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We exploit inheritance episodes to provide novel causal evidence

on long-run saving dynamics. For identification, we combine a

panel of administrative wealth reports with the unexpected timing

of sudden parental deaths. After inheritance, net worth converges

towards the path established before parental death, and convergence

is faster for liquid assets. Using a generalized structural frame-

work, we show that buffer-stock and two-asset models can fit these

dynamics, but only if agents are impatient enough and have both

strong precautionary and post-retirement saving motives. Relative

to standard calibrations, such agents have at least 50 percent higher

precautionary savings for given total wealth.

Life-cycle consumption behavior has been a central area of research for the last

half century (Modigliani and Brumberg, 1954 and Friedman, 1957; later Deaton,

1991 and Carroll, 1997). Recent years have seen critical advances in understanding

the short-run dynamics of life-cycle models. Incorporating illiquid assets (Kaplan

and Violante, 2014) enables life-cycle models to match the empirical estimates of

short-run consumption responses out of small transitory (Shapiro and Slemrod,

2003; Johnson, Parker and Souleles, 2006; Parker et al., 2013) and permanent

(Aaronson, Agarwal and French, 2012) income shocks. However, while short-
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run consumption responses are key for counter-cyclical fiscal policies, most other

policy questions on social security, retirement benefits, insurance, and taxation

crucially require a good understanding of long-run saving dynamics.

Nevertheless, little empirical evidence exists on these long-run dynamics. As

a consequence, the literature typically calibrates life-cycle models by matching

only life-cycle wealth profiles. This paper is the first not only to provide causal

empirical evidence of the long-run saving dynamics following a large financial

windfall, but also to calibrate a life-cycle model able to match both the standard

life-cycle wealth profiles and these novel dynamics, to which we refer as shock

dynamics. By matching both wealth levels and shock dynamics, we draw new

insights on consumption-saving behavior over the life-cycle.

We exploit unexpected inheritance episodes and a unique panel dataset drawn

from seventeen years of third-party reported Danish administrative records on

individual wealth holdings, and estimate the causal effect of large windfalls on

wealth accumulation in the decade following parental death. To identify the causal

effect of inheritances, we exploit the random timing of sudden parental deaths due

to car crashes, other accidents, and unexpected heart attacks. We then compare

the behavior of individuals receiving an inheritance a few years apart from one

another.1

We analyze this experiment through the lens of a generalized structural model

of buffer-stock behavior—augmented with inheritance expectations—which nests

both the standard buffer-stock model (Deaton, 1991; Carroll, 1997) and a two-

asset model (distinguishing between liquid and illiquid assets, Kaplan and Vi-

olante, 2014) as special cases. We assess under which conditions these models

can replicate the long-run shock dynamics of saving estimated in our empirical

section, and show that matching these dynamics is crucial for determining the

relative roles of precautionary and post-retirement saving motives over the life-

1Fadlon and Nielsen (2015) exploit a similar identification strategy to estimate the effect of health
shocks on household labor supply.
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cycle.

The paper contributes to the literature on life-cycle consumption and saving

models by presenting and discussing two main novel findings. First, we show

that heirs respond to a sudden, salient, and sizable increase in available financial

resources by decreasing their saving efforts in the ten years after inheriting, and

that the net worth of the heirs converges back towards the path established before

parental death. Overall, only about a third of the initial increase in net worth

remains nine years after parental death. Moreover, the convergence patterns of

different wealth components differ substantially. While heirs quickly deplete their

excess of liquid assets, financing consumption or investments in real estate and

financial instruments, accumulated wealth in housing equity, stocks, bonds, and

mutual funds persist longer over time.

Second, we show that buffer-stock and two-asset models can fit both the life-

cycle patterns of wealth levels and the shock dynamics of saving estimated in

our empirical analysis. However, this fit is possible only for sufficiently impatient

agents with both a strong precautionary saving motive (e.g., due to risk aversion,

additional income and financial risk, and exaggerated beliefs about uncertainty)

and additional motives to save for retirement besides consumption smoothing

(e.g., bequests and longevity risk). High impatience is necessary for fitting the

observed long-run shock dynamics of saving. Because high impatience implies

less wealth accumulation, strong precautionary and post-retirement saving mo-

tives are necessary for matching the life-cycle profile of wealth. In our generalized

structural framework we are able to adjust the precautionary and post-retirement

saving motives independently and parsimoniously by exploiting parameters inter-

pretable as reduced-form quantities.

Relative to standard parametrizations, models able to fit both the life-cycle

profile of wealth and the long-run shock dynamics of saving imply that the level

of precautionary savings increases by at least 50 percent holding total wealth

constant. This higher fraction indicates that frictions in mechanisms able to
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counter income risk, such as financial markets and unemployment insurance, carry

higher welfare costs. Similarly, rational agents begin to accumulate assets for

retirement (and bequest) purposes much later in life.

Moreover, we show that wealth adjustment behavior after a sizable shock pro-

vides orthogonal information with respect to consumption responses at the mar-

gin. A standard two-asset model calibrated to our data—which implies an average

short-run marginal propensity to consume (MPC) of 42 percent—is as unable to

fit our causal estimates of long-run wealth adjustment dynamics as a standard

buffer-stock model—which implies a short-run MPC of 16 percent. A calibrated

buffer-stock model with strong precautionary and post-retirement saving motives

is able to fit both wealth levels over the life-cycle and wealth dynamics after a

large financial shock while implying an average MPC of 24 percent.2

This paper also complements the literature studying consumption responses out

of liquidity (Gross and Souleles, 2002; Leth-Petersen, 2010) and wealth changes.3

With respect to the shocks typically studied in this literature, inheritance has

the combined advantage of being a sizable, salient, and sudden windfall. Inheri-

tance not only releases enough financial resources to allow intensive and extensive

margin responses in both the financial (Andersen and Nielsen, 2011) and housing

markets, but also requires no effort or any degree of financial sophistication for

agents to be aware of it. Moreover, by focusing on medium- and long-run effects,

we complement the existing short-run estimates of the elasticity of consumption

on wealth (Paiella and Pistaferri, 2016) and housing equity (Mian, Rao and Sufi,

2013; Kaplan, Mitman and Violante, 2016).

Inheritance provides more than a useful experiment for identifying how saving

behavior reacts to financial windfalls. It also plays a critical role role as a vehi-

cle of intergenerational wealth transmission (Bowles and Gintis, 2002; Boserup,

2A similarly calibrated two-asset model is also able to fit both wealth levels and shock dynamics of
saving and implies an average MPC of 43 percent.

3Estimates of wealth effects have been performed with both aggregate (Lettau and Ludvigson, 2001;
Lettau, Ludvigson and others, 2004) and household-level data (Juster et al., 2006; Browning, Gørtz
and Leth-Petersen, 2013; Paiella and Pistaferri, 2016). Jappelli and Pistaferri (2010) provide a detailed
review of the evidence.
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Kopczuk and Kreiner, 2016) and driver of inequality (De Nardi, 2004; De Nardi

and Yang, 2014). Shapiro (2004) states that U.S. babyboomers are “ in the midst

of benefiting from the greatest inheritance of wealth in history”, amounting to ap-

proximately $9 trillion between 1990 and 2030 (Avery and Rendall, 1993, 2002).

Piketty (2011) estimates that in 2010 the flow of inheritance was about 15 percent

of national GDP in France.4 Understanding how inheritances affect individual

saving behavior can shed light on the impact of such colossal wealth flows on the

aggregate saving rate of an economy.

The remainder of the paper is organized as follows. Section I describes the data

we use in our analysis. Section II illustrates our identification strategy. Section III

presents our estimates of the causal effect of inheritance on wealth accumulation

in the long run. Section IV presents a general structural framework of buffer-stock

behavior augmented with rational inheritance expectations. Section V presents

our model calibrations and draws novel insights on the structure of saving motives

in life-cycle models. Section VI concludes.

I. Data

This paper exploits Danish administrative register data from 1995 through

2012.5 In a unique dataset we combine birth and mortality registers, individ-

ual tax returns, housing and land registers, and yearly third-party reports from

financial institutions on individual wealth holdings. For every individual in the

sample, yearly reports from financial institutions separately record the December

31 market value of liquid assets held in checking and savings accounts, debts with

and without collateral, and the sum of financial investments in stocks, bonds and

mutual funds. The combination of data on collateralized debts (chiefly mort-

gages) and data from the land and housing registers provides us with a measure

4Even excluding the wealthiest 1 percent of the population, between 1995 and 2010 Danes transferred
via inheritance an average of 26.5 billions Danish Kroner (DKK) every year, an amount equal to 1.6
percent of the 2010 country GDP. For further comparison, the 2009 Danish SP stimulus policy, designed
to stimulate aggregate consumption in response to the 2008 recession, released into the economy 23.3
billion DKK net of taxes (Kreiner, Lassen and Leth-Petersen, 2013).

5To construct a measure of permanent income we use tax returns from 1991 through 2012 .
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not only of wealth held in housing equity, but also of the number of housing units

(apartments, houses, summer homes) owned by each individual in the sample.

Moreover, we construct a measure of permanent income computed as a moving

weighted average of disposable income after tax and transfers over the previous

five years.

In our analysis we focus on individuals likely to inherit amounts large enough to

affect savings in the long run. Danish central authorities do not store information

on actual inheritance. Therefore, we exploit data on parental wealth at death

to identify individuals with large potential inheritance. We follow Andersen and

Nielsen (2011, 2012) and calculate a measure of potential inheritance by splitting

the wealth holdings of a deceased parent equally among his or her children, and

deducting inheritance tax accordingly.6 We then use this measure to identify our

estimation sample. More specifically, our main sample consists of heirs whose

parents die unmarried between 1995 and 2012, and for whom our measure of

potential inheritance is larger than their yearly permanent income. To estimate

the effect of inheritance on saving dynamics, we use the net worth of these heirs

as an outcome and the timing of parental death for identification. This approach

is similar to that adopted by Boserup, Kopczuk and Kreiner (2016) in studying

the role of inheritance in shaping wealth inequality in Denmark.

As we observe heirs for up to 10 years after parental death, we focus on indi-

viduals inheriting when aged between 25 and 50 years and thus always in working

age. We exclude the wealthiest 1 percent of the population because their inheri-

tance structure, saving motives and saving trajectories differ markedly from those

of the general population.

In our analysis we focus on unexpected inheritances, defined as those due to a

sudden death caused by either violent accidents (e.g. car crashes) or heart attacks

for people with no known history of cardiac disease. These deaths, identified

6Details on this calculation appear in Appendix D. This procedure for identifying heirs likely to
receive large inheritances has the advantage of circumventing the potential endogeneity of inheritance
if parents allocate bequests strategically among their children (Bernheim, Shleifer and Summers, 1985;
Francesconi, Pollak and Tabasso, 2015).
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according to the WHO’s ICD-10 codes, represent about 10 percent of all deaths

in the sample.7 We thus exploit a total of 6,286 heirs. Table 1 describes the

characteristics of heirs one year before parental death according to the type of

inheritance received. The first column pools all inheritance episodes in the sample.

The second and third columns progressively select inheritance episodes that are

unexpected and larger than one year of permanent income.

Table 1—Inheritance and heir characterization, one year before
parental death

All Unexpected inheritance

All
Sizable pot.
inheritance

Permanent income, 1000 DKK 207.628 202.391 205.363

Net worth, normalized 0.250 0.195 0.636

− Liquid assets, normalized 0.229 0.216 0.304

− Uncollateralized debts, normalized 0.596 0.585 0.515

− Financial investments, normalized 0.061 0.056 0.095

− Housing equity, normalized 0.556 0.508 0.752

− Housing value, normalized 1.895 1.776 2.166

− Mortgage, normalized 1.339 1.268 1.414

− Home owner 0.507 0.501 0.571

− Owner of 2+ units 0.051 0.046 0.058

Disposable income, 1000 DKK 212.878 207.583 210.379

Married 0.467 0.462 0.518

Year of inheritance 2003.669 2002.641 2002.609

Age at inheritance 39.890 39.307 40.615

Parental age at death 70.994 70.639 74.022

# individuals 223355 21750 6286

Note: Unexpected inheritances are those due to sudden parental death. Sizable potential inheritances
are those larger than one year of the permanent income of the heir. Permanent and disposable income
are in thousands DKK. In 2012 (December 31), one USD was equal to 5.64 DKK. All wealth measures
are normalized by permanent income.

7The ICD-10 codes defining a death as sudden are I21*-I22*, V*, X*, Y* and R96*.
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Table 1 shows that while heirs who receive unexpected inheritances receive

similar windfalls and are only slightly poorer than heirs receiving potentially

expected inheritances, inheritance size is not random in the population. Heirs who

are going to receive larger inheritances are wealthier even before a sudden parental

death. This difference, while important for correctly interpreting the results, is

consistent with earlier studies (Holtz-Eakin, Joulfaian and Rosen, 1993; Avery

and Rendall, 2002; Zagorsky, 2013). As a consequence, we restrict our analysis to

heirs receiving sizable inheritances, and use heirs receiving small or no bequests

as a placebo rather than as a control.

II. Identification

Estimating the causal effect of inheritance on wealth accumulation is challeng-

ing for three reasons. First, unlike extraordinary transitory income shocks such as

lottery winnings (Cesarini et al., 2015; Imbens, Rubin and Sacerdote, 2001), indi-

viduals may expect to receive an inheritance at some point in their life. Second,

heirs could predict the time of parental death, for example, in cases of terminal ill-

ness, and react to it in advance. Third, inheriting from a parent requires parental

death, an event that may affect individual wealth accumulation independently

from the wealth transfer.

The first challenge stresses the danger of comparing the behavior of heirs with

that of other individuals in the population, some of whom might already have

inherited and thus do not expect another such windfall in their lifetime. While

Andersen and Nielsen (2011, 2012) use a matching algorithm to find a suitable

control group of non-heirs for their sample of heirs, this strategy relies heavily

on the conditional independence assumption. To ensure the internal validity of

our results, we focus instead on a homogeneous sample that by construction has

similar expectations. All heirs in our sample inherit a comparable inheritance

between 1996 and 2012, and all know that they may inherit at some point in the

future. Thus they differ only in the timing of parental death. This identification
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strategy exploits the randomness in the timing of parental death and is similar

to that used by Fadlon and Nielsen (2015) to estimate the effect of health shocks

on household labor market supply and by Johnson, Parker and Souleles (2006),

Agarwal, Liu and Souleles (2007), and Parker et al. (2013) to estimate the effect

of tax rebates on short-term consumption.

To tackle the second concern and to ensure that heirs do not expect—and thus

react in advance to—parental death, we perform the main analysis on a sample

of heirs inheriting because of sudden deaths, as defined in Section I. Moreover,

the long panel of yearly wealth observations allows us to check for anticipatory

behavior by analyzing wealth accumulation trends in the years preceding parental

death.

To deal with the third challenge and show that parental death alone does not

affect the wealth accumulation strategies of heirs, we replicate our analysis on a

sample of heirs whose parents died with little or no wealth to leave as a bequest.

This placebo analysis reinforces the validity of our identification strategy: If our

strategy cleanly identifies the effect of inheritances, then the placebo should have

zero effect on wealth accumulation patterns in the medium and long run.
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(a) Average net worth by year of inheritance
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(b) Difference in net worth between groups

Figure 1. Identification strategy: An example

Note: The figure shows the average change with respect to 1999 in individual net worth of heirs inheriting
more than one year of their permanent income in 2000 and 2006 due to a sudden parental death. The
units of the vertical axes are years of permanent income.

Figure 1 illustrates our identification strategy. In the left panel of the figure we

9



compare the evolution of average net worth (normalized by permanent income) of

individuals inheriting more than one year of permanent income in 2000 and 2006,

respectively. In this example, individuals inheriting in 2000 represent the treated

group. Individuals inheriting in 2006 act as a natural control group through 2005.

Both groups inherit because of a sudden parental death. The right panel of Figure

1 shows the difference between the two groups, effectively identifying the effect

of receiving an inheritance in 2000 on wealth accumulation between 2000 and

2005. While after 2005 the control group is contaminated by its own treatment,

before 2000 the wealth accumulation paths of the two groups are statistically

indistinguishable, showing no evidence of anticipatory behavior.

The difference-in-differences (DiD) approach of Figure 1 works by eliminating

confounding year and group (or individual) fixed effects. However, this approach

exploits a limited subset of the information available in the data. To fully exploit

the available information while maintaining the identification of Figure 1, we

describe the wealth holdings y at year t of an individual i inheriting at time τ as

(1)

yi,t = γ<−51[t−τ<−5]+

−2∑

n=−5

γpren 1 [t− τ = n]+

9∑

n=0

γpostn 1 [t− τ = n]+Λi,t+Ψi+εi,t,

where Ψi and Λi,t are respectively individual and year-by-cohort fixed effects.

The reference category for the set of coefficients γpren and γpostn , which estimate

the effect of inheritance n years before and after parental death respectively, is one

year before parental death, or n = −1. In all estimations we allow for arbitrary

autocorrelation of errors εi,t within individuals.

Our approach can be viewed as an event study with separately identifiable year(-

by-cohort) fixed effects. However, while this approach maintains the identification

argument and the assumptions of a standard DiD, it has two advantages over the

DiD approach. First, for a given comparison of inheritance-year groups, we exploit

the ordered structure of dynamic effects to identify the effect of inheritance beyond
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the point in time at which the control group receives its inheritance.8 Second,

we can include all available data in the same estimation, thereby exploiting more

combinations across time of inheritance τ . More details on our identification

strategy, and on how it nests the approach of Fadlon and Nielsen (2015), appear

in Appendix A.

Our approach has two related consequences. First, effects for small n are iden-

tified by more combinations over τ . Our estimates are thus more precise as n

approaches zero. Therefore, we focus on the first 10 years after parental death

and exclude all observations for which n > 9, as after this period the estimation

is too imprecise for a meaningful interpretation of the results. Second, the control

group varies at each n. We show that the varying control group over n does not

drive our result by both performing a placebo estimation for individuals inherit-

ing small or zero wealth and replicating our results while enforcing a (balanced)

fixed control group over n (Fadlon and Nielsen, 2015). While more imprecisely

estimated, the results obtained following this second approach are virtually iden-

tical to those resulting from estimating equation (1) on the same sample. This

robustness check appears in Figure A.3 and Table A.1 in the Online Appendix.

III. The causal effect of inheritance

In this section, we estimate the causal effect of inheritance on long-run saving

dynamics and demonstrate the robustness of our results to alternative explana-

tions. We proceed in three steps. First, we present our main empirical results,

obtained on the sample of heirs for whom our measure of potential inheritance is

larger than a year of their permanent income. Second, we test the validity of our

identification strategy and exclude that parental death alone drives our results by

performing a placebo estimation on a sample of heirs for whom our measure of po-

8Intuitively, in Figure 1, this approach means decomposing the difference between groups in, e.g.,

2008 as the sum of γpost8 for the treated group and γpost2 for the control group. If the sequence of γpostn

is the same for heirs inheriting in different years and if γpost2 is identified by the group comparison in

2002, then γpost8 can also be identified.
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tential inheritance is smaller than a month of their permanent income. Third, we

exclude the possibility that confounding factors such as endogenous labor supply

responses or committed expenditures drive our results.
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Figure 2. The effect of inheritance on wealth accumulation

Note: The left panels of the figure show the estimated effects and 95 percent confidence intervals of large
unexpected inheritances on the accumulation of net worth and liquid assets respectively. The top right
panel shows the estimated effects and 95 percent confidence intervals of a small inheritance on wealth
accumulation. These effects are estimated according to equation (1) both before and after parental death.
Standard errors are clustered at the individual level. The bottom right panel of the figure decomposes
the effects shown in the top left panel in the period after parental death into its main components. The
scale of all vertical axes refer to years of permanent income.

Figure 2 presents the main empirical results of the paper. The scales of all

vertical axes refer to years of permanent income.9 The top left panel of Figure 2

9As shown later the normalization with permanent income is not important for our results but simplify

12



shows the effect of inheritance on net worth up to ten years after parental death.

Heirs deplete most of the initial burst of wealth obtained through inheritance

within six years of parental death, and continue a gradual convergence towards

the path established before parental death throughout our estimation period.

To provide a first approximation of the dynamics of wealth held for precaution-

ary motives, we separately analyze the convergence pattern of liquid assets held

in checking and saving accounts. The bottom left panel of Figure 2 shows that

the effect of inheritance on liquid assets disappears within seven years of parental

death. These assets are either consumed or invested in other types of assets, and

explain the majority of the convergence of total net worth. The bottom right

panel of the figure, which decomposes the effect of inheritance on total net worth

into its different components, shows that changes in housing equity and financial

investments (stocks, bonds, and mutual funds) due to inheritance instead persist

over time, suggesting that these vehicles are the preferred ones for channeling and

investing long-term life-cycle savings.

The top panel of Table 2 expands the results in Figure 2 for all wealth com-

ponents. The table shows four γ̂n ≡ (γpren , γpostn ) coefficients (from equation 1)

describing, respectively, eventual anticipatory behavior one year before parental

death, the burst of wealth due to inheritance one year after parental death, and

the evolution of wealth components in the medium run (five years after parental

death) and the long run (nine years after parental death). The full list of coef-

ficients for all regressions appears in the Online Appendix. Because inheritance

is not always received in the same year of parental death, the effect of inheri-

tance on accumulated wealth one year after parental death provides a reference

for interpreting the start of the convergence process.

The left part of the table shows the effect of inheritance on nominal wealth in

thousands DKK. The right part of the table shows the effect of inheritance on

wealth normalized by permanent income. The convergence pattern is the same

the interpretation.
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Table 2—The effect of inheritance on wealth accumulation

Absolute values Normalized values
(thousands of Danish Kroner) (years of permanent income)

Years from shock −2 1 5 9 −2 1 5 9

Panel A: Potential inheritance larger than a year of perm. income

Net worth 1.181 188.284 126.459 70.358 -0.001 0.879 0.492 0.277
(4.305) (8.065) (18.418) (29.577) (0.018) (0.034) (0.069) (0.111)

− Liq. assets 0.960 80.823 21.212 6.012 0.005 0.389 0.069 0.005
(1.614) (3.118) (4.962) (7.828) (0.007) (0.015) (0.021) (0.033)

− Housing equity 1.896 40.775 44.694 22.554 -0.002 0.184 0.168 0.088
(3.886) (6.508) (15.290) (24.628) (0.017) (0.027) (0.061) (0.096)

− Fin. investments -1.071 59.363 57.147 49.784 -0.004 0.265 0.227 0.182
(1.294) (3.270) (5.866) (9.809) (0.005) (0.014) (0.021) (0.033)

− Unc. debts 0.603 -7.322 -3.405 7.991 0.000 -0.040 -0.028 -0.002
(1.681) (2.587) (5.670) (9.738) (0.008) (0.014) (0.030) (0.047)

Panel B: Potential inheritance smaller than a month of perm. income (placebo)

Net worth -1.204 6.577 -4.812 -10.757 -0.005 0.035 -0.014 -0.033
(2.557) (3.682) (9.280) (14.990) (0.011) (0.016) (0.037) (0.061)

− Liq. assets 1.096 4.361 -0.346 -3.263 0.007 0.022 -0.004 -0.007
(0.892) (1.323) (3.204) (4.973) (0.004) (0.006) (0.011) (0.018)

− Housing equity -0.132 -2.360 -11.742 -19.560 -0.004 0.001 -0.019 -0.037
(2.432) (3.457) (8.186) (13.279) (0.010) (0.014) (0.032) (0.052)

− Fin. investments -0.493 1.831 0.952 0.620 -0.000 0.010 0.009 0.007
(0.435) (0.652) (1.391) (2.208) (0.002) (0.003) (0.006) (0.009)

− Unc. debts 1.675 -2.744 -6.324 -11.446 0.008 -0.001 -0.001 -0.004
(1.466) (2.060) (5.530) (8.989) (0.006) (0.009) (0.021) (0.034)

Note: The table shows the effect of inheritance on different wealth components two years before and one,
five, and nine years after parental death. The full set of coefficients appears in the online appendix. The
coefficients are estimated according to equation (1). The coefficients in the top panel are estimated on a
sample of heirs receiving unexpected inheritances larger than one year of the heir’s permanent income;
those in the bottom panel, on a sample of heirs receiving unexpected inheritances smaller than a month
of permanent income. The specification includes individual and year-by-cohort fixed effects. Standard
errors, clustered at the individual level, are shown in parentheses.

in both sets of results, demonstrating that these results do not depend on the

permanent income normalization. While heirs deplete most of the initial burst

of liquid wealth within five years of parental death, partly consuming it and
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partly investing it in housing equity, accumulated financial investments persist

over time.10

Table 3—Dynamics of housing equity components

Years from shock −2 1 5 9

Housing equity -0.002 0.184 0.168 0.088
(0.017) (0.027) (0.061) (0.096)

− Housing value -0.018 0.318 0.347 0.387
(0.022) (0.039) (0.090) (0.144)

− Home owner 0.004 0.052 0.050 0.050
(0.004) (0.006) (0.015) (0.024)

− Owner of 2+ units 0.002 0.042 0.038 0.028
(0.002) (0.004) (0.008) (0.013)

− Mortgage -0.016 0.133 0.179 0.300
(0.016) (0.028) (0.066) (0.106)

Note: The table shows the effect of inheritance on several outcomes measured two years before and one,
five and nine years after parental death. The full set of coefficients appears in the online appendix. The
coefficients are estimated according to equation (1) on a sample of unexpected inheritances larger than
one year of the heir’s permanent income. The specification includes individual and year-by-cohort fixed
effects. Standard errors, clustered at the individual level, are shown in parentheses.

The effect of inheritance on the accumulation of housing equity is not as straight-

forwardly interpretable. Table 3 provides the necessary details to describe this

convergence process by analyizing separately the components of housing equity.

The table shows that although total housing value, if anything, increases over

time following the shock, the sum of collateralized debt held increases more than

proportionally. The response at the extensive margins provides the key mecha-

nism: While the proportion of individuals owning any real estate increases by 5

percent after inheritance and remains stable in the following years, the number of

people owning more than one real estate unit decreases over time after the initial

jump due to inheritance. These patterns suggest that heirs sell excess housing

10Andersen and Nielsen (2011) show that financial market participation increases even if the inheri-
tance does not include stocks held by the parent, suggesting that liquidity constraints prevent financial
market participation.
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units not only to finance consumption but also to upgrade their main estate and

climb the property ladder, maxing out their mortgage debt in the process.

To demonstrate that invalid identification or parental death alone do not drive

the wealth dissipation patterns shown in the top panel of Table 2, the bottom

panel of Table 2 replicates the analysis on a sample of individuals receiving little or

no inheritance. Panel B of Table 2 shows that a parental death associated with an

inheritance worth less than a month of permanent income does not affect trends

of wealth accumulation, and has only a negligible impact on assets held one year

after parental death. We estimate that heirs receiving such small inheritances

accumulate an excess worth of 3.5 percent of yearly permanent income one year

after parental death, depleting it within a year.

Similarly, Table 4 shows that other changes in inflows and outflows of individual

resources as a response to inheritance are unable to explain our results. Holtz-

Eakin, Joulfaian and Rosen (1993) show that large inheritances can lead to lower

labor market participation, and Cesarini et al. (2015) and Imbens, Rubin and

Sacerdote (2001) show that lottery winnings decrease labor supply, reducing the

inflow of resources to the household. We find no evidence of inheritance reducing

yearly disposable income after tax and transfers, and only a small short-term

effect of inheritance on gross yearly salary (earnings minus income from self-

employment, bonuses and professional fees). This short-run effect is comparable

in magnitude with that estimated by Cesarini et al. (2015) on a sample of Swedish

lottery winners, but disappears after two years from parental death.

Finally, Table 4 shows that endogenous household formation or sudden in-

creased contributions to pension funds do not explain the convergence patterns

shown in Table 2. Marriage rates and fertility remain stable around parental

death and net worth is not transferred to spouses. Moreover, while we cannot

directly observe wealth held in pension funds, Panel 3 of Table 2 show that contri-

bution flows to individually managed pension funds increase on average of only 0.8

percent of permanent income one year after parental death and fade out quickly
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Table 4—Other budget incomings and outgoings

Years from shock −2 1 5 9

Panel A: Income and labor supply (1000DKK)

Disp. Income 0.060 2.115 8.522 8.096
(0.751) (1.114) (4.097) (4.147)

Labor income 2.265 -2.974 1.297 7.086
(1.521) (2.038) (5.370) (8.860)

Salary 2.399 -3.878 -1.291 0.930
(1.438) (1.946) (5.221) (8.521)

Panel B: Pension contributions (fraction of perm. income)

Employment scheme 0.000 -0.002 -0.003 -0.004
(0.001) (0.001) (0.003) (0.005)

Personal funds -0.001 0.008 0.001 -0.000
(0.001) (0.002) (0.002) (0.003)

Panel C: Household composition

Married -0.000 0.009 0.003 0.002
(0.004) (0.006) (0.015) (0.025)

# children 0.035 0.012 -0.003 0.036
(0.035) (0.027) (0.052) (0.094)

Spouse net wortha -0.028 0.092 -0.061 -0.097
(0.074) (0.065) (0.148) (0.263)

Household net worthb -0.029 0.756 0.472 0.341
(0.043) (0.045) (0.106) (0.185)

Note: The table shows the effect of inheritance on several outcomes measured two years before and one,
five and nine years after parental death. The full set of coefficients appears in the online appendix. The
coefficients are estimated according to equation (1) on a sample of unexpected inheritances larger than
one year of the heir’s permanent income. The specification includes individual and year-by-cohort fixed
effects. Standard errors, clustered at the individual level, are shown in parentheses.
aThese results are estimated on a sample restricted to individuals that are either married or in a

registered partnership.
bThese results are estimated on the unrestricted sample (i.e., singles are included), but only for the

years for which the household composition is identical with that observed the year before parental death.
Household net worth is normalized by household permanent income.

thereafter, for a cumulative impact of 2.5 percent of permanent income in five

years.

Overall, labor supply and committed expenditures are unable to explain the

long-run convergence dynamics of wealth after large financial shocks. These
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causally estimated patterns represent a novel empirical moment that life-cycle

consumption models should be calibrated to fit. Qualitatively, the observed pat-

terns of wealth convergence are consistent with the predictions of the buffer-stock

model under standard parameter choices. In this class of models, the combina-

tion of impatience and uncertainty about future income implies that individuals

aim to hit a target ratio of precautionary savings relative to to their permanent

income. If an individual’s wealth is below this target, prudence dominates im-

patience and agents save; if wealth over income is above this target, impatience

dominates prudence and agents deplete their savings. In the remainder of the

paper, however, we show that the buffer-stock model under standard parameter

choices implies quantitatively too little convergence.

IV. A general framework of life-cycle consumption and savings

This section describes the unified modeling framework we use to draw insights

from the long-run shock dynamics of saving estimated in the previous section.

Our starting point is the single-asset buffer-stock consumption model of Deaton

(1991, 1992) and Carroll (1992, 1997, 2012), with standard CRRA preferences.

However, to take into account inheritance expectations, we augment this standard

model with an exogenous process for receiving inheritance. We assume that the

individuals are fully aware of this process and thus have rational expectations.

Our framework allows for flexibile adjustments of the strengths of the post-

retirement and precautionary saving motives. To adjust the post-retirement sav-

ing motive independently, we introduce a reduced-form taste shifter that strength-

ens the motive to save for retirement due to, e.g., a bequest motive, non-modeled

uncertainty, or longevity risk. This approach is similar to that adopted by Gour-

inchas and Parker (2002).11

To adjust the precautionary saving motive, possibilities include changing the

risk individuals face or their beliefs about uncertainty. For example, Guvenen

11Explicitly modeling the post-retirement saving motive as a joy-of-giving bequest motive does not
change the results of the paper.
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et al. (2015) show that, relative to standard income processes, non-Gaussian in-

come risk (especially excess kurtosis) amplifies the precautionary saving motive.

House price and financial return risk have similar implications. To avoid these

computationally more expensive extensions, we follow Kaplan and Violante (2014)

and use Epstein-Zin preferences—which nest CRRA preferences as a special case.

These preferences allow us to change the level of relative risk aversion without

affecting the intertemporal elasticity of substitution. We thus interpret the rel-

ative risk aversion coefficient as a reduced-form proxy for the strength of the

precautionary saving motive.

We allow for extensions of the baseline buffer-stock model in several additional

directions. To approximate the full distribution of wealth over the life-cycle, we

allow for heterogeneity in the discount factor.12 To allow for heterogeneous saving

dynamics across different asset types, we consider a two-asset version of the model

with both liquid and illiquid assets as in Kaplan and Violante (2014) and Kaplan,

Moll and Violante (2017).

A. The model

The economy is populated by a continuum of individuals indexed by i and

working for TR periods, t ∈ {1, 2, . . . , TR}. All individuals have Epstein-Zin

preferences with 1/σ as the elasticity of intertemporal substitution and ρ as the

relative risk aversion coefficient. The discount factor is denoted βi. We assume

that the discount factor is uniformly distributed with [β−∆, β+∆], where ∆ = 0

is the baseline case of homogeneous preferences.

Individuals can always save and borrow in a liquid asset, At. Saving in the

liquid asset provides a risk-free gross return of R, and borrowing in it costs a

gross interest rate of R− > R . The individual can borrow up to a fraction ω of

12In practice, we discretize the heterogeneity into five types. Similar approaches are used by Carroll
et al. (2017) and Krueger, Mitman and Perri (2017).
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his permanent income Pt, but cannot retire with debt, such that

At ≥ −ωPt.(2)

ATR ≥ 0

In the two-asset versions of the model, the individual can additionally save in, but

not borrow in, an illiquid asset Bt providing a risk-free gross return of RB > R.

To transact in the illiquid asset, the individual must pay a fixed adjustment cost

of λ ≥ 0.

Labor earnings are given by a standard permanent-transitory income process

Yt = Ptξt(3)

Pt = Gt−1Pt−1ψt(4)

where

logψt ∼ N (−0.5σ2
ψ, σ

2
ψ)

log ξt ∼ N (−0.5σ2
ξ , σ

2
ξ ),

and Gt−1 is the common deterministic age-specific growth factor of income.

To account for inheritance expectations consistently with the assumptions of

our empirical analysis, we assume that the agents know the size of the inheritance

they will receive but are uncertain about the exact timing of parental death. Let

dt ∈ {0, 1} denote whether or not the individual’s parent has died: If dt = 0, the

last parent is still alive in the beginning of period t. We denote the age-dependent

chance of receiving the age-dependent inheritance Ht at the end of the period t

by πt. We model the parental age at death as a normal distribution with mean

µH and standard deviation σH . Given the age difference between child and the

parent δH , this distribution determines the life-cycle profile of the probability of

receiving inheritance. The beginning-of-period levels of cash-on-hand and illiquid
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wealth are thus given by

Mt+1 = R(At)At + Yt+1 +Ht1dt=01dt+1=1(5)

Nt+1 = RBBt.(6)

To model the post-retirement saving motive flexibly, we use the analytical so-

lution to a perfect foresight problem without constraints or transaction costs to

compute the consumption and value functions in the terminal period TR (denoted

CTR and V TR respectively). Specifically, we assume that agents live in retirement

from period TR to T with pension benefits as fraction, κ, of their permanent

income at retirement, PTR , and that their utility function in retirement is scaled

by the taste shifter ζ ≥ 0. As shown in Appendix B, ζ then controls the post-

retirement saving motive. For ζ = 0, there is thus no post-retirement saving

motive, while for ζ = 1, the only motive to save for retirement is consumption

smoothing. Values of ζ > 1 represent in a reduced-form expression additional

saving motives due to, e.g., bequest or non-modeled uncertainty. Details appear

in Appendix B.

B. Recursive formulation

Defining the post-decision value function

Wt ≡




Et[Vt+1 (•)] if ρ = σ

Et[Vt+1 (•)1−ρ]
1

1−ρ else
.(7)
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the recursive formulation of the model is

Vt(Mt, Nt, Pt, dt) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiWt

1−σ]
1

1−σ
else

(8)

s.t.

At = Mt − Ct + (Nt −Bt)− 1Bt 6=Ntλ

Mt+1 = R(At)At + Yt+1 +Ht1dt=01dt+1=1

Nt+1 = RBBt

Pr[dt+1 = 1] =





1 if dt = 1

πt else

Bt ≥ 0

At ≥ −ωPt
ATR ≥ 0,

where equations (3)-(4) specify the income process.

We solve the single-asset buffer-stock model by using the endogenous grid

method originally presented in Carroll (2006). We solve the two-asset buffer-

stock model by using an extended endogenous grid method proposed in Druedahl

(2017), which builds on extensions of the endogenous grid method to non-convex

(Fella, 2014; Iskhakov et al., 2017) and multi-dimensional (Druedahl and Jørgensen,

2017) models. Online Appendix B provides details on these methods.

C. Calibration

We calibrate the model in two steps. In the first step we externally fix all

parameters except for the preference parameters ρ, σ, ζ,β, and ∆, which we

internally calibrate in a second step (see Section V). The fixed and externally

calibrated parameters appear in Table 5. The fit of the exogenous income and

inheritance processes appears in Online Appendix C.
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Table 5—Fixed and externally calibrated parameters

Parameter Description Value Target / source

T Life span after age 25 60

TR Working years 35

Gt Growth factor of income see text Externally calibrated

σψ Std. of permanent shock 0.073 Jørgensen (2017)

σξ Std. of transitory shock 0.085 Jørgensen (2017)

κ Retirement replacement rate 0.90 Jørgensen (2017)

ω Borrowing constraint, working 0.25 Standard choice.

δH Age difference 30 Externally calibrated

µH Mean death age of parent. 77 Externally calibrated

σH Std. of death age of parent. 9 Externally calibrated

h45 Inheritance size 0.6375 Externally calibrated

η Growth rate of inheritance 1.01 Externally calibrated

Single-asset buffer-stock model

R Return of liquid assets, saving 1.02 Kaplan, Moll and Violante (2017)

R− Return of liquid assets, borrowing 1.078 Kaplan, Moll and Violante (2017)

Two-asset model

R Return of liquid assets, saving 1.02 Kaplan, Moll and Violante (2017)

R− Return of liquid assets, borrowing 1.078 Kaplan, Moll and Violante (2017)

RB Monetary return of illiquid assets 1.057 Kaplan, Moll and Violante (2017)

λ Fixed adjustment cost 0.02 · E[Pt] Kaplan and Violante (2014)

Note: The table shows the externally calibrated parameters that we fix for all our model iterations. In
the fourth column we report the source of these parameters.

Individuals enter the model at age 25, work until age 60 (TR = 35), and die at

age 85 (T = 60). The average earnings profile during working life (regulated by

Gt) is chosen to match the profile in our data. Following the analysis in Jørgensen

(2017) on Danish register data (using the method in Meghir and Pistaferri, 2004),

we set the standard deviation of the permanent shocks equal to σψ = 0.073,

the standard deviations of the transitory shocks equal to σξ = 0.085, and the

retirement replacement rate equal to κ = 0.90.

We use the same interest rates as in Kaplan, Moll and Violante (2017). The

23



individuals can borrow up to a fraction ω = 0.25 of their annual permanent

income. We set the fixed cost for illiquid asset adjustment λ as 2 percent of

average yearly income, in line with the calibration choice by Kaplan and Violante

(2014).

We choose the parameters for the timing of inheritance to match the life-cycle

profile of inheritance receipts. This calibration gives us δH = 30 as the age

difference between child and parent, µH = 71 and σH = 8 as the mean and

standard deviation of death age of the parent. For the size of the inheritance we

assume that

(9) Ht = η(25+t)−45 · (Π19
j=1Gj) · h45,

where we choose h45 = 0.64 to match the median inheritance at age 45 relative

to permanent income, and η = 1.01 to match the life-cycle profile of inheritances.

To calibrate the initial states, we model the initial distribution of permanent

income as a log-normal distribution, whose variance matches that observed in the

data. The correlation between income and wealth is very weak at early ages. We

thus match the initial wealth holdings we observe in the data at age 25 by assigning

zero wealth to 70 percent of all agents, and some (illiquid) assets to the remaining

30 percent independently of income. We model the initial distribution of assets

for these 30 percent as a long-normal distribution, whose variance matches that

in the data.

V. Characterization of long-run saving dynamics

This section connects our empirical results with our general theoretical frame-

work by assessing its ability to match the empirical long-run shock dynamics of

saving estimated in Section III. To highlight our focus on long-run convergence

dynamics rather than short-run level changes, in this section we normalize all

estimated and simulated coefficients by the increase in net worth estimated one
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year after the shock.13 We begin by focusing on standard buffer-stock models,

and then proceed to two-asset models according to the framework outlined in the

previous section.

We first consider two different parametrizations of the buffer-stock model with

Epstein-Zin preferences. The first one is a standard parametrization, for which

we choose standard values for the preference parameters. Specifically, we as-

sume that consumption smoothing is the sole driver of the post-retirement saving

motive (ζ = 1) and that the strength of the precautionary saving motive is as

often assumed in the literature with ρ = 2 (Carroll, 1997; Aaronson, Agarwal

and French, 2012; Berger and Vavra, 2015).14 The second one is an optimal

parametrization, for which we adjust the precautionary saving motive (through

ρ) and the post-retirement saving motive (through ζ) to obtain the best possible

fit of the empirical long-run shock dynamics of saving.

As stressed in the previous section, while the parameters ρ and ζ could be

given strict structural interpretations, we prefer to interpret them as reduced-

form indicators of precautionary saving motives and preferences for holding wealth

after retirement age for purposes other than consumption smoothing (e.g., leaving

a bequest) respectively. Both the standard and the optimal parametrizations

share the externally calibrated parameters in Table 5, and we follow Kaplan and

Violante (2014) in choosing an intertemporal degree of substantiation of 1/σ =

3/2.15 We initially assume that there is no preference heterogeneity (∆ = 0) and

choose the discount factor β (patience) to fit the profile of median net worth over

the life-cycle observed in our data.

Figure 3 compares empirical and simulated profiles of both the median wealth

level over the life-cycle and the long-run dynamic response to inheritance. The

figure shows that although the standard parametrization is able to match precisely

the evolution of median wealth over the life-cycle, it cannot fit the long-run shock

13γn/γ1 in the notation of equation (1).
14Kaplan and Violante (2014) have ρ = 4.
15Appendix Table C.1 shows that this choice is not important for our results.
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dynamics of saving following a large financial shock shown in panel (b). The

inability to fit this empirical moment is related to the known discrepancy between

the average MPCs implied by these models (12-16 percent in our calibrations)

and the quasi-experimental evidence on fiscal stimulus payments, showing that

US households spent about 25 percent of their tax rebates in the first quarter

(Kaplan and Violante, 2014).
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(b) Response to inheritance

Figure 3. Life-cycle accumulation (left) and shock dynamics (right)
fit of the standard and optimal calibration of the buffer-stock
model

Note: The figure compares the empirical and simulated life-cycle profiles of median net worth (left) and
response to inheritance (right) for the standard and optimal parametrizations of the buffer-stock model
presented in Section IV. We report simulations using Epstein-Zin preferences (with σ = 2/3). The tuning
parameters ρ and ζ and the (implied) internally calibrated discount factor β appear in Table 6. The
other fixed and externally calibrated model parameters appear in Table 5.

This standard parametrization implies patient consumers who do not react

to financial windfalls as observed in the data.16 However, Figure 3 shows that

by increasing both precautionary (through ρ) and post-retirement (through ζ)

saving motives a buffer-stock model can fit both the evolution of median net

worth over the life-cycle and the shock dynamics implied by our causal estimates.

The increased incentive to accumulate wealth due to ρ and ζ balances the lower

16In Figure C.3 in the Online Appendix, we show that even by removing inheritance expectations, and
thus considering inheritance as a pure, unexpected wealth shock, the standard parametrization is unable
to fit our estimated shock dynamics of saving in the long-run.
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discount factor β necessary for agents to be willing to quickly dissipate large

financial windfalls.

Varying both saving motives simultaneously is necessary for obtaining this fit.

Figure 4 shows that for unbalanced precautionary and post-retirement saving

motives a discount factor able to match the life-cycle profile of wealth levels does

not exist. Even by choosing the discount factor β that best fits the life-cycle

evolution of wealth, if the precautionary saving motive is too large with respect

to the post-retirement saving motive rational agents will try to consume most of

their wealth as retirement age approaches. If the post-retirement saving motive

dominates, impatient rational agents will accumulate wealth only as retirement

approaches.

Table 6 formally summarizes and collects the results of Figures 3 and 4, showing

the fit of alternative model parametrizations for both life-cycle level profiles and

long-run shock dynamics of saving. In all models we internally calibrate β to best

fit the life-cycle profile of median net worth. We choose the optimal ζ and ρ as

the combination delivering the best aggregate fit in a grid search.17

Table 6 makes four important points. First, the table shows that the choice

of Epstein-Zin preferences does not drive our results for the standard model

parametrization. Both CRRA and Epstein-Zin preferences can precisely fit the

life-cycle profile of median net worth, but are unable to fit the causally estimated

dynamic responses to large financial shocks.18

Second, the table shows that, holding every other model parameter constant,

only by increasing ρ well beyond its typical range we can lower β enough to

replicate our estimated saving dynamics. Note that ρ is in our model the only

parameter capturing consumer’s dislike for risk. As Guvenen et al. (2015) show,

introducing higher-order income risk can also amplify the precautionary saving

17All values from the grid search are available in Online Appendix Table C.4 and C.5. Appendix B
describes the details of our calibration strategy.

18Tables C.2 and C.3 in the Appendix show that because of the identity between ρ and σ, iterating
over different values of ρ in models using CRRA preferences does not improve the fit of the model to the
data.
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(b) High retirement saving motive alone

Figure 4. Life-cycle accumulation (left) and shock dynamics (right)
fit of alternative calibrations of the buffer-stock model

Note: The figure compares the empirical and simulated life-cycle profiles of median net worth (left)
and response to inheritance (right) for alternative parametrizations of the buffer-stock model presented
in Section IV. The dashed lines show the simulated profiles according to the optimal parametrization
(Figure 3). The fixed and externally calibrated parameters of the model appear in Table 5. The tuning
parameters ρ and ζ and the (implied) internally calibrated discount factor β used for each alternative
parametrization appear in Table 6.
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Table 6—Parameters and fit of buffer-stock models

Fit

Levels Dynamics

Parametrization ρ ζ β MPC Median IQR Net worth

Panel A: CRRA preferences (σ = ρ)

Standard 2.0 1.0 0.977 0.12 0.007 2.318 0.821

Panel B: Epstein-Zin preferences (σ = 2/3)

Standard 2.0 1.0 0.977 0.16 0.015 2.145 0.884

Increased prec. 25.0 1.0 0.926 0.23 0.377 2.803 0.059
savings motive

Increased life-cycle 2.0 1.8 0.955 0.32 0.277 2.658 0.068
savings motive

Optimal 25.0 1.8 0.917 0.24 0.017 2.095 0.032

Panel C: Heterogenous Epstein-Zin preferences (σ = 2/3)

Standard 2.0 1.0 [0.970;0.984] 0.19 0.027 0.061 0.508

Optimal 25.0 1.8 [0.896;0.942] 0.24 0.017 0.17 0.05

Note: The table shows how the different model specifications fit the life-cycle levels of wealth accumula-
tion and the saving dynamics after a large financial shock. The first two columns of the table show the
value of the free calibration parameters ρ (precautionary saving motive) and ζ (post-retirement saving
motive). The third column shows the value of the internally calibrated discount factor β (or its range
in the case of heterogeneous preferences), chosen to best fit the life-cycle profile of median wealth. The
fourth column shows the implied average MPC in the model. The final three columns report the mea-
sures of fitness of the median and interquartile range of net worth over the life-cycle, and of the saving
dynamics in the decade after a large financial shock. Wealth level fit are computed as mean squared
errors from the age of 25 to the age of 59. The shock dynamics fit is calculated as the mean squared

error weighted by the standard error of the empirical estimates, or
9∑

n=2

(
γ̂datan − γ̂modeln

)2 σ̄

σ̂n
, where σ̄

is
9∑

n=2
σ̂n/8.

motive. Unobserved (and possibly incorrect) beliefs about risk have similar ef-

fects. We therefore prefer to interpret ρ as a reduced-form parameter rather

than applying a strict structural interpretation.19 Our results demonstrates the

more general point that precautionary motives play a crucial and quantitatively

dominant role in shaping individual saving strategies.

19Table C.1 in the Online Appendix supports this interpretation by showing that increasing the vari-
ance of income shocks while holding ρ constant improves the model fit in a similar fashion.
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Third, the table shows that for high precautionary savings motives, post-

retirement saving motives are necessary to fit the life-cycle profile of wealth ac-

cumulation. A ζ above one pushes agents to accumulate wealth approaching

retirement even in the presence of high replacement rates, and is consistent with

the empirical evidence showing that agents keep accumulating assets during re-

tirement (Nardi, French and Jones, 2016), for example in order to leave a bequest

(De Nardi, 2004; De Nardi and Yang, 2014).

Fourth, the table shows that, even allowing for heterogeneous discount factors.

the standard model cannot fit our estimated shock dynamics. Heterogeneous

preferences contribute only in explaining heterogeneities in wealth accumulation

over the life-cycle, as shown by the increased fit of the interquartile range of

wealth accumulation over the life-cycle in Panel C.

A. Two-asset models

We have shown that, by combining low patience and strong precautionary and

post-retirement saving motives, buffer-stock models can match not only the lev-

els but also the shock dynamics of wealth accumulation over the life-cycle. In

this subsection we show that the same intuition applies for more complex and

computationally expensive two-asset models (Kaplan and Violante, 2014).

Section III shows that the housing market plays an important role in shaping

the differential shock dynamics of liquid and illiquid wealth. Although modeling

housing markets in detail is not the focus of this paper, two-asset models pro-

vide a convenient approximation of these mechanisms: By separating liquid and

illiquid net worth, we are able to test the model predictions about the dynamic

adjustments of both total and liquid wealth.20

As in our analysis of the buffer-stock model, we evaluate the fit of the shock

dynamics of both a two-asset model with standard parameters and the two-asset

model resulting from a grid search over combinations of precautionary and post-

20Empirically, we define liquid wealth as the difference between liquid assets and uncollateralized
debts.
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retirement saving motives. For both models we internally calibrate the discount

factor to match the median wealth levels over the life-cycle.
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Figure 5. Shock dynamics in two-asset models

Note: The figure compares the empirical and simulated long-run saving dynamics following a large
financial shock of total and liquid worth for the two-asset version of the model presented in Section IV.
The tuning parameters ρ and ζ and the (implied) internally calibrated discount factor β appear in Table
7. The other fixed and externally calibrated model parameters appear in Table 5.

Table 7—Parameters and fit of two-asset models

Fit

Levels Dynamics

Parametrization ρ ζ β MPC Median Net worth Liquid

Standard 2.0 1.0 0.946 0.45 0.009 1.666 0.428
Optimal 30.0 1.6 0.888 0.43 0.008 0.081 0.029

Note: The table shows how the different model specifications fit the life-cycle levels of wealth accumu-
lation and the saving dynamics after a large financial shock in two-asset models. The structure of the
table mirrors that of Table 6.

Figure 5 and Table 7 demonstrate that the same intuition as in the single-asset

model holds for the two-asset model. Only combining strong precautionary and

post-retirement saving motives with low patience can the two-asset model fit both

the levels and the shock dynamics of wealth accumulation. Remarkably, although
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we target net worth saving dynamics in our grid search, the shock dynamics fit

of liquid assets also greatly improves for the optimal parametrization.21

Furthermore, Table 7 stresses how long-run saving dynamics provide orthogonal

information with respect to consumption decisions. While, in one-asset models,

moving from the standard to the optimal parametrization increases the implied

MPC, the optimal two-asset parametrization implies a marginally lower MPC

than the standard model.

B. Implications for precautionary and retirement savings

The implications of models with enhanced impatience, precautionary saving

motives, and post-retirement saving motives differ sharply from those of models

with more standard parametrizations. If, for a given wealth level, agents hold

a higher fraction of wealth for precautionary purposes, then frictions in mecha-

nisms able to counter income risk, such as financial markets and unemployment

insurance, carry higher welfare costs. In the remainder of this section we focus

on the change across the standard and optimal parametrizations of the relative

importance of precautionary and retirement saving motives over the life-cycle.

Typically, empirical data do not directly measure the proportion of wealth ac-

cumulated for precautionary purposes. However, with a structural model at hand

we can decompose the fraction of total wealth held only for precautionary pur-

poses across different specifications. Given two identical groups of agents, exposed

to the same shocks throughout their life-cycle, we assume that consumers in one

of the two groups have no motive to save for retirement (ζ = 0). Because agents

in this group do not receive any utility from wealth held during and after retire-

ment, they save only for precautionary purposes and consume all their remaining

wealth during the last period. Figure 6 indicates the average wealth held by this

group as wealth held for precautionary purposes, and the difference in the average

21The simulated spike in liquid assets one year after inheritance is due to the the mechanics of the
model. While in the model heirs receive inheritance at the end of the year in liquid assets and cannot
convert it into illiquid assets until the next period, in reality heirs can immediately turn part of the
inheritance in illiquid assets, or even directly inherit illiquid assets.
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(a) Buffer-stock model, precautionary savings
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(b) Buffer-stock model, post-retirement savings
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(c) Two-asset model, precautionary savings
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(d) Two-asset model, post-retirement savings

Figure 6. Structural decomposition of wealth held for precaution-
ary (left) and post-retirement motives (right)

Note: Using the preference parameters listed in Tables 6 and 7, we calculate wealth accumulated for
precautionary motives by simulating the counterfactual wealth profile for the same agents if they had
no motive to save for retirement (ζ = 0). These agents, exposed to exactly the same shocks, have no
incentive to hold any wealth by the end of the last working year. We calculate wealth held for post-
retirement motive as the average difference between the baseline accumulated wealth and that in the
counterfactual.

wealth held by the two groups as wealth held for retirement purposes (for both

consumption smoothing during retirement and bequest motives).

The figure shows the difference in saving motives between the calibrated mod-

els with standard preferences and those with optimal preferences. With optimal

parametrizations consumers save at least 50 percent as much for precautionary

motives (twice as much in the two-asset model), implying a higher value to mech-
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anisms able to smooth income risk than the value implied by standard prefer-

ences. Moreover, agents begin accumulating assets exclusively reserved for post-

retirement purposes only towards the end of their working life. This finding is

consistent with recent evidence that households approaching retirement age make

more active decisions when managing their holdings (Agarwal et al., 2009), and

that tax incentives aimed at increasing retirement savings have smaller effects on

younger agents (Chetty et al., 2014).

VI. Conclusions

Long-run saving dynamics are a crucial component of life-cycle consumption

and saving models. This paper introduces a novel strategy—exploiting large

financial windfalls to characterize long-run shock dynamics of saving—for the

calibration of structural consumption models, and is the first to provide quasi-

experimental evidence on these dynamics. We combine a unique panel dataset

drawn from seventeen consecutive years of Danish administrative records with

large inheritances due to sudden parental deaths, and estimate their effect on

wealth accumulation strategies in the following years.

We show that after parental death average net worth converges towards the

path established before parental death. However, these patterns differ markedly

across wealth components, with excess liquid assets being consumed or converted

in other saving vehicles within six years. Endogenous committed expenditures

(e.g., pension savings or family growth) and labor supply do not drive these

results.

We analyze these results through the lens of a structural model of life-cycle

consumption and savings, augmented with inheritance expectations and nesting

the standard buffer-stock and two-asset models as special cases. We show that

only by allowing for impatient agents with very strong precautionary savings

motives and additional post-retirement saving motives (e.g., bequests or longevity

risk) these models can fit both empirical long-run shock dynamics of saving and
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life-cycle wealth levels. Our optimal two-asset model can fit the different shock

dynamics of both net worth and liquid worth.

These novel model parametrizations carry important policy implications. First,

in these models agents do not save exclusively for retirement until late in their

working life. Second, as wealth held for precautionary purposes is much larger

than the standard case, these models imply that liquidity constraints and frictions

in financial markets carry higher welfare costs, and that agents place a higher

value on insurance able to reduce the risk of income fluctuations.
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Online Appendices to: “Long-Run Saving Dynamics:

Evidence from Unexpected Inheritances”

By Jeppe Druedahl and Alessandro Martinello

This document contains (A) details on the identification strategy,

(B) details on the solution method and our internal calibration

strategies, (C) additional figures and tables for the model simu-

lations, (D) information about access to administrative data and

the definitions of the wealth variables used in the analysis and (E)

additional robustness checks and the full list of γn coefficients es-

timated in the empirical section of the paper.

A. Identification: DiDs and event study

This appendix highlights the connection between the identification strategy of

Fadlon and Nielsen (2015)—henceforth FN—and that of this paper. FN compare

the labor market outcomes of a given group of individuals whose spouse experi-

ences a health shock at time τ1 (treatment) with those of individuals whose spouse

experiences a shock at time τ2 = τ1 + ∆. The time interval between shocks ∆

is a fixed, pre-established number. FN thus explicitly assign a placebo shock at

time τ1 for individuals actually experiencing a shock at time τ2, which are used

as explicit controls, and estimate the effect of the shock for ∆ − 1 time periods

using a difference-in-differences estimator. The crucial advantage of this strategy

is to be able to separately identify and distinguish the dynamic effects of a shock

from spurious time and group fixed effects.

Figure A.1 illustrates this identification strategy for a subset of our data, com-

paring the average wealth holdings of individuals inheriting in 2000 with that of

individuals inheriting in 2006 (∆ = 6 in the notation of FN). The average wealth

holdings of the two groups overlap until 2000, after which the wealth of the group

1



inheriting first increases, and then starts converging towards the path established

before inheritance over time. We can thus identify the effect of inheritance for

the group of heirs inheriting in 2000 for a period of six years.

Maintaining the crucial property of separately controlling for time and group

fixed effects, we extend this identification strategy in two ways. First, we add

a minimal amount of structure to the model, allowing not only a more efficient

extraction of information but also, under the same assumptions, the identification

of the effect of a shock beyond the time horizon of ∆. Second, as a natural

extension, by removing restrictions on ∆ we use more data points and groups by

year of inheritance in the same estimation.

We show these extensions in three steps. First, we show that the FN DiD esti-

mator and our estimation strategy in a restricted dataset estimate the exact same

effects. Second, we show how the additional structure imposed by our strategy

allows us to extract information more efficiently from the data, and to identify the

effect of inheritance beyond the time range defined by ∆. Third, we generalize

the estimation strategy by relaxing the constraints on ∆, thus sacrificing some of

the intuition about explicit control groups in favor of maximizing the extraction

of information. We show that while the consequence of this approach is to use

varying control groups for the estimation of the effects of inheritance as we move

further from the time of parental death, selection does not drive our results and,

crucially, the convergence patterns we observe.

a. Comparison with the FN DiD estimator

We begin by rewriting a simplified version of the estimation equation in the

paper similar to that used by FN (pp. 14-15), noting the time of parental death

as τ .1 We describe the wealth holdings at year t of an individual i inheriting at

1For simplicity, we replace individual and cohort-by-year fixed effects Ψi and Λi,t with the aggregated
fixed effects by the time of inheritance Ψτ and year fixed effects Λt. Figure A.1 shows that the inclusion
of more granular fixed effects greatly reduces the amount of unexplained variation in the model and
improves the precision of our estimates.
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Figure A.1. Improving precision with individual FEs
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time τ as

(1) yit = Λt + Ψτ + γn + εit

where n = t−τ and E[εi,t] = 0. This equation, while imposing a minimal amount

of structure on the evolution of individual wealth holdings, describes γn—the

average impact of inheritance on individual wealth holdings over n (years from

parental death)—non-parametrically. We impose the standard DiD assumption

that, absent the shock, the outcomes of the groups defined by τ would run parallel.

Under the assumption of parallel trends, we can compare the FN DiD estimator

for γFNn | 0 < n < ∆ with the quantity γn obtained by estimating equation (1) on

a sub-sample of our data. More specifically, consistently with FN, we restrict our

sample to two groups of individuals inheriting a fixed number ∆ of years apart
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(e.g. comparing people inheriting in 2000 and 2006, with ∆ = 6) and explicitly

assigning a placebo shock at time τ1 to people inheriting at time τ2 = τ1 + ∆.

The FN DiD estimator compares the average wealth outcomes of these two

groups at time t = τ1 + n as

γFNn ≡ (ȳτ1t − ȳτ1+∆
t )− (ȳτ1τ1−1 − ȳτ1+∆

τ1−1 )(2)

where ȳτt = E [yτt ]. The top two panels of Figure A.2 illustrates this identification

strategy for two pairs of τ groups, using individuals inheriting in 2000 as the

treatment group and those inheriting in 2006 and 2010 as separate controls. These

graphs mirror Figure A.2, and show that, after an initial increase, the average

wealth holdings of treatment and control groups converge over time.

The relationship between γFNn and γn in our descriptive equation (1) is straight-

forward. By substituting equation (1) in the FN estimator, we have that

E
[
γFNn

]
= (Λt + Ψτ1 + γn − Λt −Ψτ2 − γn−∆)

−(Λτ1−1 + Ψτ1 + γ−1 − Λτ1−1 −Ψτ2 − γ−1−∆)

= γn − γ−1 + γ−1−∆ − γn−∆.

Under the identifying assumption of parallel trends, with respect to γ−1 we have

that, for n < ∆, γ−1−∆ = γn−∆ = γ−1 = 0. Thus, γn converges to γFNn .

This result is a special case of the general principle that any difference-in-

differences study can be rewritten as an event study with separately identifiable

time and group fixed effects and dynamic effects of the treatment. In our case, the

γn coefficients and year fixed-effects are separately identifiable for all n observed

in at least two separate years. E.g. with our data the fixed effect relative to

year 2010 and γn=14—only observed in 2010 for individuals inheriting in 1996—

are not separately identifiable: The 2010 fixed effect will identify the sum of the

real year effect plus the unidentified γ14. In our analysis we thus restrict the
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Figure A.2. Estimation of γn for net worth using pairs of τ groups
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estimation to n ∈ {−5,−4, . . . , 9}. Notice that in practice we can recover the

exact FN estimator in an event study by substituting γn with a separate dummy

for observations in group τ2 for all n, thus using group τ2 exclusively as a control.

5



b. Identifying γn for n ≥ ∆

The advantage of imposing a minimal structure and estimating equation (1) in-

stead of an explicit difference-in-difference estimator is that, by sacrificing some

of the intuition, under the same assumptions we are able to simultaneously es-

timate all identifiable γn. To see this, we can use the FN estimator in (2) to

estimate γ∆+1. In the left panes of Figure A.2, this corresponds to estimating the

effect of inheritance in 2007, n = 7 years after parental death for the treatment

group inheriting in 2000. In a simple DiD framework γ∆+1 is not identifiable, as

equation (2) shows that the difference between the two time series (Figure A.2,

second-to-last panel) is

E
[
γFN∆+1

]
= γ∆+1 − γ−1 + γ−1−∆ − γ1

and as γ1 6= γ−1, E
[
γFN∆+1

]
6= γ∆+1.

By estimating (1) instead we estimate simultaneously all γn coefficients. As

Section A.b shows that γ1 is identified, γ∆+1 is also identified as E
[
γFN∆+1

]
+

γ̂1. The coefficient γ∆+1 is thus identified separately from year and group fixed

effects. The bottom four panels of Figure A.2 show that by estimating all γn

simultaneously in an event study with identifiable group and time fixed effects we

can recover estimates of γn for n > ∆ by using two treatment groups (e.g. τ2000

and τ2006) and imposing the structure in equation (1) augmented with individual

fixed effects.

The second row of panels in Figure A.2 identifies γn∀n < ∆ exclusively from

the DiD comparison of τ2000 and τ2006.2 The third row of panels in Figure A.2

estimates equation (1), augmented with individual fixed effects, with no data

restrictions. In the third row, all identifiable γn coefficients are estimated simul-

taneously.

2In practice, we estimate equation (1) augmented with individual fixed effects and substituting γn
with a separate dummy for observations in group τ2 for all n < 0.
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c. Allowing for multiple ∆

As ∆ does not restrict the estimation of γn, a natural generalization of the

estimation of equation (1) is relaxing the restriction of a fixed ∆ and allowing

for multiple implicit control groups in the regression. As in the previous section,

as long as time and group fixed effects are separately identifiable, under the as-

sumption of parallel trends equation (1) estimates the same quantities as a DiD

design. However, allowing for multiple ∆ in the same equation, thus abandoning

the assignment of explicit control groups, not only sacrifices part of the intuition

but highlights how the composition of the sample changes into that of an unbal-

anced panel. Namely, the observations on which γn1 and γn2 are estimated will

be different, as the equation uses different τ -groups for identification. However,

under the assumptions stated in this appendix, that the panel is unbalanced does

not necessarily affect our results. More specifically, it does not mechanically drive

the convergence patterns we document.

We highlight this point in Figure A.3, which compares estimates obtained by

the FN estimator (on a balanced panel) with those obtained estimating equation

(1) on the same data. In the left panels of Figure A.3 we thus impose ∆ = 9 and

estimate the effect of inheriting between 1999 and 2001 explicitly using people

inheriting between 2008 and 2010 as a control. As in FN, we explicitly assign

a placebo shock in 1999 to individuals inheriting in 2008, a placebo shock in

2000 to individuals inheriting in 2009, and a placebo shock in 2001 to individuals

inheriting in 2010. We choose these specific years as they allow not only a high

∆ but also the estimation of coefficients for n < 0. In the results appearing in

the figure we restrict the sample to be balanced over all observed years.

The right panels of Figure A.3 estimate the same quantity through (1), thus

using the full information provided by the data and changing the combinations of

inheritance-group years providing identification. That is, coefficient γ1 is not only

identified by three combination of inheritance years, but also by the comparison

between people inheriting in 1999, 2000 and 2001, and 2008, 2009 and 2010.
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Figure A.3. Comparison of explicit control group (FN, balanced
panel) versus event study design (this paper, varying control
groups), estimated on individuals inheriting in 1999-2001 and 2008-
2010
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(a) Net worth, explicit control groups
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(b) Net worth, event study design
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(c) Liquid assets, explicit control groups
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(d) Liquid assets, event study design

The figure shows not only that the convergence paths estimated by the two

approaches are virtually identical, but also that by exploiting the structure of

the dynamic response (and thereby using more information), the event study ap-

proach improves the precision of the empirical estimates. This improvement in

precision occurs primarily for coefficients for which more combination of inheri-

tance year provide identification, i.e. for n close to zero. Figure A.3 also shows

that our results are robust to imposing a balanced panel and a balanced (explicit)

control group across n. The full list of estimated coefficients and standard errors

for all n appear in Table A.1.
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Table A.1—Comparison of DiD (balanced and unbalanced) and our
identification strategy for individuals inheriting in 1999-2001 and
2008-2010

Net worth Liquid assets

n Event
study

DiD DiD,
balanced

Event
study

DiD DiD,
balanced

-3 0.042 0.175 + 0.149 0.016 0.018 0.010
(0.049) (0.093) (0.095) (0.021) (0.040) (0.040)

-2 0.015 0.104 0.074 0.015 0.012 0.007
(0.044) (0.088) (0.090) (0.019) (0.038) (0.038)

0 0.342 ∗∗ 0.399 ∗∗ 0.391 ∗∗ 0.243 ∗∗ 0.214 ∗∗ 0.201 ∗∗

(0.044) (0.086) (0.090) (0.019) (0.037) (0.037)

1 0.839 ∗∗ 0.931 ∗∗ 0.917 ∗∗ 0.389 ∗∗ 0.379 ∗∗ 0.370 ∗∗

(0.049) (0.088) (0.091) (0.021) (0.038) (0.038)

2 0.775 ∗∗ 0.890 ∗∗ 0.860 ∗∗ 0.283 ∗∗ 0.273 ∗∗ 0.264 ∗∗

(0.054) (0.089) (0.093) (0.023) (0.038) (0.039)

3 0.644 ∗∗ 0.794 ∗∗ 0.794 ∗∗ 0.162 ∗∗ 0.166 ∗∗ 0.163 ∗∗

(0.057) (0.089) (0.093) (0.025) (0.038) (0.039)

4 0.623 ∗∗ 0.694 ∗∗ 0.699 ∗∗ 0.120 ∗∗ 0.126 ∗∗ 0.131 ∗∗

(0.060) (0.089) (0.093) (0.026) (0.038) (0.039)

5 0.581 ∗∗ 0.677 ∗∗ 0.693 ∗∗ 0.118 ∗∗ 0.078 ∗ 0.068 +

(0.063) (0.089) (0.093) (0.027) (0.038) (0.039)

6 0.470 ∗∗ 0.560 ∗∗ 0.555 ∗∗ 0.106 ∗∗ 0.081 ∗ 0.069 +

(0.065) (0.088) (0.093) (0.028) (0.038) (0.039)

7 0.408 ∗∗ 0.491 ∗∗ 0.476 ∗∗ 0.088 ∗∗ 0.066 + 0.055
(0.069) (0.089) (0.094) (0.030) (0.038) (0.039)

8 0.331 ∗∗ 0.378 ∗∗ 0.371 ∗∗ 0.094 ∗∗ 0.080 ∗ 0.064
(0.075) (0.092) (0.096) (0.032) (0.040) (0.040)

# episodes 2508 2483 2125 2508 2483 2125

Note: The table compares the saving dynamics estimated on the sample of heirs inheriting between
1999 and 2001, and between 2008-2010. The first and fourth column use the identification strategy of
the paper, estimating equation (1) in the paper on the full sample. The second and fifth column use
the DiD identification strategy introduced in Appendix A.b, assigning an explicit control group to each
inheritance year (e.g., the control group for heirs inheriting in 1999 is heirs inheriting in 2008). The third
and sixth column replicate this estimation strategy on a strictly balanced sample.
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B. Solution algorithm and internal calibration

The appendix firstly contains a detailed description of the approach we take to

compute the value and consumption functions at retirement. It next presents the

details of our various internal calibration strategies. Finally, it contains additional

information on the solution algorithm, its implementation and some validation

tests.

a. Terminal value function

We construct the terminal value function as the analytical solution to the fol-

lowing perfect foresight problem in retirement

V t(M t, PTR) = max
Ct




ζtC

1−σ
t /(1− σ) + βiWt if ρ = σ

[(1− βi)ζtC1−σ
t + βiWt

1−σ]
1

1−σ
else

(3)

s.t.

At = M t − Ct
M t+1 = RAt + κPTR

ζt =





1 if t = TR

ζ else t > TR

ATR ≥ 0

AT ≥ 0,

where R = R in the buffer-stock model and R = Rb in the two-asset model, and

(4) MTR = MTR +NTR +HTR1dTR=0

The Euler-equation for this problem is

(5)
Ct+1

Ct
=

(
βiR

ζt+1

ζt

) 1
σ

10



From period TR + 1 and onward the problem is both perfect foresight and free

of intraperiod constraints. This implies that we can analytically solve for the

consumption function

CTR+1 = γ1

[
MTR+1 + γ0κPTR

]
(6)

= γ1

[
R(KTR − CTR) + (1 + γ0)κPTR

]

where

γ0 ≡ 1− (R
−1

)T−TR

1−R−1 − 1

γ1 ≡ 1−R−1
(βiR)1/σ

1−
[
R
−1

(βiR)1/σ
]T−TR

Next, the value function in period TR + 1 is then given by

(7) V TR+1(MTR+1, PTR) =





ζγ2C
1−σ
TR+1

1−σ if ρ = σ

((1− βi)ζγ2)
1

1−σCTR+1 else

where

γ2 ≡
1−

(
β

1
σ
i R

1−σ
σ

)T−TR

1−
(
β

1
σ
i R

1−σ
σ

)

Here we have used the general result that without risk the value function un-

der Epstein-Zin preferences, V EZ
t , is related to the value function under CRRA

preferences, V CRRA
t , by the monotone transformation

V EZ
t =

(
(1− βi)(1− σ)V CRRA

t

) 1
1−σ
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If the Euler-equation is satisfied in period TR, we therefore have that

CTR+1

CTR
=
(
βiRζ

) 1
σ ⇔ CTR =

γ1

[
MTR + (1 + γ0)R

−1
κPTR

]

R
−1

(βiRζ)
1
σ + γ1

The Euler-equation is both necessary and sufficient for all interior consumption

choices and we can therefore conclude that the optimal consumption function in

period TR must be

CTR(MTR , PTR) = min



MTR ,

γ1

[
MTR + (1 + γ0)R

−1
κPTR

]

R
−1

(βiRζ)
1
σ + γ1



(8)

The value function in period TR then finally becomes

(9) V TR(MTR , PTR) =





C1−σ
TR

1−σ + βi
ζγ2C

1−σ
TR+1

1−σ if ρ = σ
[
(1− βi)C1−σ

TR
+ βi (γ3CTR+1)1−σ

] 1
1−σ

else

where

γ3 ≡ ((1− β)ζγ2)
1

1−σ

and

(10) CTR+1 ≡





(βiRζ)
1
σCTR if CTR < MTR

γ1(1 + γ0κ)PTR else

b. Calibration procedures

We use three different internal calibration methods in the paper. In all of

them we use a simulated method of moments approach targeting central life-

cycle moments from age 25 to age 59. To calculate the simulated moments, we

simulate a panel of 100.000 individuals.
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1) Calibration of only β: In this case, we minimize the squared distance

between the median life-cycle profile of net worth in the true and simulated

data. We start from a vector of starting values in a suitable domain, pick

the one delivering the best fit, and start a Nelder-Mead solver from there.

2) Calibration of β and ∆. In this case, we additionally target the squared

distance between the increase in the interquartile range of net worth in the

true and simulated data. We again use a Nelder-Mead solver and start from

the β calibrated for the model with homogeneous preferences and ∆ = 0.

3) Calibration of β, ζ and ρ: For a suitable grid over ζ and ρ we apply

the calibration method from approach (1) above to each combination. The

calibrated ζ and ρ are chosen based on summing the squared distance be-

tween the median life-cycle profile of net worth in the true and simulated

data and the squared distance between the impulse response profile of net

worth in the true and simulated data weighted by the standard error of the

empirical estimates. β is chosen conditionally on ζ and ρ to achieve the

best life-cycle fit. This nested calibration approach has the central benefit

that it limits the possibility of trading a better fit of the impulse response

profile for a worse fit of the life-cycle profile. Closely matching the life-cycle

profile is of central importance for our purposes.

c. Choice-specific value functions

Let zt ∈ {0, 1} denote the choice of whether to adjust or not. The model

can then alternatively be written as a maximum over zt-specific value functions

conditioning on the discrete choice of whether to adjust or not, i.e.

(11) Vt(Mt, Pt, Nt, dt) = max
zt∈{0,1}

vt(Mt, Pt, Nt, dt, zt),

where zt = 0 denote no adjustment of the illiquid assets, and zt = 1 denote some

adjustment triggering the fixed adjustment cost.
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We have that the value function for no-adjustment is

vt(Mt, Pt, Nt, dt, 0) = max
Ct




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(12)

s.t.

At = Mt − Ct
Bt = Nt,

and the value function for adjustment is

vt(Mt, Pt, Nt, dt, 1) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(13)

s.t.

At = Mt − Ct + (Nt −Bt)− λ

Bt ≥ 0,

where the remaining constraints in both cases are as in the main text.

We denote the optimal choice functions by C?t (•, 0), C?t (•, 1) and B?
t (•, 1). The

optimal discrete choice is denoted z?t (•).

d. EGM for non-adjusters

Using a standard variational argument it can be proven that the optimal con-

sumption choice for non-adjusters must satisfy one of the following four conditions

C−σt = βREt
[
C−σt+1V

σ−ρ
t+1

]
W ρ−σ
t , Ct < Mt(14)

C−σt = βREt
[
C−σt+1V

σ−ρ
t+1

]
W ρ−σ
t , Ct ∈ (Mt,Mt + ωPt)(15)

Ct = Mt + ωtPt(16)

Ct = Mt.(17)
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The first two equations are Euler-equations for the saving and borrowing regions,

and the latter two amount to being at the borrowing constraint or at the kink

between saving and borrowing. Notice that under CRRA preferences, ρ = σ, the

value function terms disappears and we are back to standard Euler-equations.

In the buffer-stock model the Euler-equations (14) and (15) are both neces-

sary and sufficient, and the endogenous grid method (EGM) originally developed

by Carroll (2006) can be used to solve the model. In the two-asset model they

are, however, only necessary. They are not sufficient because the value func-

tion, due to the fixed adjustment cost, might not be globally concave. As first

showed by Fella (2014) and Iskhakov et al. (2017) the EGM can, however, still

be used if a so-called upper envelope algorithm is applied to discard solutions to

the Euler-equations which are not globally optimal. Specifically, we use the ap-

proach proposed in Druedahl (2017) building on the upper envelope algorithm in

Druedahl and Jørgensen (2017) developed for multi-dimensional EGM in models

with non-convexities and multiple constraints (but for a model class not including

the present model).

e. Reducing the state space for adjusters

To reduce the state space for the adjusters it is useful to define the following

problem

ṽt(Xt, Pt, dt) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(18)

s.t.

At = Xt − Ct −Bt − ωPt
Bt ≥ 0.
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By using the result that the distinction between beginning-of-period liquid assets,

Mt, and illiquid assets, Nt, does not matter for adjusters, we now have that

vt(Mt, Pt, Nt, dt, 1) = ṽt(Xt, Pt, dt)(19)

s.t.

Xt = Mt +Nt − λ+ ωPt.

We can further also see that the consumption choice for the adjusters can be

profiled out by using the optimal consumption choice for the non-adjusters as

follows

ṽt(Xt, Pt, dt) = max
st∈[0,1]




C1−ρ
t /(1− ρ) + βiWt

1−σ) if ρ = σ

[(1− βi)C1−σ
t + βiWt]

1
1−σ else

(20)

s.t.

Mt = (1− st)Xt − ωPt
Nt = stXt

Ct = C?t (Mt, Nt, Pt, dt, 0)

At = Mt − C?t
Bt = Nt.

This reduces the choice problem for the adjusters to a one-dimensional problem.

Given that finding the global maximum for each point in the state space can be

challenging, and requires a multi-start algorithm, this is computationally very

beneficial.
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f. Some implementation details

Interpolation. We never need to construct the over-arching value function,

Vt(Mt, Pt, Nt, dt). With Epstein-Zin preferences we can instead e.g. use that

Wt(•) = βEt







vt+1(•, 0)1−ρ if z?t+1(•) = 0

ṽt+1(•)1−ρ if z?t+1(•) = 1




1
1−ρ

(21)

where

Xt+1 = Mt+1 +Nt+1 − λ+ ωPt+1

We also interpolate Et
[
C−σt+1V

σ−ρ
t+1

]
from equations (14)-(15) in a similar way.

Grids. We have separate grids for Pt, Mt, Nt, At and Xt while the grid for Bt

is the same as that for Nt. All grids vary by t, and the assets grids vary by the

current element in Pt, but are otherwise tensor product grids.

1) The grid for At is chosen to explicitly include {−ωPt,−ωPt+ε,−ε, ε}, where

ε is a small number, such that the borrowing constraint and the kink at

At = 0 is well-approximated. A dense grid for At is costly as we for each

element need to do numerical integration of the next-period value function

and apply EGM.

2) A dense grid for Nt (and thus Bt) is costly for the same reason as At.

3) The grid for Mt is only used in the upper envelope algorithm, and it is

therefore feasible for this grid to be very dense.

4) The grid for Xt is only used for the adjusters. Consequently it is feasible to

has a rather dense grid.

5) A dense grid for Pt is costly both for the same reason as At and because it

implies that the adjuster problem has to be solved more times.

In general all grids are specified such that they are relatively more dense for

smaller values, and this even more so for small Pt. The largest node in each grid
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is proportional to Pt. In the two-asset model we chose grid sizes #M = 200,

#X = 120 and #A = #N = 100 and #P = 60. For the buffer-stock model we

instead use #M = 600 and #A = 300, but keep #P = 60.

Numerical integration. For evaluating expectations we use Gauss-Hermit

quadrature with 6 points for each shock, #ψ = #ξ = 6.

Multi-start. For solving the problem in (20) we use #k = 5 multi-start values

for st.

Code. The code is written in C++ (OpenMP is used for parallelization) with

an interface to MATLAB for setting up grids and printing figures. The optimiza-

tion problems are solved by the Method of Moving Asymptotes from Svanberg

(2002), implemented in NLopt by Johnson (2014). The code was run on a Intel(R)

Core(TM) i7-4770 CPU with 8 processors (4 cores) and 32 GB of RAM.

g. Code validation

In this section we show that the code package developed for this paper delivers

robust simulation results, which also aligns with theoretical results when available.

Figure B.1 firstly illustrates that consumption is constant in a buffer-stock

model with:

1) No risk (σψ = σε = 0 and h45 = 0),

2) CRRA preferences (σ = ρ = 2) where R = β−1 = 1
0.975 ,

3) No post-retirement saving motive (ζ = 0),

4) Loose borrowing constraint (ω = 2).

This aligns well with theory as the model then basically becomes a Permanent

Income Hypothesis (PIH) model where the Euler-equation directly imply that

consumption should be constant.

Next, it illustrates that consumption is also constant in the following three

alternative cases
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(a) Consumption (b) Net worth

Figure B.1. Buffer-stock: Constant consumption

Note: This figure shows life-cycle profiles of average consumption and average net worth from a buffer-
stock model with β = 0.975, , σ = ρ = 2, ζ = 0, σψ = σε = 0, R = β−1, ω = 2, h45 = 0 and the
remaining parameters as in the main text. In the simulation all agents are born wealthy with A0 = 5.

1) Epstein-Zin preferences with ρ 6= σ.

2) Active post-retirement saving motive, ζ > 0.

3) Some inheritance, h45 > 0, if and only if η = R.

This also aligns well with theory. (1) With no risk the choice of risk aversion

(ρ) does not affect the optimal consumption choice. (2) A motive to save for

retirement does not affect the Euler-equation, and thus not the growth rate of

consumption, but only the level of consumption. (3) When there is no risk and η =

R then inheritance is a perfect liquidity shock and only the level of consumption

should be affected, not its growth rate.

Figure B.2 shows that we obtain very similar life-cycle profiles of average con-

sumption and average net worth when using a simpler, but much slower, Value

Function Iteration (VFI) algorithm.

Figure B.3 shows average net worth at retirement when varying σ and ζ. First,

we see that when ρ = σ then model is the same with CRRA and Epstein-Zin pref-

erences. Second, we see that when ζ → 0 agents save less and less for retirement,

specifically limζ→0ATR = 0.
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(a) Consumption (b) Net worth

Figure B.2. Buffer-stock model: VFI

Note: This figure shows life-cycle profiles of average consumption and average net worth from a buffer-
stock model with the calibration from the main text and σ = 2/3, β = 0.975, ρ = 2 and ζ = 1.

(a) Net worth at retirement (b) Net worth at retirement

Figure B.3. Buffer-stock model: Varying σ and ζ

Note: This figure shows average net worth at retirement across various σ and ζ starting from a buffer-
stock model with the calibration from the main text and σ = 2/3, β = 0.975, ρ = 2 and ζ = 1.

Figure B.4 shows average net worth at age 45 and at retirement when varying

the grid size scaled by j. We see that choosing too sparse grids can result in biased

results. Denser grids than in the baseline (j = 0) does not affect the results.

Now we turn to the two-asset models. Figure B.5 shows that when λ→ 0 then
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(a) Net worth at age 45 (b) Net worth at retirement

Figure B.4. Buffer-stock model: Grids

Note: This figure shows average net worth at age 45 and retirement across various grid sizes from a
buffer-stock model with the calibration from the main text and σ = 2/3, β = 0.975, ρ = 2 and ζ = 1.
Grids are specified as #M = 600 + j · 100, #P = 60 + j · 20 and #A = 300 + j · 100,.

average net worth at age 45 and at retirement converge to the levels implied by a

buffer-stock model with the same return opportunities. When λ is negligible in a

two-asset model there should be no saving in the liquid asset, so this aligns well

with theory.

(a) Net worth at age 45 (b) Net worth at retirement

Figure B.5. Two-asset model: λ→ 0

Note: This figure shows average net worth at age 45 and retirement when λ→ 0 starting from a two-asset
model with the calibration from the main text and σ = 2/3, β = 0.945, ρ = 2 and ζ = 1.
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Figure B.5 shows that grids denser than in the baseline does not affect the

implied average net worth at age 45 or at retirement. Figure B.7 shows that

we obtain very similar life-cycle profiles of average consumption and average net

worth when using a simpler, but much slower, Value Function Iteration (VFI)

algorithm. Finally, Figure B.8 shows that varying β, ρ, σ, ζ, κ, and σψ imply

results in line with economic intuition.

(a) Net worth at age 45 (b) Net worth at retirement

Figure B.6. Two-asset model: Grids

Note: This figure shows average net worth at age 45 and retirement across various grid sizes from a
two-asset model with the calibration from the main text and σ = 2/3, β = 0.945, ρ = 2 and ζ = 1.
Grids are specified as #M = 200 + j · 70, #X = 200 + j · 50, #P = 60 + j · 20, #N = 100 + j · 30, and
#A = 100 + j · 30.
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(a) Consumption (b) Net worth

Figure B.7. Two-asset model: VFI

Note: This figure shows life-cycle profiles of average consumption and average net worth from a two-asset
model with the calibration from the main text and σ = 2/3, β = 0.945, ρ = 2 and ζ = 1.
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(a) β (b) ρ

(c) σ (d) ζ

(e) κ (f) σψ

Figure B.8. Two-asset model: Varying β, ρ, σ, ζ, κ, and σψ

Note: This figure shows average net worth at retirement starting from a two-asset model with the
calibration from the main text and σ = 2/3, β = 0.945, ρ = 2 and ζ = 1.
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C. Additional Figures and Tables

a. Outcomes

Table C.1 shows central model outcomes for the various specifications.

Table C.1—Selected outcomes

(I) (II) (III) (IV) (V) (VI) (VII)

β 0.977 0.977 0.917 0.977 0.919 0.946 0.888
∆ 0.007 0.023
ρ 2.0 2.0 25.0 2.0 25.0 2.0 30.0
ζ 1.0 1.0 1.8 1.0 1.8 1.0 1.6
σ 2.000 0.667 0.667 0.667 0.667 0.667 0.667
Assets At At At At At At, Bt At, Bt

life-cycle moments

At/Pt (median) at age 35 0.07 0.15 0.17 0.20 0.18 -0.01 0.03
At/Pt (median) at age 45 0.87 0.96 0.71 1.04 0.72 -0.00 0.03
At/Pt (median) at age 55 1.84 1.77 1.94 1.72 1.96 -0.00 0.03
(At +Bt)/Pt (median) at age 35 0.01 0.18
(At +Bt)/Pt (median) at age 45 0.84 0.82
(At +Bt)/Pt (median) at age 55 1.89 1.87
Share of Bt > 0 at age 35 0.38 0.47
Share of Bt > 0 at age 45 0.79 0.69
Share of Bt > 0 at age 55 0.95 0.91

working age households

Avg. MPC 0.12 0.16 0.24 0.19 0.24 0.45 0.43
25th 0.04 0.04 0.11 0.04 0.09 0.26 0.29
50th 0.05 0.05 0.16 0.05 0.16 0.37 0.37
75th 0.19 0.15 0.29 0.26 0.32 0.68 0.54

Share of At = −ωPt 0.02 0.00 0.00 0.00 0.00 0.03 0.02
Share of At ∈ (−ωPt, 0) 0.15 0.02 0.01 0.03 0.02 0.38 0.11
Share of At = 0 0.07 0.14 0.14 0.16 0.15 0.44 0.38

Note: This table shows selected outcomes for the different main parametrizations.
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b. External calibration fit

Figure C.1 shows central properties of the inheritance process common across

all model specifications. Figure C.2 shows the fit of the externally calibrated

parameters related to the income and inheritance processes.

(a) Conditional distribution given age (b) Marginal probability, Pr[dt = 1|dt = 0]

Figure C.1. Inheritance process

Note: This figure shows central properties of the inheritance process common across all model specifica-
tions.

(a) Permanent income (b) Receiving inheritance (c) Size of inheritance

Figure C.2. Fit of external calibration

Note: This figures compares moments in our sample of treated individuals with simulation outcomes
common across all model specifications. Panel (a) shows the average level of permanent income, panel
(b) shows the probability of receiving inheritance conditional on age, panel (c) shows the median size of
the received inheritance relative to permanent income.
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c. Robustness

Table C.2 shows that the main results are robust to changing each of the fixed

or externally calibrated parameters. The baseline specification is the buffer-stock

model with homogeneous parameters. The discount factor is re-calibrated for

each parameter change targeting the life-cycle profile of median net worth as in

the main text.

Neither of the rows in Table C.2 produce a substantial improvement in the

fit of the long-run shock dynamics of saving without deteriorating the fit of the

life-cycle profile of median net worth. In two situations we see a considerable

improvement in the fit of the long-run shock dynamics of saving; when the variance

of the permanent shocks σψ is increased, and when the replacement rate κ is

reduced. In both cases, however, the fit of the life-cycle profile of median net

worth substantially deteriorates. These effects are fully aligned with our main

results. Increasing σψ is similar to increasing risk aversion ρ, while reducing κ

strengthens the motive to save for retirement and this is thus similar to increasing

the post-retirement saving motive taste shifter ζ.

Table C.3 and Table C.4 shows the fit of the life-cycle wealth levels and long-

run shock dynamics of saving for a grid of values of ρ and ζ under the restriction

of CRRA preferences (i.e. σ = ρ). The discount factor is re-calibrated for each

combination of ρ and ζ; notice that β is sometimes calibrated to be very low when

ρ is high implying a very low intertemporal elasticity of substitution. We see that

there is no combination of ρ and ζ that simultaneously deliver an acceptable

fit of the wealth levels and the long-run shock dynamics. This shows that we

need the separation of risk aversion and the intertemporal elasticity substitution

Epstein-Zin preferences provide.

Table C.5 and Table C.6 show the fit of the life-cycle wealth levels and long-

run shock dynamics of saving for a grid of values of ρ and ζ under the baseline

parametrization of the buffer-stock model from the main text. The discount factor

is re-calibrated for each combination of ρ and ζ. We see that simultaneously high
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ρ and ζ are required to get an acceptable fit of both the the life-cycle wealth levels

and long-run shock dynamics of saving.

Figure C.3 shows the shock dynamics fit for the standard parametrizations

of buffer-stock and two-assets models with and without inheritance expectations.

Without expectations inheritance can be interpreted as a pure unexpected income

shock, comparable to a lottery winning. The figure shows that for both sets of

models, although an unexpected shock in general accelerates the convergence, the

standard model parametrization is unable to fit our estimated shock dynamics of

saving. Moreover, the difference between the two simulated responses can be

interpreted as bounding the average saving dynamics if only a fraction of agents

had rational expectations about inheritance.

Figure C.3. Fit of standard parametrizations in models with and
without inheritance expectations
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(a) Buffer-stock model
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(b) Two-assets model
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Table C.2—Robustness - buffer-stock model (various)

Fits

Levels Dynamics

Change β Median Net worth

1 σ = 0.30 0.977 0.046 1.005
2 σ = 0.50 0.977 0.019 0.922
3 σ = 0.70 0.977 0.013 0.879
4 σ = 0.90 0.977 0.010 0.853
5 σψ = 0.04 0.981 0.009 0.738
6 σψ = 0.06 0.979 0.009 0.841
7 σψ = 0.08 0.976 0.018 0.888
8 σψ = 0.10 0.973 0.046 0.787
9 σψ = 0.12 0.970 0.099 0.547

10 σψ = 0.14 0.966 0.169 0.297
11 σξ = 0.04 0.977 0.014 0.979
12 σξ = 0.06 0.977 0.013 0.941
13 σξ = 0.08 0.977 0.013 0.895
14 σξ = 0.10 0.977 0.014 0.848
15 σξ = 0.12 0.977 0.016 0.795
16 σξ = 0.14 0.977 0.019 0.742
17 κ = 0.40 0.962 0.182 0.045
18 κ = 0.60 0.970 0.065 0.293
19 κ = 0.80 0.975 0.009 0.698
20 κ = 1.00 0.979 0.042 1.039
21 R = 1.01 0.987 0.017 0.825
22 R = 1.04 0.959 0.009 0.975
23 R− = 1.04 0.977 0.010 0.901
24 R− = 1.08 0.977 0.013 0.884
25 ω = 0.00 0.977 0.014 0.885
26 ω = 0.50 0.977 0.013 0.884
27 µH = 70.00 0.977 0.033 0.804
28 µH = 85.00 0.978 0.008 1.060
29 σH = 6.00 0.977 0.016 0.950
30 σH = 12.00 0.977 0.013 0.894
31 h45 = 0.40 0.977 0.018 0.805
32 h45 = 0.80 0.977 0.013 0.906
33 η = 1.00 0.977 0.014 0.953
34 η = 1.02 0.977 0.012 0.826

Note: The baseline specification is the buffer-stock model with homogeneous parameters. The discount
factor is re-calibrated for each parameter change targeting the life-cycle profile of median net worth as
in the main text.
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Table C.3—Robustness - CRRA preferences I (σ = ρ and ζ)

Fits

Levels Dynamics

ρ = σ ζ β Median Net worth

1 2 1.0 0.977 0.007 0.821
2 5 1.0 0.962 0.031 1.077
3 10 1.0 0.926 0.327 1.134
4 15 1.0 0.752 0.441 0.452
5 20 1.0 0.570 0.448 0.255
6 25 1.0 0.399 0.453 0.130
7 30 1.0 0.260 0.459 0.061
8 35 1.0 0.160 0.464 0.029
9 2 1.2 0.972 0.015 0.653

10 5 1.2 0.953 0.014 0.987
11 10 1.2 0.915 0.261 1.119
12 15 1.2 0.752 0.441 0.452
13 20 1.2 0.570 0.448 0.255
14 25 1.2 0.399 0.453 0.130
15 30 1.2 0.260 0.459 0.061
16 35 1.2 0.160 0.464 0.029
17 2 1.4 0.967 0.034 0.516
18 5 1.4 0.946 0.009 0.903
19 10 1.4 0.906 0.210 1.106
20 15 1.4 0.752 0.441 0.452
21 20 1.4 0.570 0.448 0.255
22 25 1.4 0.399 0.453 0.130
23 30 1.4 0.260 0.459 0.061
24 35 1.4 0.160 0.464 0.029
25 2 1.6 0.962 0.056 0.407
26 5 1.6 0.939 0.010 0.825
27 10 1.6 0.898 0.172 1.090
28 15 1.6 0.752 0.441 0.452
29 20 1.6 0.570 0.448 0.255
30 25 1.6 0.399 0.453 0.130
31 30 1.6 0.260 0.459 0.061
32 35 1.6 0.160 0.464 0.029

Note: The baseline specification is the buffer-stock model with homogeneous parameters. The discount
factor is re-calibrated for each parameter change targeting the life-cycle profile of median net worth as
in the main text.
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Table C.4—Robustness - CRRA preferences II (σ = ρ and ζ)

Fits

Levels Dynamics

ρ = σ ζ β Median Networth

33 2 1.8 0.958 0.078 0.322
34 5 1.8 0.933 0.014 0.755
35 10 1.8 0.891 0.142 1.072
36 15 1.8 0.752 0.441 0.452
37 20 1.8 0.570 0.448 0.255
38 25 1.8 0.399 0.453 0.130
39 30 1.8 0.260 0.459 0.061
40 35 1.8 0.160 0.464 0.029
41 2 2.0 0.954 0.101 0.253
42 5 2.0 0.928 0.020 0.692
43 10 2.0 0.885 0.117 1.054
44 15 2.0 0.752 0.441 0.452
45 20 2.0 0.570 0.448 0.255
46 25 2.0 0.399 0.453 0.130
47 30 2.0 0.260 0.459 0.061
48 35 2.0 0.160 0.464 0.029
49 2 2.2 0.951 0.123 0.203
50 5 2.2 0.923 0.028 0.635
51 10 2.2 0.879 0.098 1.035
52 15 2.2 0.752 0.441 0.452
53 20 2.2 0.570 0.448 0.255
54 25 2.2 0.399 0.453 0.130
55 30 2.2 0.260 0.459 0.061
56 35 2.2 0.160 0.464 0.029

Note: The baseline specification is the buffer-stock model with homogeneous parameters. The discount
factor is re-calibrated for each parameter change targeting the life-cycle profile of median net worth as
in the main text.
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Table C.5—Robustness - buffer-stock model (ρ and ζ) I

Fits

Levels Dynamics

ρ = σ ζ β Median Networth

1 2 1.0 0.977 0.013 0.884
2 5 1.0 0.970 0.103 0.970
3 10 1.0 0.959 0.374 0.708
4 15 1.0 0.945 0.415 0.255
5 20 1.0 0.935 0.390 0.130
6 25 1.0 0.926 0.377 0.059
7 30 1.0 0.918 0.376 0.029
8 35 1.0 0.911 0.383 0.040
9 2 1.2 0.971 0.043 0.388

10 5 1.2 0.965 0.008 0.613
11 10 1.2 0.954 0.084 0.537
12 15 1.2 0.945 0.185 0.365
13 20 1.2 0.938 0.244 0.250
14 25 1.2 0.932 0.290 0.162
15 30 1.2 0.927 0.339 0.097
16 35 1.2 0.914 0.367 0.029
17 2 1.4 0.966 0.130 0.105
18 5 1.4 0.960 0.052 0.265
19 10 1.4 0.949 0.008 0.335
20 15 1.4 0.940 0.041 0.227
21 20 1.4 0.933 0.073 0.153
22 25 1.4 0.927 0.102 0.100
23 30 1.4 0.922 0.136 0.061
24 35 1.4 0.917 0.177 0.036
25 2 1.6 0.960 0.214 0.031
26 5 1.6 0.954 0.130 0.077
27 10 1.6 0.945 0.031 0.167
28 15 1.6 0.936 0.009 0.121
29 20 1.6 0.928 0.017 0.080
30 25 1.6 0.922 0.030 0.055
31 30 1.6 0.917 0.049 0.036
32 35 1.6 0.912 0.075 0.028

Note: The baseline specification is the buffer-stock model with homogeneous parameters. The discount
factor is re-calibrated for each parameter change targeting the life-cycle profile of median net worth as
in the main text.
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Table C.6—Robustness - buffer-stock model (ρ and ζ) II

Fits

Levels Dynamics

ρ = σ ζ β Median Networth

33 2 1.8 0.955 0.284 0.068
34 5 1.8 0.949 0.207 0.031
35 10 1.8 0.940 0.090 0.063
36 15 1.8 0.931 0.031 0.056
37 20 1.8 0.924 0.019 0.039
38 25 1.8 0.917 0.020 0.032
39 30 1.8 0.912 0.026 0.029
40 35 1.8 0.907 0.039 0.034
41 2 2.0 0.949 0.339 0.155
42 5 2.0 0.944 0.273 0.071
43 10 2.0 0.935 0.156 0.032
44 15 2.0 0.926 0.077 0.033
45 20 2.0 0.919 0.047 0.032
46 25 2.0 0.913 0.040 0.034
47 30 2.0 0.907 0.038 0.040
48 35 2.0 0.903 0.041 0.052
49 2 2.2 0.944 0.383 0.252
50 5 2.2 0.939 0.326 0.151
51 10 2.2 0.931 0.219 0.058
52 15 2.2 0.922 0.131 0.045
53 20 2.2 0.914 0.088 0.052
54 25 2.2 0.908 0.074 0.060
55 30 2.2 0.903 0.068 0.068
56 35 2.2 0.898 0.064 0.082

Note: The baseline specification is the buffer-stock model with homogeneous parameters. The discount
factor is re-calibrated for each parameter change targeting the life-cycle profile of median net worth as
in the main text.
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D. Data Appendix

This appendix contains details with respect to the data and the specific variables

used in the analysis of the paper.

The paper exploits confidential administrative register data from Denmark.

Researchers can gain similar access by following a procedure described at the

Statistics Denmark website. Researchers need to submit a written application to

Statistics Denmark. The application should include a detailed research proposal

describing the goals and methods of the project, a detailed list of variables, and

the selection criteria to be used. Once received, applications must be approved by

the Danish Data Protection Agency in order to ensure that data are processed in

a manner that protects the confidentiality of registered individuals. Conditional

on these approvals, Statistics Denmark will then determine which data one may

obtain in accordance with the research plan. All processing of individual data

takes place on servers located at Statistics Denmark via secure remote terminal

access. Statistics Denmark is able to link individual data from different adminis-

trative registers thanks to a unique individual social security code (CPR). While

Statistics Denmark provides access to this anonymized data for research purposes,

the data is confidential.

We now provide a short description of the variables used in the paper, their

construction, and the list of the names of their basic components as defined by

Denmark Statistics with a link to its official description (this information is only

available in Danish).

Tables D.1 and D.2 reports sources and construction of the variables used in

the analysis—with the exception of potential inheritance and permanent income,

whose construction we describe next.

In order to identify individuals likely to receive larger inheritances, we follow

Andersen and Nielsen (2011, 2012) and calculate a measure of potential inheri-

tance by splitting the wealth holdings of a deceased individual equally among his

or her children. For each heir we then calculate the net inheritance after taxes,
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applying the marginal rate of 15 percent to the portion of inheritance exceed-

ing a tax-free threshold, which varies yearly. The applied tax-free thresholds are

reported in Table D.3.3

Given parental net worth networthp at and the number of heirs n heirs at the

time of parental death, we compute potential inheritance as

inheritance =





(0.85·(networthp−bundfr)+bundfr)
n heirs if networthp > bundfr

networthp
n heirs if networthp ≤ bundfr

where bundfr is the deduction applicable at the time of parental death. Table

D.3 reports the yearly deductions.

We compute permanent income at time t, perminct, as the weighted average

perminct = 0.45dispinct+0.25dispinct−1+0.15dispinct−2+0.10dispinct−3+0.05dispinct−4.

We define sudden deaths according to WHO’s ICD-10 codes. More specifically,

We define a death as sudden if the primary cause of death is coded as I21*-I22*,

V*, X*, Y* or R96*.

3This calculation is appropriate in Denmark both because a minority of Danes draft a will (Andersen
and Nielsen, 2011) and because under Danish law the surviving children are always entitled to a part
of the inheritance even in presence of a will (Danish Inheritance Act No. 515 of 06 June 2007 Section
5). Using reported inheritance data in a similar legal and cultural context, Erixson and Ohlsson (2014)
show that only few estates in Sweden are not equally divided among surviving children.
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Table D.3—Inheritance deductions and CPI

Year Deduction (DKK) CPI

1996 184900 74.43
1997 186000 76.06
1998 191100 77.45
1999 196600 79.41
2000 203500 81.70
2001 210600 83.66
2002 216900 85.62
2003 224600 87.42
2005 231800 88.48
2004 236900 90.03
2006 242400 91.75
2007 248900 93.30
2008 255400 96.49
2009 264100 97.79
2010 264100 100.00
2011 264100 102.78
2012 264100 105.23

Note: Deductions for inheritance taxation vary according to the proximity the heir to the deceased. This
table reports deductions valid for the direct offspring of the deceased. Deductions are stable between
2009 and 2013, and start increasing again in 2014.
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E. Extended empirical results

a. Further empirical robustness checks

Table E.1 shows that shows that heirs who hold less than a month of permanent

income in liquid assets before parental death do not dissipate the excess of wealth

accumulated with inheritance quicker that those who are not constrained. If

anything, heirs holding relatively little liquid assets before parental death exploit

their inheritance to accumulate a buffer stock of liquid assets in the long run and

escape their liquidity-constrained state.

Table E.1—The role of liquidity constraints

Years from shock −2 1 5 9

Net worth -0.032 0.826 0.560 0.539
(0.024) (0.046) (0.095) (0.152)

− Liq. assets 0.044 0.416 0.222 0.251
(0.006) (0.019) (0.021) (0.033)

− Housing equity -0.060 0.143 0.141 0.115
(0.022) (0.038) (0.084) (0.134)

− Fin. investments -0.001 0.190 0.124 0.105
(0.005) (0.016) (0.019) (0.030)

− Unc. debts 0.015 -0.077 -0.072 -0.068
(0.011) (0.018) (0.040) (0.064)

Note: The table shows the effect of inheritance on different wealth components two years before and one,
five and nine years after parental death. The liquidity constraint sample refers to heirs holding less than
one month of permanent income in liquid assets one year before inheriting.

b. Extended main results

This section displays the set of estimated coefficients γn for n ∈ {−5, . . . , 9}
estimated in the empirical section of the paper.
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Table E.2—Extended results: Table 2, normalized values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 0.033 -0.001 0.020 -0.001 -0.016
(0.043) (0.014) (0.038) (0.012) (0.020)

-4 0.032 0.012 0.014 -0.001 -0.007
(0.035) (0.013) (0.031) (0.010) (0.016)

-3 0.016 0.006 -0.002 -0.003 -0.015
(0.027) (0.010) (0.024) (0.007) (0.012)

-2 -0.001 0.005 -0.002 -0.004 0.000
(0.018) (0.007) (0.017) (0.005) (0.008)

0 0.398 ∗∗ 0.230 ∗∗ 0.069 ∗∗ 0.096 ∗∗ -0.003
(0.023) (0.012) (0.018) (0.008) (0.008)

1 0.879 ∗∗ 0.389 ∗∗ 0.184 ∗∗ 0.265 ∗∗ -0.040 ∗∗

(0.034) (0.015) (0.027) (0.014) (0.014)

2 0.809 ∗∗ 0.272 ∗∗ 0.222 ∗∗ 0.278 ∗∗ -0.037 ∗

(0.041) (0.015) (0.035) (0.015) (0.017)

3 0.679 ∗∗ 0.168 ∗∗ 0.218 ∗∗ 0.251 ∗∗ -0.042 +

(0.049) (0.016) (0.044) (0.016) (0.022)

4 0.588 ∗∗ 0.108 ∗∗ 0.191 ∗∗ 0.247 ∗∗ -0.043 +

(0.059) (0.018) (0.052) (0.018) (0.025)

5 0.492 ∗∗ 0.069 ∗∗ 0.168 ∗∗ 0.227 ∗∗ -0.028
(0.069) (0.021) (0.061) (0.021) (0.030)

6 0.416 ∗∗ 0.037 0.156 ∗ 0.209 ∗∗ -0.014
(0.080) (0.024) (0.070) (0.024) (0.034)

7 0.329 ∗∗ 0.012 0.127 0.188 ∗∗ -0.001
(0.089) (0.026) (0.078) (0.026) (0.038)

8 0.295 ∗∗ 0.003 0.114 0.187 ∗∗ 0.009
(0.100) (0.030) (0.087) (0.030) (0.043)

9 0.277 ∗ 0.005 0.088 0.182 ∗∗ -0.002
(0.111) (0.033) (0.096) (0.033) (0.047)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.3—Extended results: Table 2, absolute values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 8.711 -0.244 8.742 2.570 2.358
(10.506) (3.100) (8.671) (4.159) (4.157)

-4 11.386 3.503 9.168 0.241 1.526
(8.504) (2.998) (7.156) (2.529) (3.237)

-3 6.974 1.396 4.203 -1.142 -2.517
(6.352) (2.054) (5.478) (1.819) (2.318)

-2 1.181 0.960 1.896 -1.071 0.603
(4.305) (1.614) (3.886) (1.294) (1.681)

0 78.209 ∗∗ 44.604 ∗∗ 12.270 ∗∗ 20.807 ∗∗ -0.528
(5.314) (2.359) (4.221) (1.863) (1.631)

1 188.284 ∗∗ 80.823 ∗∗ 40.775 ∗∗ 59.363 ∗∗ -7.322 ∗∗

(8.065) (3.118) (6.508) (3.270) (2.587)

2 186.560 ∗∗ 62.046 ∗∗ 52.279 ∗∗ 67.027 ∗∗ -5.208
(10.328) (3.380) (8.577) (3.991) (3.269)

3 160.557 ∗∗ 41.127 ∗∗ 55.515 ∗∗ 61.062 ∗∗ -2.853
(12.707) (3.722) (11.038) (4.344) (4.888)

4 146.127 ∗∗ 30.115 ∗∗ 49.737 ∗∗ 61.659 ∗∗ -4.616
(15.665) (4.247) (13.095) (5.160) (4.880)

5 126.459 ∗∗ 21.212 ∗∗ 44.694 ∗∗ 57.147 ∗∗ -3.405
(18.418) (4.962) (15.290) (5.866) (5.670)

6 110.028 ∗∗ 15.414 ∗∗ 41.578 ∗ 54.762 ∗∗ 1.726
(21.231) (5.687) (17.782) (6.895) (6.768)

7 89.426 ∗∗ 10.212 33.924 + 51.030 ∗∗ 5.740
(23.952) (6.243) (20.020) (7.642) (7.677)

8 78.007 ∗∗ 8.250 29.610 51.859 ∗∗ 11.711
(26.613) (7.157) (22.269) (8.778) (9.133)

9 70.358 ∗ 6.012 22.554 49.784 ∗∗ 7.991
(29.577) (7.828) (24.628) (9.809) (9.738)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.4—Extended results: Table 2, placebo, normalized values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 -0.021 0.007 -0.014 0.001 0.015
(0.026) (0.007) (0.022) (0.004) (0.015)

-4 -0.006 0.008 -0.004 0.000 0.011
(0.021) (0.006) (0.018) (0.004) (0.012)

-3 -0.006 0.006 0.001 0.000 0.012
(0.016) (0.005) (0.015) (0.003) (0.010)

-2 -0.005 0.007 -0.004 -0.000 0.008
(0.011) (0.004) (0.010) (0.002) (0.006)

0 0.043 ∗∗ 0.031 ∗∗ -0.002 0.004 ∗ -0.010 +

(0.011) (0.005) (0.010) (0.002) (0.006)

1 0.035 ∗ 0.022 ∗∗ 0.001 0.010 ∗∗ -0.001
(0.016) (0.006) (0.014) (0.003) (0.009)

2 0.018 0.008 -0.003 0.007 + -0.005
(0.021) (0.006) (0.018) (0.003) (0.012)

3 0.005 0.001 -0.014 0.008 + -0.010
(0.026) (0.008) (0.023) (0.004) (0.015)

4 -0.002 -0.007 -0.010 0.008 -0.007
(0.032) (0.009) (0.028) (0.005) (0.018)

5 -0.014 -0.004 -0.019 0.009 -0.001
(0.037) (0.011) (0.032) (0.006) (0.021)

6 -0.012 -0.002 -0.025 0.007 -0.008
(0.043) (0.012) (0.037) (0.006) (0.024)

7 -0.010 -0.010 -0.020 0.006 -0.014
(0.049) (0.014) (0.042) (0.007) (0.028)

8 -0.037 -0.016 -0.038 0.008 -0.010
(0.055) (0.015) (0.047) (0.008) (0.031)

9 -0.033 -0.007 -0.037 0.007 -0.004
(0.061) (0.018) (0.052) (0.009) (0.034)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.5—Extended results: Table 2, placebo, absolute values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 -3.514 1.293 -1.938 -0.472 2.397
(5.883) (1.616) (5.064) (1.043) (3.321)

-4 -0.462 0.939 0.779 -0.846 1.334
(4.713) (1.268) (4.088) (0.847) (2.723)

-3 -0.609 1.410 1.217 -0.628 2.608
(3.694) (1.095) (3.409) (0.637) (2.211)

-2 -1.204 1.096 -0.132 -0.493 1.675
(2.557) (0.892) (2.432) (0.435) (1.466)

0 7.136 ∗∗ 5.507 ∗∗ -1.543 0.668 + -2.504 +

(2.436) (0.982) (2.401) (0.404) (1.370)

1 6.577 + 4.361 ∗∗ -2.360 1.831 ∗∗ -2.744
(3.682) (1.323) (3.457) (0.652) (2.060)

2 4.997 2.272 -3.012 1.371 + -4.366
(4.892) (1.569) (4.490) (0.823) (2.809)

3 0.876 -0.446 -6.958 1.604 -6.676 +

(6.553) (2.274) (5.932) (1.039) (3.863)

4 -1.229 -2.040 -7.355 1.596 -6.570
(7.906) (2.647) (7.113) (1.245) (4.719)

5 -4.812 -0.346 -11.742 0.952 -6.324
(9.280) (3.204) (8.186) (1.391) (5.530)

6 -5.145 -0.555 -13.151 0.608 -7.953
(10.699) (3.544) (9.451) (1.564) (6.386)

7 -3.804 -1.959 -12.429 0.369 -10.215
(12.177) (4.019) (10.743) (1.741) (7.166)

8 -10.433 -3.777 -17.311 0.489 -10.165
(13.634) (4.527) (11.958) (1.985) (8.041)

9 -10.757 -3.263 -19.560 0.620 -11.446
(14.990) (4.973) (13.279) (2.208) (8.989)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.6—Extended results: Table 3

n Housing equity Housing value Home owner Owner of 2+
units

Mortgage

-5 0.020 -0.062 0.001 0.002 -0.082 +

(0.038) (0.056) (0.010) (0.005) (0.043)

-4 0.014 -0.034 0.005 0.005 -0.049
(0.031) (0.046) (0.008) (0.004) (0.036)

-3 -0.002 -0.027 0.005 0.003 -0.025
(0.024) (0.035) (0.006) (0.003) (0.026)

-2 -0.002 -0.018 0.004 0.002 -0.016
(0.017) (0.022) (0.004) (0.002) (0.016)

0 0.069 ∗∗ 0.128 ∗∗ 0.023 ∗∗ 0.025 ∗∗ 0.059 ∗∗

(0.018) (0.024) (0.004) (0.003) (0.018)

1 0.184 ∗∗ 0.318 ∗∗ 0.052 ∗∗ 0.042 ∗∗ 0.133 ∗∗

(0.027) (0.039) (0.006) (0.004) (0.028)

2 0.222 ∗∗ 0.369 ∗∗ 0.059 ∗∗ 0.044 ∗∗ 0.147 ∗∗

(0.035) (0.051) (0.008) (0.005) (0.037)

3 0.218 ∗∗ 0.373 ∗∗ 0.061 ∗∗ 0.042 ∗∗ 0.155 ∗∗

(0.044) (0.064) (0.010) (0.006) (0.046)

4 0.191 ∗∗ 0.364 ∗∗ 0.053 ∗∗ 0.040 ∗∗ 0.174 ∗∗

(0.052) (0.078) (0.012) (0.007) (0.056)

5 0.168 ∗∗ 0.347 ∗∗ 0.050 ∗∗ 0.038 ∗∗ 0.179 ∗∗

(0.061) (0.090) (0.015) (0.008) (0.066)

6 0.156 ∗ 0.353 ∗∗ 0.048 ∗∗ 0.033 ∗∗ 0.197 ∗∗

(0.070) (0.104) (0.017) (0.009) (0.075)

7 0.127 0.353 ∗∗ 0.052 ∗∗ 0.030 ∗∗ 0.226 ∗∗

(0.078) (0.117) (0.019) (0.010) (0.085)

8 0.114 0.350 ∗∗ 0.053 ∗ 0.028 ∗ 0.236 ∗

(0.087) (0.130) (0.021) (0.011) (0.096)

9 0.088 0.387 ∗∗ 0.050 ∗ 0.028 ∗ 0.300 ∗∗

(0.096) (0.144) (0.024) (0.013) (0.106)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.7—Extended results: Table 4, income and pension contribu-
tions

n Disp. Income Labor income Salary Pension from
empl. scheme

Personal
pension

-5 4.797 ∗ 6.996 + 8.259 ∗ 0.001 0.000
(2.443) (4.030) (3.908) (0.002) (0.002)

-4 1.283 4.733 5.068 0.000 0.000
(1.490) (3.207) (3.151) (0.002) (0.001)

-3 1.130 3.609 3.399 -0.001 0.001
(1.160) (2.525) (2.443) (0.002) (0.001)

-2 0.060 2.265 2.399 + 0.000 -0.001
(0.751) (1.521) (1.438) (0.001) (0.001)

0 0.667 -0.920 -1.534 0.000 0.003 ∗∗

(0.742) (1.421) (1.347) (0.001) (0.001)

1 2.115 + -2.974 -3.878 ∗ -0.002 0.008 ∗∗

(1.114) (2.038) (1.946) (0.001) (0.002)

2 5.137 ∗∗ -0.274 -2.925 -0.003 0.005 ∗∗

(1.773) (2.797) (2.709) (0.002) (0.002)

3 5.863 ∗∗ 1.791 -0.455 -0.003 0.003 ∗

(1.863) (3.735) (3.601) (0.002) (0.002)

4 7.259 ∗∗ 0.933 -0.795 -0.004 0.001
(2.596) (4.589) (4.463) (0.003) (0.002)

5 8.522 ∗ 1.297 -1.291 -0.003 0.001
(4.097) (5.370) (5.221) (0.003) (0.002)

6 10.783 ∗ 3.894 0.887 -0.002 0.001
(4.605) (6.323) (6.105) (0.004) (0.002)

7 7.019 ∗ 3.912 0.380 -0.001 0.001
(3.407) (7.007) (6.794) (0.004) (0.002)

8 7.630 ∗ 5.203 1.239 -0.002 0.002
(3.702) (7.992) (7.757) (0.005) (0.003)

9 8.096 + 7.086 0.930 -0.004 -0.000
(4.147) (8.860) (8.521) (0.005) (0.003)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table E.8—Extended results: Table 4, household outcomes

n Married # children Spouse net worth Household net
worth

-5 0.035 0.001 -0.023 -0.036
(0.060) (0.011) (0.103) (0.073)

-4 -0.025 0.000 -0.000 -0.014
(0.033) (0.009) (0.077) (0.055)

-3 0.010 0.003 -0.008 -0.025
(0.030) (0.006) (0.059) (0.041)

-2 0.035 -0.000 -0.028 -0.029
(0.035) (0.004) (0.074) (0.043)

0 0.006 0.003 0.039 0.340 ∗∗

(0.011) (0.003) (0.047) (0.032)

1 0.012 0.009 0.092 0.756 ∗∗

(0.027) (0.006) (0.065) (0.045)

2 0.005 0.009 0.023 0.685 ∗∗

(0.038) (0.008) (0.115) (0.074)

3 -0.023 0.009 0.076 0.624 ∗∗

(0.035) (0.011) (0.094) (0.068)

4 -0.002 0.006 0.027 0.560 ∗∗

(0.046) (0.013) (0.121) (0.086)

5 -0.003 0.003 -0.061 0.472 ∗∗

(0.052) (0.015) (0.148) (0.106)

6 0.037 0.006 -0.042 0.458 ∗∗

(0.069) (0.018) (0.172) (0.123)

7 0.014 0.004 -0.113 0.343 ∗

(0.069) (0.020) (0.207) (0.145)

8 0.019 0.005 -0.097 0.346 ∗

(0.081) (0.023) (0.240) (0.168)

9 0.036 0.002 -0.097 0.341 +

(0.094) (0.025) (0.263) (0.185)

Note: Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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