "t, lags of Xt and "t, and possibly other components which are function of MDSs with
respect Ft. The reduced form solution is ëstableí if the companion matrix associated
with the companion form representation of the reduced form solution is stable. We call
stable a matrix that has all eigenvalues inside the unit disk, and ëunstableí a matrix
that has at least one eigenvalue outside the unit disk. Thus, denoting with =max(%) the
absolute value of the largest eigenvalue of the matrix in the argument, the condition
=max(A(6))<1 holds for stable matrices, and =max(A(6))>1 for unstable ones. The
reduced form solution is ëuniqueí if it time series representation involves only Xt and
"t, and the conditional distribution of Xt given Ft!1 depends only on 6.
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Before presenting our main results, we sketch some features of the solution method

used in the paper. Following Binder and Pesaran (1995), given a solution
n
1X$
t

o1
t=0
, we

assume that 1Xt:=1X$
t is decomposed into two components, i.e.

1Xt:=1XB;t + 1XF;t (37)
1XB;t:=1.1Xt!1 (38)

where the process
n
1XB;t

o1
t=0

represents the ëbackwardí part of the solution, and the

process
n
1XF;t

o1
t=0

is its ëforwardí part. In particular, 1XF;t is assumed to be a solution

to the ëCagan multivariateí model

1XF;t = 1CfEt1XF;t+1 + 1C01wt (39)

for given choice of the matrices 1Cf :=1Cf (6) and 1C0:=1C0(6).
Eq.(38) posits that 1XB;t obeys an autoregressive scheme. The 2n ' 2n matrix 1.

must be real and stable under Assumption 2. Assumption 2 also ensures that only
non-explosive stable solutions of system (39) will be considered. From eq.(38) it turns
out that

Et1XF;t+1 = Et1Xt+1 "1.1Xt (40)

so using eq.(40) in eq.(36), yields

1XB;t + 1XF;t = 1D[Et1XF;t+1 +1.1Xt] + 1B1Xt!1 + 1wt

and this system can be re-arranged in the form

(I2n " 1D1.)1XF;t = 1DEt1XF;t+1 + (1D1.
2 "1.+ 1B)1Xt!1 + 1wt: (41)

We observe that if there exists a stable matrix 1., denoted with 1.c, which satisÖes the
restriction

1D1.2c "1.c + 1B = 02n#2n; (42)

then the system of equations (41) collapses to

(I2n " 1D1.c)1XF;t = 1DEt1XF;t+1 + 1wt (43)

and can be expressed in the ëCagan multivariateí form in eq.(39) if the matrix (I2n"1D1.c)
is invertible.
Inspection of the block structure of the matrices in eq.(42) shows that the form of

the matrix 1.c is given by

1.c=
'
.c;1 .c;2
In 0n#n

(
(44)

where .c;1:=.c;1(6) and .c;2:=.c;2(6) depend on 6, while

(I2n " 1D1.c)=
'
In "

/
(&0
0!1

(f.c;1 "
/
(&0
0!1

(f.c;2
0n#n In

(
:
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This matrix is non-singular by Assumption 1, hence we can re-write the system (43) in
the multivariate Cagan form in eq.(39) based on

1Cf :=(I2n " 1D1.c)!11D=
'
G(6) 0n#n
0n#n 0n#n

(
(45)

1C0:=(I2n " 1D1.c)!1 (46)

where G(6):=((&0"(f.c;1)!1(f . It turns out that the stability/instability of the matrix
G(6) determines the stability/instability of 1Cf and therefore the solution properties of
the system: Note that G(6) = G(6s), i.e. the G(%) matrix does not depend on the
parameters 6" associated with the covariance matrix of the structural shocks.
We can now prove our main results. We report below two propositions and one

corollary. Proposition 1 posits that for a given 6s=;6s, the condition =max(G(;6s))<1 is
su¢cient for the existence of the Önite-order VAR solution for Xt discussed in Sub-
section 2.2 of the paper. Proposition 2 establishes that for a given 6s=;6s, the condition
=max(G(;6s))>1 is su¢cient for the existence of the VARMA-type indeterminate reduced
form solutions for Xt discussed in Sub-section 2.3 of the paper. Finally, Corollary 1
proves that the inequality =max(G(;6s))>1 is also necessary for the existence of the class
of VARMA-type reduced form solutions.

Proposition 1 [Su¢cient condition for the Önite-order VAR reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2. If for 6s=;6s,
=max(G(;6s))<1, the reduced form solution is stable and can be represented as the
Önite-order VAR

(In " .c;1(;6s)L" .c;2(;6s)L2)Xt = /(;6s)
!1"t (47)

where L is the lag/lead operator (LhXt:=Xt!h), X0 and X!1 are Öxed initial
conditions, .c;1(;6s) and .c;2(;6s) are sub-matrices of the stable matrix 1.c in eq.
(44) which solves the quadratic matrix equation

1(f1.
2
c "1(01.c +1(b = 02n#2n; (48)

and /(;6s):=((0 " (f.1(;6s)): The solution in eq.(47) is also unique according to
our deÖnition.

Proof (heuristic). The condition =max(G(;6s))<1 implies =max(1Cf )<1 which in turn
implies that 1Cf is absolutely summable. Under this condition, the unique sta-
ble (ëbubbles-freeí) solution of system (39) based on 1Cf :=(I2n " 1D1.c)

!11D and
1C0:=(I2n " 1D1.c)!1, is given by

1XF;t=
1X

j=0

+
1Cf

,j
1C0Et1wt+j=1C01wt=(I2n " 1D1.c)!11wt:
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Using eq.s (37)-(38) and 1wt:=1(!10 1"t, one obtains

1Xt=1.c(6)1Xt!1 + (1(0 "1(f1.c)!11"t:

In matrix form, this system reads

'
Xt

Xt!1

(
=

'
.c;1(6) .c;2(6)
In 0n#n

('
Xt!1

Xt!2

(
+

'
A "(f.c;2
0n#n In

(!1'
"&t
0n#1

(

where A:=((&0 "(f.c;1), .c;1 = .c;1(6), and .c;1(6) and .c;2(6) are obtained from
the matrix 1.c in eq. (44), i.e. the stable matrix that solves eq. (48). Considering
the Örst block of n equations of this system, we infer that the reduced form solution
must be such that Ot:=Xt "Et!1Xt=A!1"&t . Using the deÖnition "

&
t :="t +)(fOt

(see system (35)), we obtain the relationship AOt=("t + )(fOt) which, solved for
"t, gives:

"t=AOt " )(fOt=(A" )(f )Ot=((
&
0 " (f.c;1 " )(f )Ot

=((0 + )(f " (f.c;1 " )(f )Ot = ((0 " (f.c;1)Ot=/Ot:

In light of this relationship, the quantity Ot:=Xt " Et!1Xt is equivalent to

Xt " Et!1Xt = /(;6s)
!1"t , /(;6s):=((0 " (f.c;1):

Using the lag operator, the equation above is equivalent to system (47). This
solution does not involve extra parameters other than 6 and extra shock terms
other than "t, hence it is unique according to our deÖnition.!

Proposition 2 [Su¢cient condition for the VARMA-type ind. reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2. If for 6s=;6s,
=max(G(;6s))>1 and all eigenvalues of the matrix )(;6s)(f (;6s)M(;6s;  )A(;6s)!1 de-
Öned below are di§erent from 1, there are multiple stable solutions which can be
represented in the form:

(I3"3(;6s)L)(I3".c;1(;6s)L".c;2(;6s)L2)Xt = (M(;6s;  )"3(;6s)L)V (;6s;  )!1"t+G t
(49)

G t:=(M(;6s;  )" 3(;6s)L)V (;6s;  )!1P (;6s)Ht + P (;6s)Ht: (50)

In eq.s (49)-(50), L is the lag/lead operator (LhXt:=Xt!h), X0, X!1 and X!2

are Öxed initial conditions; Ht:=(0
0
n1#1; s

0
t)
0 and st is a n2 ' 1 vector (n2:=n" n1,

n2 , n) of MDS called sunspot shocks; .c;1(;6s) and .c;2(;6s) are sub-matrices
of the stable matrix .c which solves eq.(42); the matrices 3(;6s), M(;6s;  ) and
V (;6s;  ) are deÖned by

3(;6s):=P (;6s)
'
0n1#n1 0n1#n2
0n2#n1 2!12

(
P!1(;6s) , M(;6s;  ):=P (;6s)

'
In1 0n1#n2
0n2#n1 4

(
P!1(;6s)
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V (;6s;  ):=A(;6s)" )(;6s)(f (;6s)M(;6s;  )

where A:=((&0 " (f.c;1); 4 is a n2 ' n2 matrix containing arbitrary auxiliary
parameters unrelated to ;6s, and the non-singular n' n matrix P (;6s) is obtained
from the Jordan normal form of G(;6s) :

G(;6s):=P (;6s)
'

21 0n1#n2
0n2#n1 22

(
P!1(;6s)

where 21 is the n1'n1 Jordan normal block that collects the eigenvalues of G(;6s)
that lie inside the unit disk and 22 is the n2'n2 Jordan normal block that collects
the eigenvalues of G(;6s) that lie outside the unit disk.

Proof (heuristic). We Örst re-write system (39) with 1Cf and 1C0 given in eq.s (45)-
(46), obtaining

1XF;t = (I2n " 1D1.c)!11DEt1XF;t+1 + (I2n " 1D1.c)!11wt:

This system has the block structure
'
XG
F;t

0n#1

(
=

'
G(;6s) 0n#n
0n#n 0n#n

('
XG
F;t!1
0n#1

(
+

'
A!1 (A!1 " (f.c;2)
0n#n 0n#n

('
"&t
0n#1

(

so that the condition =max(G(;6s))>1 implies =max(1Cf )>1. The solution is therefore

determined by the solution to the sub-system

XG
F;t = G(;6s)EtX

G
F;t+1 +A

!1"&t : (51)

We now consider the Jordan normal form of the matrix G(;6s):

G(;6s):=P
'

21 0n1#n2
0n2#n1 22

(
P!1 (52)

where P :=P (;6s) is non-singular, 21 is the normal Jordan block that collects the
n1:=n"n2 eigenvalues of G(;6s) that lie inside the unit circle, and 22 is the normal
Jordan block that collects the eigenvalues that lies outside the unit circle. Using
eq.(52), system (51) reads

XG
F;t = P

'
21 0n1#n2

0n2#n1 22

(
P!1EtX

G
F;t+1 +A

!1"&t

and can be transformed into

P!1XG
F;t =

'
21 0n1#n2

0n2#n1 22

(
P!1EtX

G
F;t + P!1A!1"&t
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and Önally partitioned in the form

n1 ' 1
n2 ' 1

'
XG1
F;t

XG2
F;t

(
=

'
21 0n1#n2

0n2#n1 22

(
Et

'
XG1
F;t+1

XG2
F;t+1

(
+

'
#G1t
#G2t

(
(53)

where '
XG1
F;t

XG2
F;t

(
:=P!1XG

F;t ,
'
#G1t
#G2t

(
:=P!1A!1"&t : (54)

Note that the term on the right in eq. (54) is a MDS with respect to Ft like "&t :
The Örst block of n1 equations of system (53) is given by

XG1
F;t = 21EtX

G1
F;t+1 + #G1t (55)

and can be regarded as a special case of the multivariate Cagan model of system
(39) (1Cf :=21, 1C0:=In1). Moreover, since 21 contains only stable eigenvalues, the
solution to sub-system (55) is given by

XG1
F;t = #G1t : (56)

The second block of n2 equations of system (53) is given by

XG2
F;t = 22EtX

G2
F;t+1 + #G2t (57)

and, given the non-singularity of 22, can be re-written in the form

XG2
F;t+1 = 2

!1
2 XG2

F;t " 2
!1
2 #G2t + O2;t+1

where we have used the decomposition O2;t:=X
G2
F;t+1 " EtX

G2
F;t+1. Since both O2;t

and #G2t are MDS with respect to Ft, the linear relationship between these two
components can be speciÖed in the form

O2;t = 4#
G2
t + st (58)

where 4 is an n2 ' n2 matrix of arbitrary auxiliary parameters, i.e., unrelated
to 6, and st is a MDS with respect to Ft which can be orthogonal to #G2t . By
substituting eq.(58) in eq.(57) and lagging variables, the system reads as a stable
VARMA(1,1)-type process:

XG2
F;t = 2

!1
2 XG2

F;t!1 " 2
!1
2 #G2t!1 +4#

G2
t + st (59)

By coupling sub-systems (56) and (59), the solution is given by

XG1
F;t = #G1t

XG2
F;t = 2!12 XG2

F;t!1 " 2
!1
2 #G2t!1 +4#

G2
t + st
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and is equal, using matrix notation, to
'
XG1
F;t

XG2
F;t

(
=

'
0n1#n1 0n1#n2
0n2#n1 2!12

('
XG1
F;t!1

XG2
F;t!1

(
+

'
In1 0n1#n2
0n2#n1 4

('
#G1t
#G2t

(

+

'
0n1#n1 0n1#n2
0n2#n1 2!12

('
#G1t!1
#G2t!1

(
+

'
0n1#1
st

(
:

Exploiting the mappings in eq.s (54), this system can be also expressed in the
form

XG
F;t = P (;6s)

'
0n1#n1 0n1#n2
0n2#n1 2!12

(
P (;6s)

!1XG
F;t!1+P (

;6s)

'
In1 0n1#n2
0n2#n1 4

(
P (;6s)

!1A!1"&t

+ P (;6s)

'
0n1#n1 0n1#n2
0n2#n1 2!12

(
P (;6s)

!1A!1"&t!1+P (
;6s)Ht

(60)
where Ht:=(0

0
n1#1; s

0
t): Eq.(60) can be further simpliÖed by

XG
F;t = 3(

;6s) X
G
F;t!1 +M(;6s; *)A

!1"&t " 3(;6s)A
!1"&t!1 + P (;6s)Ht (61)

where the matrices 3(;6s) and V (;6s; *) are deÖned by

3(;6s):=P
'
0n1#n1 0n1#n2
0n2#n1 2!12

(
P!1 , M(;6s;  ):=P

'
In1 0n1#n2
0n2#n1 4

(
P!1:

(62)
In terms of 1XF;t:=(XG0

F;t; 0
0
n#1)

0 and1"t:=("&0t ; 0
0
n#1)

0, the solutions in eq.(61) read

'
XS
F;t

0n#1

(
=

'
3(;6s) 0n#n
0n#n 0n#n

('
XG
F;t!1
0n#1

(
+

'
M(;6s; *)A

!1 0n#n
0n#n 0n#n

('
"&t
0n#1

(

"
'
3(;6s)A

!1 0n#n
0n#n 0n#n

('
"&t!1
0n#1

(
+

'
P (;6s)Ht
0n#1

(

and can be compacted in the canonical form

1XF;t = 131XF;t!1 + 1M1)1"t " 131)1"t!1 +1Pt (63)

where1Pt:=(H
0
tP

0; 00n#1)
0 and

13:=
'
3(;6s) 0n#n
0n#n 0n#n

(
, 1M :=

'
M(;6s;  ) 0n#n
0n#n 0n#n

(
, 1):=

'
A!1(;6s) 0n#n
0n#n 0n#n

(
:

By combining eq.(63) with eq.(38), the solutions can be compacted in the expres-
sion

1Xt = (13 +1.)1Xt!1 " 13 1.1Xt!2 + 1M1)1"t " 131)1"t!1 +1Pt (64)
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which, using the lag operator, is equivalent to

(I2n " 13L)(I2n "1.L)1Xt = ( 1M " 13L)1)1"t +1Pt: (65)

The sub-system delimited by the Örst n equations of system (65) is given by

(In"3(;6s)L)(In".1(;6s)L".2(;6s)L2)Xt = (M(;6s; *)"3(;6s)L)A!1"&t +P (;6s)Ht:
(66)

Since in this model the forecast error Ot:=Xt " Et!1Xt has structure

Ot:=Xt " Et!1Xt:=MA!1"Rt + PHt;

from the deÖnition "&t :="t + )(fOt and the assumption that all the eigenvalues
of the matrix )(;6s)(f (;6s)M(;6s;  )A(;6s)!1 are di§erent from 1, it is possible to
obtain the relationship

"&t :=(In " )(fMA
!1)!1("t + )(fG t)

=(In " )(fMA!1)!1"t + (In " )(fMA!1)!1)(fPHt:

If this expression is substituted into the right-hand side of eq. (66), rearrang-
ing terms and using the deÖnitions V (;6s;  ):=A(;6s) " )(;6s)(f (;6s)M(;6s;  ) and
G t:=[M(;6s;  )"3(;6s)L]V (;6s;  )!1P (;6s)Ht+P (;6s)Ht, we obtain the representation
in eq.s (49)-(50). !

Corollary 1 [Necessary condition for a VARMA-type reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2. Assume that
all stable linear reduced form solutions of interest are given either by the VAR
system (47) or by the VARMA-type system (49)-(50), respectively. If for a given
6s=;6s the data generating process belongs to the class of VARMA-type reduced
forms in Eqs. (49)-(50) and Minimum State Variable (MSV) solutions are ruled
out, then =max(G(;6s))>1.

Proof. Proposition 1 establishes that for 6s=;6s, the condition =max(G(;6s))<1 is suf-
Öcient for the existence of the Önite-order VAR representation in eq.(47). By
negation, any non-MSV reduced form solution described by the class of models in
eq.s (49)-(50) must satisfy, for 6s=;6s, the condition =max(G(;6s))>1. !

We remark that =max(G(;6s))<1 is not necessary for the existence of the Önite-order
VAR representation in eq. (47). To see this, it is su¢cient to observe the MSV solution
nested within system (49)-(50) for 4=In2 and st=0n2#1 a.s. 8t, collapses to system (47)
but is such that =max(G(6))>1.
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Asymptotic properties of the testing strategy

In this section, we formalize some asymptotic properties of the ëLRT ! ART í testing
strategy discussed in Sub-section 3.3 of the paper.
For convenience, the hypotheses H 0

0 and H0;cer in, respectively, eq. (15) and eq. (20)
of the paper, are reported below:

H 0
0 : Xt is generated by the VAR system (47) under the CER in eq. (48); (67)

there exists 6" such that H0;cer: L0-s=g(
;6s; 6") , 6s = ;6s 2 P-s . (68)

H0;cer is the composite null hypothesis that the CER implied by the new-Keynesian
system are valid for a given 6s=;6s. We recall that H 0

0 is accepted if there exists at
least one 6s = ;6s such that H0;cer is not rejected; instead, H 0

0 is rejected only if H0;cer

is rejected for all values of the parameters. The alternative hypothesis of multiple
equilibria, H 0

1 (eq. (16) of the paper), is also reported here:

H 0
1 : Xt is generated by the VARMA-type system (49)-(50) (69)

where 6$ 2 I0 and:

I0:=
%
6$:=(60;  0; 0+04 )

0, 6s 2 PI-s ,  2 N n
%
vec(I(n2)2)

&
, 0+4 2 Zn f06#1g

&
4 I; (70)

I:=
%
6$:=(60;  0; 0+04 )

0, 6s 2 PI-s ,  2 N , 0
+
4 2 Z

&
:

It can be noticed that the alternative H 0
1 is speciÖed such that MSV equilibria are

ruled out, see Section 2 of the paper. The logic upon which the ëLRT ! ART í approach
is based is summarized in Table TS1.
By construction, the size of our testing strategy, i.e. the probability of rejecting

H 0
0 when H

0
0 is true, depends on the test LRT (L̂-s) computed in the Örst-step. Let

PLR-s;T [%] be the probability measure associated with the distribution of the LRT (L̂-s)
test in a sample of length T . The notation ëPLR-s;T [%]í remarks that in small samples the
distribution of LRT (L̂-s) generally depends on 6s. However, underH0;cer, the asymptotic
null distribution of the test is pivotal and is N2d1 with d1:=dim(L)" dim(6"), regardless
of whether 6s is identiÖed or not, see e.g. Guerron-Quintana et al. (2013). Therefore,
deÖned the size of the LRT (L̂0-s) test for the hypothesis H0;cer in a sample of length T
by

O01;T := sup
0-s2P,s

PLR0-s;T [LRT (L̂0-s) : c&1T ]; (71)

where c&1T is the critical value of the test at the nominal level 0<O1<1,
17 for ;6s = 60;s it

holds
O01;1:=lim sup

T!1
O01;T = O1 (72)

17In the deÖnition of the size ;01;T in eq. (71), we have not restricted the parameter space to the
determinacy region, because the hypothesisH0;cer may also hold for points that lie in the indeterminacy
region and for which MSV solutions occur. We thank a referee for bringing this point to our attention.
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which implies that the test LRT (L̂0-s) has correct asymptotic size forH0;cer. This ensures
that the identiÖcation-robust conÖdence set reported in eq. (21) of the paper has
asymptotic coverage 1" O1.
However, the hypothesis we are actually interested in is H 0

0. H
0
0 is rejected if and

only if there is no 6s = ;6s for which the test LRT (L̂0-s) accepts the CER. Therefore, the
asymptotic size of the test for H 0

0 is given by

O1;1:=lim sup
T!1

O1;T , O1;T :=P
LR
0-s;T

"
min
0-s2P,s

LRT (L̂0-s) : c&1T

#
: (73)

The next proposition establishes that the LRT (L̂0-s) test is asymptotically correct for
H 0
0, with asymptotic size at most O1.

Proposition 3 [Asymptotic size for H 0
0] Consider the new-Keynesian system in eq.s

(32)-(33), and the ëLRT ! ART í testing strategy summarized in Sub-section 3.3
of the paper. Let 60:=(6

0
0;s; 60;")

0 2 P be the true value of 6. Under H 0
0 and for

;6s=60;s, the LRT (L̂-0;s) test is such that O1;1 , O1, where O1 is a pre-Öxed type-I
error.

Proof Since PLR0-s;T

h
min0-s2P,s LRT (L̂0-s) : c&1T

i
, PLR0-s;T

h
LRT (L̂0-s) : c&1T

i
, for ;6s=60;s we

have

PLR0-0;s;T

"
min
0-s2P,s

LRT (L̂0-s) : c&1T

#
, O01;T (74)

Taking the limsup and using eq. (72) we obtain the result:!

Proposition 3 ensures that the identiÖcation-robust conÖdence set reported in eq.
(30) of the paper:

C$LR1!<1
:=
)
;6s 2 G$-s , LRT (L̂0-s) < c

<1
=2d1

*

has asymptotic coverage at least 1" O1:
When the null H 0

0 is rejected, a second-step is run to decide whether the alternative
hypothesis of multiple equilibriaH 0

1 must be accepted, or rejected. If alsoH
0
1 is rejected,

we conclude that the speciÖed system of Euler structural equations omits important
propagation mechanisms. The second-step of the ëLRT ! ART í procedure is based on
the test ART (;6s) for the hypothesis H0;spec in eq. (23) of the paper, here reported for
convenience:

H0;spec: 6s=;6s , ;6s 2 P-s : (75)

The hypothesis H 0
1 is accepted if there exists at least one 6s=;6s such that H0;spec is

not rejected; instead, H 0
1 is rejected if and only if H0;spec is rejected for all values of

the parameters. Using the same arguments we have used for the test LRT (L̂0-s) test
in Proposition 3 and exploiting the results in Dufour et al. (2006, 2009, 2010, 2013),
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it is possible to conclude that asymptotically, the probability of incorrectly rejecting
the hypothesis H 0

1 by the ART (;6s) test is bounded above by the nominal type-I error
pre-Öxed in the second-step, O2: Thus, the identiÖcation-robust conÖdence set reported
in eq. (31) of the paper,

C$AR1!<2
:=
)
;6s 2 D$-s , ART (;6s) < c

<2
=2d2

*

where D$-s :=
n
;6s 2 P-s , =max(G(;6s))>1

o
, has asymptotic coverage at least 1" O2:

Finally, as observed in Remark 4 of the paper (Sub-section 3.3), the hypothesis
of no dynamic misspeciÖcation of the new-Keynesian system is given by H$ = H 0

0_
H 0
1. The sequence of tests LRT (L̂0-s) and ART (

;6s) can be used as a (mis)speciÖcation
test for H$: when the LRT (L̂0-s) test rejects H

0
0 in the Örst-step and the ART (;6s) test

rejects H 0
1 in the second-step, the new-Keynesian model is rejected; the new-Keynesian

model is instead accepted either when the LRT (L̂0-s) test accepts H
0
0 in the Örst-step,

or when the LRT (L̂0-s) test rejects H
0
0 in the Örst-step but the ART (;6s) test accepts H

0
1

in the Örst step. The next proposition establishes that, asymptotically, the probability
that the ëLRT ! ART í testing strategy incorrectly rejects H$ is bounded above by the
maximum of the nominal type-I errors O1 and O2 pre-Öxed for the LRT (L̂0-s) test and
the ART (;6s) test, respectively:

Proposition 4 [Asymptotic size for the null of no dynamic misspeciÖcation]
Consider the new-Keynesian system in eq.s (32)-(33), and the ëLRT ! ART í test-
ing strategy summarized in Sub-section 3.3 of the paper. Let 60:=(6

0
0;s; 60;")

0 2 P
be the true value of 6. Under H$ = H 0

0_ H 0
1 and for ;6s=60;s, the asymptotic

probability of incorrectly rejecting H$ is bounded above by maxfO1 , O2g.

Proof Let R1;T :=
n
min0-s2P,s LRT (L̂0-s) : c&1T

o
and R2;T :=

n
min0-s2P,s ART (

;6s) : c&2T

o
.

From Proposition 3 we know that for ;6s=60;s,

Pr(R1;T j H 0
0):=lim sup

T!1
PLR-0;s;T

"
min
0-s2P,s

LRT (L̂0-s) : c&1T

#
, O1:

Similarly,

Pr(R2;T j H 0
1):=lim sup

T!1
PLR-0;s;T

"
min
0-s2P,s

ART (;6s) : c&2T

#
, O2:

Then

Pr(reject H$ j H$)=Pr(R1;T^R2;T j H$) , max fPr(R1;T ^R2;T j H 0
0) , Pr(R1;T ^R2;T j H

0
1)g

, max fPr(R1;T j H 0
0) , Pr(R2;T j H

0
1)g , max fO1 , O2g :!
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Further Monte Carlo results

In this section we complete the Monte Carlo experimentation provided in the paper, by
discussing further results on the Önite sample properties of the ëLRT ! ART í testing
strategy. In Sub-section .1 we consider the power of the test against some speciÖc non-
MSV equilibria that belong to the class of time series model in eq.s (49)-(50) (see also the
hypothesisH 0

1 in eq. (16) of the paper and Section ). In Sub-section .2 we investigate the
power of the test against the hypothesis of omission of relevant propagation mechanisms
from the speciÖed system of Euler equations.
Before discussing the Önite sample power of the ëLRT ! ART í testing strategy, it

is worth coming back on the results reported in Table 1 of the paper about empirical size.

In the Örst-step, we build the identiÖcation-robust conÖdence set C$LR1!<1
:=
)
;6s 2 G$-s , LRT (L̂0-s) < c

<1
=2d1

*
,

where G$-s is the grid used to invert the LRT (L̂0-s) test for the CER. The hypothesis H
0
0

is rejected at the pre-Öxed level O1 if C$LR1!<1
is empty, and it is accepted otherwise. Obvi-

ously, C$LR1!<1
is empty when LRT (L̂-̂s;ML

):=min-s2G",s LRT (L̂0-s) : c
<1
=2d1
. It turns out that

under the assumption of correct speciÖcation, which in our case includes the hypothesis
that the chosen parametric grid G$-s contains the true value 6s;0, the following inequality
holds:

LRT (L̂-̂s;ML
):= min

0-s2G",s

LRT (L̂0-s) , LRT (L̂-s;0):

This inequality suggests that whatever the method one uses to invert the test, the
empirical rejection frequency associated with LRT (L̂-s;0), which is the test statistic for
the hypothesis H0;cer in eq. (20) of the paper evaluated at the speciÖc point 6s = 6s;0, is
an upper bound for the size of the grid-testing procedure for H 0

0. Thus, Table 1 of the
paper also reports the empirical size of the test LRT (L̂-0;s), other than the empirical
size for the hypothesis of interest, H 0

0:

.1 Power against indeterminate equilibria

We recall that the ëLRT ! ART í testing strategy rejects the null H 0
0 (see eq. (15) in

the paper) when the LR test computed in the Örst-step rejects the CER implied by the
new-Keynesian model under determinacy.
The data generating processes used in this experiment are selected from the VARMA-

type reduced form solutions in eq.s (49)-(50) for speciÖc values of the structural and
auxiliary parameters. In this case, we can only provide limited Monte Carlo experimen-
tation because, given the structural parameters and the fundamental shocks, the choice
of  and 0+4 is completely arbitrary. To simplify the analysis, we follow Lubik and
Schorfheide (2004) and Fanelli (2012) and focus on the situation in which the sunspot
shocks are set to zero, i.e. 0+4 :=06#1 () G t:=03#1 a.s. 8 t) in eq.s (49)-(50). This sce-
nario is often referred to as ëindeterminacy without sunspotsí. The rejection frequency
of the testing strategy is expected to increase when also the sunspot shocks are allowed
to a§ect the dynamics of the system.
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The vector 60;s:=(6
0
0;s; 6

0
0;")

0 is calibrated at the medians of the 90% coverage per-
centiles of the posterior distribution reported in Table 1 of Benati and Surico (2009),
ëBefore October 1979í column. With this choice, the largest eigenvalue of the matrix
G(60;s) is equal to =max(G(60;s))=1.0051 and only one eigenvalue lies outside the unit
circle, so that  is scalar. We consider three possible values for  : 0.95, 1.05 and
0.5. The choices  =0.95 and  =1.05 are deliberately close to the case  =1 that gen-
erates MSV solutions observationally equivalent to the unique stable equilibrium, see
Sub-section 2.3 of our paper.18

ArtiÖcial datasets of length T=100 are generated from system (49)-(50) which, after
the qualiÖcations discussed above, reads as a ëpureí VARMA(3,1) system with highly
restricted parameters. In this experiment, it is also interesting to investigate the em-
pirical size of the test ART (;6s) computed in the second-step of the testing strategy.
The test ART (;6s) is by construction robust to determinacy/indeterminacy, hence we
can check whether the empirical size of this test is conÖned to admissible levels for the
speciÖc DGPs under scrutiny. We Öx the nominal type-I errors of the two tests, O1 and
O2, at the level O1 = O2:=0.10.
The results are summarized in Table TS2. We observe that the rejection frequency

of the LRT (L̂0-s) test for the CER computed in the Örst-step is reasonably good even
when the speciÖed indeterminate reduced form solution is close to the MSV solution:
the empirical power is 67.5% for  =0.95 and 76.9% for  =1.05, and is 100% for the
selected indeterminate equilibrium more distant from the MSV solution ( =0.50). The
rejection frequency of the ART (;6s) test, instead, is to some extent ináuences by the
value taken by the nuisance parameter  which, recall, may amplify or dampen the
oscillations of the variables in Xt through the moving average part of system (49), in
addition to what implied by the fundamental shocks. In samples of size T=100, the
empirical size of the computed ART (;6s) test ranges from 7.3% for  =0.95 to 12.5% for
 =0.50, and is equal to 8% for  =1.05, as opposed to the pre-Öxed type-I error of 10%.
We can conclude that the under(over)-rejection phenomenon is conÖned to admissible
levels.

.2 Power against the omission of propagation mechanisms

When the hypothesis H 0
0 (see eq. (15) in the paper) is rejected in the Örst-step, and

the hypothesis H 0
1 (see eq. (16) in the paper) is rejected in the second-step, the

ëLRT ! ART í testing strategy leads one to conclude that the speciÖed system of Euler
equations is ëdynamically misspeciÖedí in the sense that it omits important propagation
mechanisms. This situation occurs when the two identiÖcation-robust conÖdence sets
in eq. (30) and eq. (31) of the paper are empty. In this sub-section, we analyze the
rejection frequency of the testing strategy in these situations.
The data generating process is assumed to belong to the reduced form solutions

18Aside from these Önite sample simulations, we deliberately ignore testing issues at the boundary
of H 0

1 and H
0
0.
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associated with the ëaugmentedí system of Euler equations:

(&0Xt = (fEtXt+1 +

k2X

h=2

(f;hEtXt+h + (
&
b;1Xt!1 + (

&
b;2Xt!2 +

k1X

j=3

(b;jXt!j + "Rt (76)

which, compared to the baseline system (34), includes (k1 " 2) additional lags of Xt

associated with the matrices of parameters (b;j 6= 0n#n, j = 3; ::; k1, (k1 : 3), and
(k2"1) additional expectations terms associated with the matrices of parameters (f;h 6=
0n#n, h = 2; ::; k2, (k2 : 2): All reduced form models discussed in Section are (non-
locally) misspeciÖed if at least one among (b;j, j = 3; ::; k1 and (f;h, h = 2; ::; k2 is
di§erent from zero, and the data generating process belongs to the class of reduced
form solutions generated by system (76).
We conÖne our attention to a version of system (76) where the matrices (0, (f , (b

and ) have the same structure as in Section 2 of the paper, and (f;h:=03#3 for h : 2 and
k1:=3;with (b;3:=]I3. With this design, the (scalar) parameter ] captures the extent
of the (non-local) misspeciÖcation of the theoretical model. The ëextendedí vector
of parameters is given by 6e:=(60s; ]; 6

0
")
0. When ] = 0, no dynamic misspeciÖcation

occurs in the sense that the system (76) collapses to the baseline new-Keynesian model
summarized in eq. (34). Conversely, values of ] di§erent from zero and for which a
reduced form solution to system (76) exists, deÖne a data generating process for which
the ëLRT ! ART í testing strategy based on system (34) leads one to reject both H 0

0

and H 0
1.

ArtiÖcial samples of length T = 100 (not including initial lags) are generated from
system (76) under determinacy, by calibrating 6s as in Table 1 of the paper, and setting
the extra parameter ] to values for which a Önite-order VAR solution exists. We
consider M = 1; 000 replications. The identiÖcation-robust ëLRT ! ART í procedure is
applied on each simulated sample, using O1 = O2 = 0:10 as nominal type-I errors of the
two tests. Results are reported in Table TS3 which summarizes the marginal rejection
frequencies of the tests LRT (L̂-̂s;ML

) (see eq. (22) of the paper) and ART (6̂s;LI) (see eq.
(29) of the paper), and their joint rejection frequency.
Table TS3 shows that the rejection frequency of the testing strategy tends to in-

crease, as expected, as the magnitude of the misspeciÖcation parameter j]j increases.
The marginal rejection frequency of the LRT (L̂0-s) test for H

0
0 ranges from 58.9% for

] = "0:10, to 100% for ] = "0:35, and is equal to 84.4% and 98.8% for ] = "0:15 and
] = "0:25, respectively. Therefore the risk of falsely accepting a reduced form solution
with the same time series representation as the determinate equilibrium in a dynam-
ically misspeciÖed model is under strict control. The marginal rejection frequency of
the test ART (;6s) for H 0

1 ranges from 54.4% for ] = "0:10, to 88.9% for ] = "0:35,
and is equal to 63.9% and 80.9% for ] = "0:15 and ] = "0:25, respectively. We notice
that the marginal rejection frequency of the LRT (L̂0-s) test is systematically larger than
the marginal rejection frequency of the ART (;6s) test, conÖrming Westís (1986) Öndings
that when linear rational expectations models are misspeciÖed, ëfull-informationí tests
tend to be more powerful than ëlimited-informationí tests.
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The joint rejection frequency ranges from 40.6% for ] = "0:10, to 0.88.9% for
] = "0:35, and is equal to 58.9% and 80.4% for ] = "0:15 and ] = "0:25, respectively.
Overall, the results in Table TS3 suggest that the capacity of the ëLRT ! ART í testing
strategy to reject the hypotheses H 0

0 and H 0
1 when the new-Keynesian model omits

important propagation mechanisms is satisfactory.
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TABLES
Table TS1. Summary of the ëLRT! ART í testing strategy for the new-Keynesian system

(32)-(33).

Step 1: LRT (L̂-̂s;ML
) test rejects the CER (C$LR1!<1

empty) ?

YES NO

Step 2: ART (+̂s;LI) test rejects the OR (C
$AR
1!<2

empty) ?

YES NO H 0
0 in eq. (67) accepted

Omission of H 0
1 in eq. (69) accepted

propagation Indeterminacy

Non conclusive evidence
of determ.

(sunspot shocks and
param. indet. ruled out)

mechanisms
new-Keynesian model rejected new-Keynesian model accepted new-Keynesian model accepted
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Table TS2. Empirical power of the ëLRT! ART í testing strategy against indeterminate
equilibria and empirical size of the ART (/+s) test in the second-step.

true 60;s :
=max(G(60;s)):=1.0051 T=100 O1=O2=0.10

"0:=0.744 Indeterminacy param. :  =0.95

$0:=0.124 Rej(LRT (L̂-̂s;ML
))=0.675

)0:=0.059 Rej(ART (+̂s;LI))=0.073
*0:=0.044
+0:=0.595
'ey;0:=0.527
'$;0:=0.821  =1.05

+ey;0:=0.796 Rej(LRT (L̂-̂s;ML
))=0.769

+$;0:=0.418 Rej(ART (+̂s;LI))=0.08
+R;0:=0.404

 =0.50 Rej(LRT (L̂-̂s;ML
))=1

Rej(ART (+̂s;LI))=0.125

NOTES. Results are obtained using M=1,000 replications. Each simulated sample is initi-
ated with 200 additional observations to get a stochastic initial state and then are discarded.
The data are generated from the new-Keynesian system (32)-(33) under indeterminacy, see
eq.s (49)-(50), assuming that the sunspot shocks are absent, i.e. 0+4 = 0. The structural pa-
rameters are calibrated to the medians of the posterior distributions reported in Table 1 of
Benati and Surico (2009), column ëBefore October 1979í. The numerical inversions of the
tests in the two steps of the procedure are obtained on each generated dataset by drawing
300 points /+s from the same grid and method as in Table 1 of the paper.  is the auxil-
iary parameter that governs the ëparametric indeterminacyí of the system. The test statistic
ART (+̂s;LI) is computed as a quasi-LR test (see Sub-section 3.2 of the paper, eq. (29)), using

Zt:=(X 0
t!1; X

0
t!2; :::; X

0
t!r)

0 and r = 7 in the auxiliary multivariate regression. LRT (L̂-̂s;ML
)

is computed as in eq. (22) of the paper. Rej(%) stands for ërejection frequencyí.
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Table TS3. Empirical power of the ëLRT! ART í testing strategy when the data are
generated from the new-Keynesian system (76) with (f;h:=03#3 for h : 2 and k1:=3;and
(b;3:=]I3.

true 60;s :
T=100 O1=O2=0.10

"0:=0.744 misspeciÖcation param.: ]=-0.10

$0:=0.124 Rej(LRT (L̂-̂s;ML
))=0.625

)0:=0.059 Rej(ART (+̂s;LI))=0.568
*0:=0.044 Rej(ART (+̂s;LI) ; LRT (7̂-̂s;ML

))=0.432

+0:=0.595
'ey;0:=0.527 ]=-0.15

'$;0:=0.821 Rej(LRT (L̂0-s;ML
))=0.847

+ey;0:=0.796 Rej(ART (+̂s;LI))=0.645

+$;0:=0.418 Rej(ART (+̂s;LI) ; LRT (L̂0-s;ML
))=0.593

+R;0:=0.404
]=-0.25

Rej(LRT (L̂-̂s;ML
))=0.985

Rej(ART (+̂s;LI))=0.810

Rej(ART (+̂s;LI) ; LRT (L̂-̂s;ML
))=0.804

]:=-0.35

Rej(LRT (L̂-̂s;ML
))=1

Rej(ART (+̂s;LI))=0.913

Rej(ART (+̂s;LI) ; LRT (L̂-̂s;ML
))=0.913

NOTES. Results are obtained using M=1,000 replications. Each simulated sample is initi-
ated with 200 additional observations to get a stochastic initial state and then are discarded.
ArtiÖcial datasets are generated from system (76) under determinacy, by calibrating 6s as in
Table 1 of the paper, and setting the extra parameter ] that governs the misspeciÖcation of
the model to values for which a Önite-order VAR solution exists. The numerical inversions
of the tests in the two steps of the procedure are obtained on each generated dataset by
drawing 300 points /+s from the same grid and method as in Table 1 of the paper. The test
statistic ART (+̂s;LI) is computed as a quasi-LR test (see Sub-section 3.2 of the paper, eq.
(29)), using Zt:=(X 0

t!1; X
0
t!2; :::; X

0
t!r)

0 and r = 7 in the auxiliary multivariate regression.

LRT (L̂-̂s;ML
) is computed as in eq. (22) of the paper. Rej(%) stands for ërejection frequencyí;

Rej(LRT (L̂-̂s;ML
) ; ART (+̂s;LI)) denotes the joint rejection frequency.
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