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ABSTRACT: We use the nearest neighbour propensity score matching to link dwellings holding 

Energy Performance Certificates (EPCs) in the Italian province of Treviso with information on the 

socio-economic characteristics of households most likely to inhabit them. We construct a database of 

17,405 dwellings for which information on standardized energy needs is matched to data on 

(potential) inhabitants and their imputed income, based respectively on census records and survey 

data. Our analysis shows that EPC registers can be exploited to investigate how income and housing 

conditions affect fuel poverty and to identify municipal areas with higher fuel poverty risk. Our 

findings highlight that when designing interventions to reduce fuel poverty, policymakers should 

target households based not only on their income but also on type of heating fuel, and on efficiency 

and the size of their accommodation. (135 words) 
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1 - Introduction 

The first step in the attempt to fight fuel poverty is mapping the problem. This is not straightforward. 

Fuel poverty is a culturally-sensitive issue whose extent can vary over time and location and whose 

measurement requires a multi-dimensional approach. Recent research proposes a range of empirical 

approaches to the identification and measurement of energy poverty in a number of European 

countries. Many of these approaches are driven by data availability, and these different measurements 

make comparison of energy poverty levels among European countries very difficult. 1  

In the present paper, we propose a new empirical approach to map fuel poverty at the municipal level. 

Our strategy is mainly based on the information included in building Energy Performance Certificates 

(EPCs). EPCs were introduced in the European Union (EU) in 2002 as a way of achieving energy 

efficiency targets based on collecting and sharing information on the energy consumption of 

buildings. 2 The EPC for a certified dwelling provides data on energy efficiency and an estimate of 

standardized energy consumption (Pasichnyi et al. 2019). However, EPCs provide no information on 

building occupants and their characteristics, which is a piece of relevant information for policymakers 

trying to design tools to fight fuel poverty effectively. Our novel approach enriches the EPCs with 

census and survey data. Specifically, we consider about 20,000 EPCs for dwellings located in Treviso 

province (north-east Italy) and match them to the census data on the 280,000 inhabited dwellings of 

the province. Accommodations with EPC can be systematically different from those without 

certification. Therefore, combining these two sources of data calls for attention to linking dwellings 

with similar characteristics. To this aim, we employ a nearest neighbour statistical matching 

procedure, which links every EPC to a dwelling recorded in the census dataset, in the same 

municipality and with the same heating system, and whose characteristics make its probability of 

being certified similar to that of a dwelling with EPC. This statistical matching procedure resulted in 

 
1 For a survey of energy poverty indicators, see: Miniaci et al. (2008); Tirrado Herrero (2017).  
2 Information included in EPCs should provide incentives towards energy efficiency also via the housing markets: see Fuerst and 

McAllister (2011), Fuerst, et al. (2016) for investigations on the effect of EPCs rating on residential prices in UK and in Wales, 

respectively. 
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a dataset of 17,405 (geo-referenced) records of certified dwellings, which include information on 

their energy efficiency, standardized consumption and household occupant characteristics (e.g., age, 

education, occupational status, homeownership). To obtain insights into both the subpopulation living 

in certified houses and the entire population, we set appropriate post-stratification weights.  

We use this matched dataset to investigate the probability that a household is living in an energy 

inefficient accommodation. Our results show that, after controlling for some dwelling characteristics, 

the probability of living in an inefficient accommodation does not depend on the characteristics of its 

occupants. We obtain similar results using a measure of standardized heating costs. Our findings 

show that standardized heating needs are determined largely by the dwelling’s characteristics (and 

only marginally by the household’s ones): this result is particularly relevant for considerations on the 

short-run, a period during which households are unlikely to be able to adjust the type and 

technological endowments of their dwellings. Then, we add data on incomes, imputed from the 

Survey on Income and Living Conditions (SILC), to study the probability of being in fuel poverty. 

Following Hills (2012), we define a household to be in fuel poverty if its income is below the relative 

poverty line, while its standardized heating costs are above the median ones. We find that both the 

socio-demographic characteristics, such as income, and the type of accommodation, affect the 

probability of being in fuel poverty.  

Our results have three main implications for policymakers. First, information in EPCs, combined with 

data from other sources, can be used to identify the areas at higher risk of fuel poverty. This would 

allow to design local and area-specific interventions, and address them to the main source of the 

problem (e.g., poor housing conditions and insufficient income). Second, with the goal of allocating 

public resources more efficiently to ease fuel poverty, the eligibility of vulnerable households at risk 

of fuel poverty should be integrated with information on their housing conditions. Finally, our 
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approach also shows how information included in EPCs can be exploited to provide a basis for the 

design of European wide policies to deal with fuel poverty.3 

The paper contributes to two strands of literature. First, we add to the fuel poverty literature. Our new 

methodology, that matches individual-level data on building efficiency (EPCs) to the socio-economic 

and income information on residents, allows a more accurate identification of the problem. Thomson 

et al. (2017) suggest that there are three main approaches to the estimation of residential energy 

deprivation in Europe:4 i) the expenditure approach, which is based on the household income to 

energy expenditure ratio; ii) the consensual approach, which develops measures based on self-

reported survey data on dwellings; iii) the direct measurement approach, which records indoor 

thermal conditions (and electricity use) to check whether households enjoy temperatures (and 

electricity consumption) adequate for their well-being. Our methodology builds on the expenditure 

approach,5 and proposes an empirical strategy to determine the household’s necessary fuel costs and 

to relate them to the household’s socio-economic characteristics. In particular, our fuel poverty 

measure mimics the Low Income High Cost (LIHC) indicator,6 and uses the fuel consumption 

required to maintain a standard indoor temperature, given the observed energy efficiency of the 

dwellings. In so doing, our methodology refers to dwelling standard consumption data which is better 

than using households’ actual fuel expenditure:7 indeed, standard consumption refers to a degree of 

comfort which the policymaker deems a merit good, whereas actual expenditure inevitably depends 

on the resources available and on the household’s behaviour and choices (more or less virtuous). 

 
3 Concerns have been raised about the quality of the information included in EPCs by Harsman et al. (2016), Jenkins et al. (2017), Las-

Heras-Casas, et al. (2018) and Pasichnyi et al. (2019). EU Directive 31/2010 established a quality control regime for EPCs which was 

implemented in 2014 and which calls explicitly for a statistically significant random sample of the EPCs issued annually to be 

monitored. Although we use data from EPCs since 2015, i.e., after the quality control regime was implemented, we are aware that EPC 

data quality requires further validation. 
4 See also European Energy Network (2019). 
5 See Thomson et al. (2019, Table 4, p. 886) for a summary of research papers that provide expenditure based assessments of energy 

poverty across the EU. 
6 The LIHC indicator of fuel poverty classifies households as fuel poor if they (a) have (required) heating costs above the national 

median, and (b) income net of energy costs below 60% of the equivalent median (Hills, 2012). 
7 See among others Moore (2012) and Liddell et al. (2012) for discussions on the limits to using households’ actual energy expenditure 

to measure fuel poverty. 
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Second, our empirical results add to literature that uses EPC data to develop policies addressing 

buildings’ energy demand/efficiency (Pasichnysi et al., 2019). Buildings are among the largest 

consumers of energy and one of the most cost-effective sectors to target for reducing energy 

consumption. Both decreasing buildings’ energy demand and improving buildings’ energy efficiency 

lead to emissions reductions (IEA, 2010). However, the technological investments required to reach 

such environmental goal will be rarely implemented by vulnerable households. Thus, mapping the 

probability of being in fuel poverty provides a relevant tool for local policymakers to design actions 

addressed to the specific target of low-income households living in inefficient buildings. All in all, 

these actions - on the one hand - will fight energy poverty and - on the other - will provide incentives 

for energy-saving regeneration of buildings, urban renovation and environmental improvement 

measures. We are not the first in exploiting EPCs to pinpoint households living in fuel poverty. Fabbri 

(2015) uses information from EPCs to estimate the household income threshold below which the 

occupants of the building would spend more than about 7% of their income for domestic energy 

consumption. He estimates such thresholds for an Italian region and different types of buildings; he 

uses aggregate statistics to assess the risk of fuel poverty in the population by income quantile. Our 

approach is different in that we link each dwelling holding the EPC to the characteristics of its (most 

likely) occupants: in so doing we can investigate the determinants of fuel poverty at the micro-level 

rather than at the aggregate level. 

The rest of the paper is organized as follows. Section 2 presents our data sources and Section 3 

describes our methodological approach. Section 4 illustrates and discusses the results. Section 5 

provides some policy implications and conclusions. 

 

2 - EPC, census and SILC data to measure fuel poverty 

We describe in detail the datasets used to implement our strategy to measure fuel poverty, which 

relies on matching the standardized heating costs of each observed certified dwelling to the socio-
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economic characteristics of their most likely inhabitants. Standardized heating costs are estimated on 

data contained in the EPCs, which are part of an EU-wide rating scheme aimed at obtaining and 

sharing information on the energy efficiency of buildings. Household socio-economic information is 

derived from the ten-year general population and building census and the EU SILC.  

2.1 - Energy Performance Certificates 

EPCs were introduced by the 2002 Energy Performance of Buildings Directive (EPBD).8 The 

information contained in EPCs are consistent across EU member states, and 19 states provide open 

access to their local EPC registers.9 An EPC is required for every new, renovated, sold or rented 

residential dwelling. Energy auditors provide the information needed to assess the 

building’s/dwelling’s energy efficiency, based on a 10-point rating scheme; they are also responsible 

for suggesting ways to reduce energy consumption (Perez-Lombard et al., 2009). 

We have access to the EPCs for around 25,000 dwellings (corresponding to about 6.3% of the 

residential stock) in the province of Treviso, a densely populated county in the Veneto region in the 

north-east of Italy, which has fairly homogeneous climatic conditions. The certificates were issued 

between September 2015 and December 2017 and conform to the format adopted in Italy from Q4-

2015. They include information on the heated surface and volume of the individual dwelling, its 

construction date, its geo-location and the characteristics of the main building in which it is located. 

In particular, each EPC provides information on the energy source mix available for heating, domestic 

hot water and lighting; use of renewable energy sources; insulation and the exposure of the 

dwelling/building. Based on these data, each certificate provides an estimate of the energy required 

for normal use during a reference year. Dwelling then are rated in ten levels, as A4-A3-A2-A1-B-C-

D-E-F-G, ranked from the most to the least efficient. 

 
8 The EPCs in our dataset are consistent with Article 20(2) of the 2010 updated EPBD. In July 2018, the new EPBD (2018/844) came 

into force: it was implemented in Italy on October, 4, 2019.  
9 A list of those states with public EPC registers is available at: https://ec.europa.eu/energy/en/content/public-epc-registers. 

https://ec.europa.eu/energy/en/content/public-epc-registers
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The EPC heating data are rated based on the energy required to maintain the dwelling at a constant 

20° C temperature, 24 hours a day. However, Italian regulation limits domestic heating to a maximum 

of 14 hours a day. To account for this limit and to provide more realistic estimates of heating costs, 

we correct consumption for each energy vector reported in the EPCs and multiply total consumption 

by a scale factor which takes values between 0.75 and 0.9, depending on the age of the building.10  

Finally, we construct a dwelling-specific standardized measure of the heating cost, defined as the 

sum, for all energy vectors 1, ,v V= , of the unitary cost of the fuel pv multiplied by the scaled 

consumption for heating Civ in dwelling i:11  

 
1

V

i v ivv
CS p C

=
=  (1) 

After cleaning the data, we are left with 20,278 certified dwellings (see Table 1): 34.3% were 

constructed less than 20 years earlier; 17.1% were larger than 140 sqm; 82.9% had an independent 

central heating system; 83.5% used natural gas as their main energy source for heating; and only 5.8% 

had renewable energy systems. Table 2 shows the differences between certified and non-certified 

dwellings.  

Table 1 shows that the median standardized heating cost is €708.09/year and that the median heating 

cost per square metre (sqm) is €8.30/year. The standardized heating costs depend on: i) the size of 

the dwelling - median costs range from €379.32/year (less than 60 sqm) to over €1,500/year (larger 

than 140 sqm); ii) the primary heating fuel (median cost €668.93/year for natural gas and €1,368/year 

euro otherwise); iii) date of construction (newer dwellings cost half as much to heat); and iv) EPC 

class. A comparison between EPC classes highlights that the median standardized heating cost is 

 
10 In so doing, we adopt the scale factor for housing efficiency defined in the Energy Report for the Veneto Region (2017, p.187). 
11 According to our EPC data, 5.2% of dwellings use electricity for both heating and cooling purposes. To exclude cooling from our 

standardized measure of heating costs, we set an upper bound on electricity consumption. We based this upper bound on dwellings 

with electric heating systems (but no cooling systems) and we computed electricity consumption per sqm. Then, conditional on the 

energy efficiency class and for each quartile, we derived the median value of that ratio. We set this value as the maximum electrical 

consumption/sqm even.  
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€419.65/year (€3.62/sqm per year) and €1,139.36/year (€13.01/sqm per year) for dwellings rated A-

B (14.4% of the dataset) and for those rated F-G (37,6% of the dataset), respectively. 

Table 1: Descriptive statistics of EPC data. EPCs for Treviso province, issued Sep-2015 – Dec-2017. 

  
N. of 

dwellings 
Percentage 

Median annual 

heating cost 

   Euro Euro/sqm 

Total 20,278 100% 708.09 8.30 

Construction 

period     
pre-1960 2,614 12.9% 1189.31 13.00 

1960-1969 2,926 14.4% 1011.47 11.27 

1970-1979 2,750 13.6% 991.47 10.96 

1980-1989 2,039 10.1% 824.82 9.39 

1990-1999 2,995 14.8% 573.37 7.76 

From 2000 6,954 34.3% 464.81 5.72 

Surface  
 

  

up to 60 sqm 4,116 20.3% 379.32 7.91 

60-80 sqm 4,547 22.4% 562.07 8.02 

80-100 sqm 3,933 19.4% 789.75 8.89 

100-120 sqm 2,638 13.0% 978.37 9.14 

120-140 sqm 1,574 7.8% 1113.35 8.55 

140+ sqm 3,470 17.1% 1507.03 8.13 

Primary heating fuel    
Natural gas 16,932 83.5% 668.93 8.10 

Other 3,346 16.5% 1368.00 12.83 

Central heating    
Yes 3,469 17.1% 706.77 8.16 

No 16,809 82.9% 708.25 8.34 

Renewable resources    

Yes 1,169 5.8% 520.83 3.97 

No 19,109 94.2% 720.58 8.53 

Number of dwellings in the building:  

1 4,234 20.9% 886.59 9.50 

2 3,259 16.1% 816.65 8.86 

3-4 2,638 13.0% 717.07 8.32 

5-8 3,154 15.6% 668.31 8.26 

9 or more 4,809 23.7% 666.97 8.25 

EPC class     
A-B 2,918 14.4% 419.65 3.62 

C-E 9,726 48.0% 557.92 7.10 

F-G 7,634 37.6% 1139.36 13.01 

 

2.2 - Census data 

We use the most recent (2011) general population and housing census data at the individual level for 

information on households’ socio-demographic characteristics. Treviso province includes a total of 
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876,790 individuals, 347,833 households and 399,815 residential dwellings.12 Each household is 

associated to a census tract, corresponding to a small contiguous area which, in this province, includes 

75 households on average. The EPC register provides information on the geo-location of each 

certified dwelling, allowing us to match each dwelling in the EPC register to the corresponding census 

tract.13 Figure 1 depicts the output of this exercise for a small part of the province of Treviso. 

Municipality boundaries are in purple and the much smaller census tracts are in red. The green points 

identify certified dwellings. We exploit census tract information to improve the quality of the 

matching between EPC and census data. This is relevant, particularly, for large municipalities where 

households in different neighbourhoods may have heterogeneous socioeconomic characteristics.  

 

Figure 1: EPCs and census tracts.  

 

Note: Municipality (purple) and census tract (red) boundaries for a small part of the province of Treviso. Exact 

locations of dwellings identified using EPC data are in green. 

 

Table 2 below compares the characteristics of the housing stock surveyed by the 2011 census with 

the certified dwellings in the EPC register.14 

 
12 For further information on the Italian 2011 Population and Housing Census see http://dati-censimentopopolazione.istat.it/Index.aspx. 
13 Geo-localized positions typically include a 20 m. error. Addresses are not included in our data for privacy reasons. 
14 More statistics on province housing and populations are available at http://dati-censimentopopolazione.istat.it/Index.aspx. 

http://dati-censimentopopolazione.istat.it/Index.aspx
http://dati-censimentopopolazione.istat.it/Index.aspx
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2.2 - European Union Statistics on Income and Living Conditions (EU-SILC) 

The EU-SILC is an EU harmonized survey of household income and living conditions.15 In Italy, the 

sampling design allows for statistics on incomes at the (NUTS 2) regional level.16 Publicly available 

microdata do not include respondents’ exact locations and most of the socio-demographic and 

housing condition descriptors are in line with the general population and housing census. Therefore, 

we use the representative sample of the population of the Veneto region surveyed in the 2015 EU-

SILC, to estimate a household income function and then use it to impute incomes to the households 

matched to the certified dwellings. The procedure is described below.  

 

3 - Combining different data sources at the micro-level. 

To get an idea of how energy needs (Y) covary with dwelling and household characteristics (Z and X, 

respectively), we need data on the joint distribution of (Y, X, Z). As already mentioned, we do not 

have direct observations of (Y, X, Z). Either we have data on EPCs and dwelling characteristics, but 

not the demographic characteristics of their inhabitants, or we have information on the characteristics 

of the dwellings and their inhabitants, but not on the EPC.  

We define a binary variable E which equals 1 if the EPC is available, and zero otherwise. Our first 

dataset corresponds to the case where E=1 and (Y, Z) are observable, and the second one to the case 

where E=0 and (X, Z) are observable. We employ a nearest neighbour propensity score matching 

procedure (Caliendo and Kopeinig, 2008) to link every ‘recipient’ observation in our dataset where 

E=1 (i.e., EPC administrative archive) with a ‘donor’ observation in the dataset where E=0 (i.e., 

census records). 

Specifically, we firstly pool the two datasets and estimate the probability of each observation being 

included in the EPC archive as a function of the variables in common, that is, the propensity score 

 
15 See https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions. 
16 See http://dati.istat.it/?lang=en for Italian national and regional income and poverty statistics based on EU-SILC. 

https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions
http://dati.istat.it/?lang=en
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( )Pr 1|E Z= . Then, for each observation in both datasets, the estimated probability of being in the 

EPC archive is computed as ( )1Pr 1|E E Z= =  for the observations in the EPC archive, and 

( )0Pr 1|E E Z= =  for the census records. Finally, each observation in the EPC archive is associated to 

an observation of the census records where ( )0Pr 1|E E Z= =  is as close as possible to ( )1Pr 1| .E E Z= =  

If more than one census record has the same ( )0Pr 1|E E Z= = , one of them is drawn at random. The 

selected census record ‘donates’ its information on inhabitants (say Xd) to the record in the EPC 

archive. This means that the conditional distribution ( ), | , 1Y X Z E =  is approximated by 

( ), | , 1dY X Z E = . Note that this procedure relies on two assumptions (i.e. the conditional 

independence and the common support assumptions). The conditional independence assumption 

requires that - conditional on the characteristics of the dwelling (Z) - the joint distribution of energy 

needs and household characteristics (Y, X) is independent of whether or not the accommodation has 

a EPC, that is, ( ), |Y X E Z⊥ . The common support assumption requires a sufficient overlap of the 

characteristics of the dwellings in the EPC records with those of donors from the census records. 

While the conditional independence assumption is statistically untestable, the common support 

assumption can be assessed to document the reliability of the matching procedure.  

As for data on income (Inc) to be used in computing the fuel poverty indicator, we need a third dataset. 

The EU-SILC database includes information on households (X), their accommodation (Z) and 

income; it is representative at the regional level and provides no other geographical information apart 

from the dimension of the municipality. We use EU-SILC data for the Veneto region as follows. First, 

we estimate a (log)linear regression model of income (ln(Inc)) on some variables in X and Z that are 

in common between the EPC archive and the census records. Then, to each observation in the EPC 

archive we impute the income Inc  based on (Xd, Z) and on a random component drawn from 

( )2

ˆ0, ,uN s  where 2

ûs  is the sample variance of the residuals of the previous regression.  
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We now have ( ), , , | 1dY X Z Inc E =  as an approximation of ( ), , , | 1:Y X Z Inc E =  this allows us to 

study the incidence of energy poverty for certified dwellings only. To extend the results of our 

analysis to the entire population, we use post-stratification weights defined by combining dwellings 

and household characteristics.17  

 

4 - Results 

4.1 - The matching procedure 

The first step in the procedure described above is estimation of the propensity score ( )Pr 1|E Z= . 

We exploit information on dwelling technological endowments and location, available from both the 

EPC archive and the census dataset. We work at the municipality level and distinguish dwellings 

whose main energy source for heating is natural gas from those that use other sources of energy. This 

ensures that dwellings with an EPC will be matched only to dwellings (and inhabitants) in the same 

municipality with the same type of heating. 

After some re-coding of the original variables,18 we define the variables included in Z as follows: a 

set of dummies for the construction period; the census area; presence of a centralized heating system 

(serving the entire building) and/or sources of renewable energy; type of domestic hot water system; 

and surface area of the accommodation (sqm). For dwellings whose heating systems are not based on 

natural gas, we include a set of dummy variables for fuel type.  

In terms of our specification and estimation strategy, to obtain propensity scores, we use 190 standard 

logit models (95 municipalities × 2 with/without natural gas = 190), estimated via maximum 

likelihood. Overall, we have 20,278 EPCs and 279,964 census records containing the required 

information; the recipient/donor ratio for the 190 cases ranges from 1.5% to 13%, with higher ratios 

 
17 For an introduction to post-stratification weighting issues see Holt and Smith (1979). 
18 The two data sources sometime code similar information in different ways. 
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for natural gas. Having estimated the 190 propensity score functions, we impose the common support 

restriction, that is, we match only EPCs with an estimated propensity score ( )1Pr 1|E E Z= =  lower 

than the maximum propensity score for the census records ( )0Pr 1| .E E Z= =  We find about 11% of 

the EPCs that do not satisfy this requirement, which leaves 18,094 EPCs matched to their ‘nearest’ 

dwelling (and its inhabitants) from the census records.  

Table 2 provides useful statistics to assess how the characteristics Z of the dwellings differ between 

the donor and the recipient datasets (Census and EPC columns, respectively), before and after the 

matching procedure (unmatched and matched rows) and conditioned on use of natural gas as the main 

heating fuel, or not. For each variable, we show the sample means of the two datasets, the standardized 

percentage bias,19 and the p-values for the t-tests for equality of means in the two samples. The 

statistics for the matched dwellings are computed only for donors and recipients, are weighted using 

the estimated propensity score. Table 2 shows that dwellings with EPC are systematically different 

from those registered by the census; nevertheless, the matching procedure is effective for selecting 

donors that are similar to recipients. For instance, the first row (Construction period “Before 1960” 

and “Unmatched”) tells us that, according to the census data, 20.92% of all dwellings were built 

before 1960, whereas only 12.89% of EPCs refer to these old buildings. The difference between these 

two percentages is statistically relevant (the p-value for the t-statistic is less than 0.001), and the 

standardized percentage bias is 21.5%. Focusing on donors and recipients (matched), the means are 

more similar (13.54% for EPC recipients and 13.98% for census donors), their difference is not 

statistically appreciable (p-value 0.256) and the standardized bias is negligible (-1.2%). In some cases, 

the difference between donors and recipients (in terms of means) is statistically sizeable, but the 

matching procedure is always able to reduce the standardized bias hugely, and the (average) 

differences are often practically irrelevant. For instance, in the case of the surface of dwellings, the 

 
19 The relative bias is computed as the difference among the sample means of the EPC and census datasets as a percentage of the square 

root of the average of the sample variances in the two datasets (see Rosenbaum and Rubin, 1985). 
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average dwelling size reported in the census data is much higher than the average dwelling size shown 

in the EPC (114.47 sqm vs 100.02 sqm, respectively). For the matched observations, when the main 

heating fuel is natural gas, the means are still statistically different (the p-value for the test is less than 

0.001), but the difference is reduced to only 2 sqm (96.76 sqm for census data vs 94.37 for EPCs). 

Table 2: Comparing EPC and Census datasets, pre and post matching, by main heating fuel.  

  Main heating fuel: any Main heating fuel: no natural gas Main heating fuel: natural gas   

  EPC Census %bias pvalue EPC Census %bias pvalue EPC Census %bias pvalue 

Construction period (0/1 variables)  

Before 1960 Unmatch. 0.1289 0.2092 -21.5 <0.001 0.1333 0.2896 -39 <0.001 0.1280 0.1797 -14.3 <0.001 

 Matched 0.1354 0.1398 -1.2 0.256 0.1645 0.1823 -4.4 0.131 0.1309 0.1334 -0.7 0.534 

1960-1969 Unmatch. 0.1443 0.1728 -7.8 <0.001 0.1258 0.1993 -20 <0.001 0.1479 0.1631 -4.2 <0.001 

 Matched 0.1492 0.1462 0.8 0.453 0.1509 0.1646 -3.7 0.228 0.1489 0.1434 1.5 0.2 

1970-1979 Unmatch. 0.1356 0.1929 -15.5 <0.001 0.1518 0.2311 -20.3 <0.001 0.1324 0.1788 -12.8 <0.001 

 Matched 0.1442 0.1479 -1 0.35 0.1914 0.1951 -0.9 0.765 0.1369 0.1409 -1.1 0.346 

1980-1989 Unmatch. 0.1006 0.1330 -10.1 <0.001 0.0849 0.1256 -13.3 <0.001 0.1037 0.1356 -9.9 <0.001 

 Matched 0.1062 0.1142 -2.5 0.023 0.1075 0.1197 -4 0.217 0.1060 0.1134 -2.3 0.051 

1990-1999 Unmatch. 0.1477 0.1270 6 <0.001 0.0777 0.0824 -1.7 0.335 0.1615 0.1435 5 <0.001 

 Matched 0.1527 0.1564 -1.1 0.366 0.0959 0.1016 -2.1 0.543 0.1614 0.1646 -0.9 0.483 

From 2000 Unmatch. 0.3429 0.1652 41.7 <0.001 0.4265 0.0721 89.8 <0.001 0.3264 0.1994 29.2 <0.001 

 Matched 0.3125 0.2956 4 0.001 0.2898 0.2368 13.4 <0.001 0.3160 0.3044 2.7 0.04 

Surface (sqm) Unmatch. 100.02 114.47 -28 <0.001 131.54 127.53 7.1 <0.001 93.787 109.67 -32.5 <0.001 

 Matched 99.229 101.29 -4 <0.001 130.71 131.55 -1.5 0.645 94.372 96.762 -4.9 <0.001 

Heating system (0/1 variables) 

Individual 

apparels 

Unmatch. 0.0449 0.0226 12.4 <0.001 0.0768 0.0698 2.7 0.119 0.0386 0.0052 23 <0.001 

Matched 0.0336 0.0243 5.1 <0.001 0.0695 0.0659 1.3 0.655 0.0280 0.0181 6.8 <0.001 

Autonomous Unmatch. 0.8289 0.8911 -18 <0.001 0.7992 0.8264 -7 <0.001 0.8348 0.9148 -24.4 <0.001 

 Matched 0.8463 0.8794 -9.6 <0.001 0.8181 0.8382 -5.2 0.088 0.8507 0.8855 -10.6 <0.001 

Central Unmatch. 0.1262 0.0864 12.9 <0.001 0.1240 0.1038 6.4 <0.001 0.1266 0.0800 15.4 <0.001 

 Matched 0.1202 0.0963 7.8 <0.001 0.1124 0.0958 5.2 0.083 0.1213 0.0964 8.2 <0.001 

Main heating fuel (0/1 variables) 

Other Unmatch. 0.0630 0.0112 27.6 <0.001 0.3817 0.0418 91.5 <0.001     

 Matched 0.0318 0.0229 4.8 <0.001 0.2381 0.1757 16.8 <0.001     
Natural gas Unmatch. 0.8350 0.7314 25.3 <0.001             

 Matched 0.8663 0.8698 -0.9 0.364             
LPG Unmatch. 0.0467 0.0708 -10.3 <0.001 0.2830 0.2636 4.4 0.012     

 Matched 0.0452 0.0466 -0.6 0.549 0.3382 0.3581 -4.5 0.18     
Solid 

(wood) 

Unmatch. 0.0106 0.0613 -27.5 <0.001 0.0643 0.2284 -47.7 <0.001     
Matched 0.0101 0.0098 0.1 0.825 0.0752 0.0753 <0.1 0.99     

Heating oil Unmatch. 0.0447 0.1252 -29.2 <0.001 0.2711 0.4663 -41.3 <0.001     

 Matched 0.0466 0.0509 -1.6 0.076 0.3485 0.3909 -9 0.005     
Main source for hot sanitary water (0/1 variables) 

Other Unmatch. 0.0615 0.2058 -43.4 <0.001 0.3249 0.6563 -70.3 <0.001 0.0095 0.0404 -19.9 <0.001 

 Matched 0.0629 0.0714 -2.6 0.003 0.4055 0.4772 -15.2 <0.001 0.0100 0.0106 -0.4 0.612 

Natural gas Unmatch. 0.8059 0.7070 23.2 <0.001 0.0983 0.0443 21.1 <0.001 0.9457 0.9504 -2.1 0.007 

 Matched 0.8325 0.8403 -1.8 0.065 0.0785 0.0286 19.5 <0.001 0.9489 0.9618 -5.8 <0.001 

Electricity Unmatch. 0.0862 0.0256 26.6 <0.001 0.2971 0.0701 61.3 <0.001 0.0445 0.0092 22 <0.001 

 Matched 0.0605 0.0432 7.6 <0.001 0.1877 0.1477 10.8 0.001 0.0408 0.0276 8.2 <0.001 

LPG Unmatch. 0.0464 0.0616 -6.7 <0.001 0.2797 0.2293 11.6 <0.001 0.0003 0 2.4 <0.001 

 Matched 0.0441 0.0451 -0.5 0.662 0.3282 0.3465 -4.2 0.214 0.0003 0 2.1 0.081 

Renewable 

sources (0/1) 

Unmatch. 0.0577 0.0788 -8.4 <0.001 0.2534 0.1163 35.9 <0.001 0.0190 0.0650 -23.1 <0.001 

Matched 0.0408 0.0372 1.4 0.105 0.1757 0.1533 5.9 0.054 0.0200 0.0199 0.1 0.944 

Note: For each variable, we report the means for the two data sources and assess their difference in terms of standardized 

percentage bias (% bias) and p-value of the zero equality t-tests. We compare the two raw datasets (unmatched), and 

only donors and recipients identified by the statistical matching procedure (matched). 
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Figure 2 presents some additional differences between census and EPC raw data, on the one hand, 

and between census and matched data, on the other. Panel A shows the mean dwelling size and Panel 

B the share of accommodation built since 2000 for each municipality in the Treviso province. Each 

panel presents the statistics for the entire EPCs archive (labelled EPC in the figure), the census records 

(Census), the matched EPCs (EPC recipients), and the set of potential donors from the census records 

(Census donors). In this last case, the statistics are weighted using the estimated propensity score. 

Figure 2: Comparing EPC and Census datasets, pre and post matching, by the municipality. 

 

Note: The two panels show the mean dwelling size (in sqm) and the share of accommodation built since 2000 for each 

municipality in the Treviso province, for the entire EPCs archive (EPC) and the census dataset (Census), and for the 

matched EPCs (EPC recipients) and the set of potential donors from the census records (Census donors). In this last case, 

the averages are weighted using the estimated propensity score.  

Figure 2 confirms that the dwellings with an EPC are smaller and newer than the other dwellings 

included in the database. It shows, also, that: i) there is substantial spatial heterogeneity among 

housing stock; and ii) the matching procedure produces a spatial distribution of the donor 

characteristics (Census donors maps) that is reasonably close to the one of the matched EPCs.  
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The evidences in Table 2 and Figure 2 lead us to conclude that, at the provincial level, the matching 

procedure provides an appropriate balancing of donor characteristics (from the census records) with 

certified dwellings of the EPC archive. We would not claim that the balancing is as good at the 

municipal level; in particular, it is difficult to match certified dwellings in small municipalities, 

especially if they do not use natural gas as their main heating fuel. 

Since the maps of the entire population (Census in Figure 2) are remarkably different from the map 

of the EPC recipients, it is clear that inference analysis for the entire provincial population on the 

matched EPC data will require post-stratification weights. We compute the weights defining strata, 

based on dwelling size, date of construction, degree of urbanization (below/above 500 

inhabitants/km2), main heating fuel (natural gas or not), and family type (singles, couples, couples 

with children, single parents, other). Post-stratification weights should reduce the ‘distance’ between 

the enriched EPC dataset and the reference population: Figure 3 shows that they are effective for 

some of the relevant drivers (e.g., the construction period, Panel A), but less so for others (e.g., age 

of reference person, Panel B). In the following regression analyses, we use the post-stratification 

weights to obtain results reliable at the provincial level.  

4.2 - Housing and socio-demographic characteristics, energy efficiency and standard costs of 

heating 

We can now study the relationship between dwellings and their residents’ characteristics, energy 

efficiency and standard costs of heating, using the enriched dataset. The multiple regression exercises 

investigate which (if any) of the dwelling and household features recorded by censuses and surveys 

are associated with the standardized heating costs obtained from the EPCs. Were the standardized 

heating cost predictable on the basis of the information gathered by a general household survey, such 

as the EU-SILC, we could use EU-SILC data to compute a fuel poverty index based on the 

standardized energy needs of the household and its ability to pay. In the absence of information on 

dwellings’ efficiency, it results difficult to predict standardized heating costs, as highlighted by our 

findings presented in what follows. 
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Figure 3: Comparing matched EPC and Census datasets, with and without post-stratification weighting, by 

the municipality 

 

Panel A shows the share of accommodation built since 2000, panel B shows the share of reference persons aged 65 or more, for each 

municipality of the Treviso province, for the entire census dataset (Census), the matched EPCs (EPC recipients) and the weighted 

matched EPCs (EPC recipients, weighted). 

 

Table 3 presents the weighted maximum likelihood estimates of our order logit model for the 

probability that a dwelling is categorized as A-B, C-E or F-G energy efficient, as a function of the 

dwelling’s and the household’s characteristics assigned by the matching procedure. To compute the 

standard errors, we consider the presence of the covariates generated (namely, household 

characteristics, Xi), whose values depend on estimation of the propensity score function and a random 

drawn (from the set of the census records with an estimated propensity score similar to that of the 

receiving EPC). Therefore, we compute the standard errors by bootstrapping the matching procedure 

and, consequently, computing the weights and the weighted maximum likelihood estimates, one 

hundred times. We apply the same procedure to all the estimates presented in the paper. 
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Table 3: Maximum likelihood estimates of an order logit model for the probability of living in a dwelling of 

energy class A-B, C-E, or F-G.  

     

Average marginal effects on the 

probability to fall in class: 

 Coef. Std. Err. Z p-value A-B C-E F-G 

Construction period (Ref: pre-1960)     

1960-1969 -0.0016 0.0940 -0.02 0.986 0.00004 0.0003 -0.0003 

1970-1979 -0.1833 0.0944 -1.94 0.052 0.0050 0.0334 -0.0384 

1980-1989 -0.8566 0.1015 -8.44 <0.001 0.0309 0.1618 -0.1927 

1990-1999 -1.7895 0.0821 -21.8 <0.001 0.0958 0.3016 -0.3974 

From 2000 -3.1211 0.0865 -36.1 <0.001 0.2876 0.2885 -0.5761 

Surface (up to 60 sqm)      
60-80 sqm -0.1021 0.0814 -1.25 0.21 0.0056 0.0131 -0.0186 

80-100 sqm -0.2201 0.0809 -2.72 0.006 0.0125 0.0281 -0.0405 

100-120 sqm -0.3810 0.0873 -4.37 <0.001 0.0227 0.0482 -0.0709 

120-140 sqm -0.4429 0.1010 -4.38 <0.001 0.0269 0.0559 -0.0828 

140+ sqm -0.7343 0.0924 -7.95 <0.001 0.0486 0.0903 -0.1389 

Primary heating fuel: natural gas -0.2589 0.0744 -3.48 0.001 0.0160 0.0331 -0.0491 

No central heating 0.1393 0.0751 1.86 0.063 -0.0093 -0.0172 0.0265 

Renewable resources -2.8160 0.2161 -13.03 <0.001 0.3403 0.0907 -0.4310 

Number of dwellings in the building (Ref: One)    
2 -0.0561 0.0722 -0.78 0.437 0.0037 0.0070 -0.0107 

3-4 -0.0534 0.0892 -0.6 0.549 0.0035 0.0067 -0.0102 

5-8 0.1036 0.0825 1.26 0.209 -0.0065 -0.0131 0.0195 

9+ 0.0113 0.0708 0.16 0.874 -0.0007 -0.0014 0.0021 

More than 500 inhab/km2 -0.0006 0.0530 -0.01 0.991 0.00004 0.00007 -0.0001 

Plain area -0.0054 0.0539 -0.1 0.92 0.0004 0.0007 -0.0010 

Owner occupied -0.0100 0.0595 -0.17 0.867 0.0006 0.0013 -0.0019 

Family type (Ref: single)      
Couple 0.0023 0.0885 0.03 0.979 -0.0001 -0.0003 0.0004 

Couple with children -0.0164 0.1278 -0.13 0.898 0.0011 0.0021 -0.0031 

Single parent -0.0382 0.1227 -0.31 0.756 0.0025 0.0048 -0.0072 

Other -0.1119 0.2004 -0.56 0.577 0.0074 0.0139 -0.0213 

At least high school 0.1061 0.0558 1.9 0.057 -0.0068 -0.0133 0.0201 

Age class (Ref: at most 40)      
41-65 0.1572 0.0563 2.79 0.005 -0.0104 -0.0197 0.0301 

66+ 0.1972 0.1049 1.88 0.06 -0.0129 -0.0248 0.0376 

Female 0.0119 0.0642 0.18 0.853 -0.0008 -0.0015 0.0023 

Household size 0.0097 0.0430 0.22 0.822 -0.0006 -0.0012 0.0018 

Immigrants 0.0071 0.0794 0.09 0.929 -0.0005 -0.0009 0.0013 

Occupational status (ref: employed) 

Retired from work 0.0758 0.0822 0.92 0.357 -0.0048 -0.0096 0.0144 

Other not employed 0.1731 0.0891 1.94 0.052 -0.0107 -0.0219 0.0326 

Cutoff 1 (A-B vs C-E) -4.2498 0.1627 -26.12 <0.001    
Cutoff 2 (C-E vs F-G) -1.0450 0.1547 -6.75 <0.001    

Note: Estimates use post-stratification weights; standard errors obtained by bootstrapping the entire matching procedure (and the 

computation of the post-stratification weights) 100 times. A variable with a positive estimated coefficient increases the probability of 

the accommodation of being categorized as less energy efficient. Age, education, gender and occupational status refer to the 

household’s reference person. The last three columns show the weighted average marginal effects on the predicted probability to be 

categorized in the three classes. The actual (average predicted) probability of categorization as A-B is 9.29% (9.26%), as C-E is 

42.39% (41.9%) and as F-G is 48.32% (48.84%). Number of observations: 18,094. 

 

Table 3 shows that the older the dwelling, the more likely it is energy inefficient. In contrast, 

dwellings that rely on natural gas as the primary energy source for heating, dwellings with plants for 

energy production from renewable sources and large houses are rarely categorized as F or G. 
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After controlling for dwelling characteristics, we find that very few household characteristics are 

associated to energy efficiency: ceteris paribus, families whose reference person is aged over 40 years 

old, families whose reference persons is better educated, and households headed by someone who is 

not employed or has retired from work, are more likely to live in less efficient accommodations. At 

this stage, we have no information on income; thus, given that income and education are positively 

correlated, the negative association between education and dwelling energy efficiency may be 

induced by the ambiguous relation between household income and building efficiency. On the one 

hand, wealthier families can pay for more efficient accommodation, but on the other hand, they also 

can afford higher heating costs. Which of the two effects prevails is an empirical matter. Moreover, 

our results do not support the view that, ceteris paribus, owner-occupied dwellings are of better 

quality, or that the number of units in the building matters, or that immigrants live in worse housing 

conditions (at least in terms of energy efficiency). As for predictive performance, we can classify 

dwellings according to the energy class with the highest predicted probability. That is, dwelling i is 

predicted to fall into classes C-E if: 

  ( )  ( )  ( )Pr ,..., | , Pr , | , ,Pr , | , .i i i i i i i i iClass C E Z X Class A B Z X Class F G Z X     

The percentage of correctly classified dwellings is 68%, with a tendency to misclassify dwellings in 

energy classes A-B and C-E (about 80% and 30% of misclassified cases, respectively). This shows 

the difficulty involved in reliably predicting the energy efficiency of homes occupied by families, 

based on SILC and census information.  

The energy efficiency class of the dwellings is important for predicting the standardized heating costs 

CSi, defined in equation (1). Table 4 shows the ordinary least squares estimates of a log-linear model. 

We regress ( )ln /i iCS Surface  on accommodation (Zi) and household (Xi) characteristics. We estimate 

the model including and excluding the energy class of the dwelling in Zi. Information on CSi is 

available for 17,405 out of 18,094 matched EPCs. We drop from the estimation sample the 

observations with standard heating costs/sqm below (above) the first (99th) percentile of its 
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distribution, conditional on energy class, dwelling size and natural gas as the primary heating fuel. 

This reduces the number of usable observations to 17,023.  

The estimated parameters associated to classes C-E and F-G show that, ceteris paribus, the 

standardized heating costs/sqm of accommodations in classes C to E is 79.4%, higher than for similar 

dwellings in classes A and B, and the difference rises to 131.8% for accommodations classed as F or 

G. The energy efficiency classification is a crucial, but not unique, determinant of the standardized 

heating costs: construction period, size and technological endowment of the dwelling are all 

important. Standard heating costs are higher for owner-occupied homes (+4.25%/sqm), and lower if 

the reference person has retired (-6.28%) or has at least a high school degree (-3.96%).  

The model explains 52.4% of the overall variance when we consider energy class. Notice that energy 

classes are not available in census or survey data. Consequently, we could not use these estimated 

parameters to impute a measure of standard heating costs in a survey. If we exclude the energy classes 

from the conditioning set (i.e., ‘Without energy classes’ in Table 4), the percentage of explained 

variance drops to 34.9%. Unsurprisingly, omitting the energy class variables from the conditioning 

set affects the estimates of the parameters of the construction period dummies, exacerbating the 

gradient related to the age of the building. The other parameters change very little.  
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Table 4: Ordinary least squares estimates of a log-linear model for the standard heating costs per square 

metre. 
 With energy classes Without energy classes 

 Coef. Std.err. z p-value Coef. Std.err. Z p-value 

EPC class (ref: A-B)         
C-E 0.7940 0.0358 22.18 <0.001     
F-G 1.3182 0.0361 36.47 <0.001     

Construction period (Ref: pre-1960)      
1960-1969 -0.1221 0.0269 -4.54 <0.001 -0.1254 0.0314 -3.99 <0.001 

1970-1979 -0.1823 0.0267 -6.83 <0.001 -0.2022 0.0324 -6.24 <0.001 

1980-1989 -0.2156 0.0271 -7.97 <0.001 -0.3194 0.0319 -10 <0.001 

1990-1999 -0.1919 0.0294 -6.53 <0.001 -0.4306 0.0297 -14.48 <0.001 

From 2000 -0.2116 0.0292 -7.26 <0.001 -0.7243 0.0266 -27.19 <0.001 

Surface (up to 60 sqm)       
60-80 sqm 0.0073 0.0280 0.26 0.795 -0.0261 0.0310 -0.84 0.399 

80-100 sqm 0.0493 0.0280 1.76 0.078 -0.0047 0.0298 -0.16 0.873 

100-120 sqm 0.0958 0.0321 2.99 0.003 0.0149 0.0345 0.43 0.666 

120-140 sqm 0.1282 0.0333 3.85 <0.001 0.0336 0.0366 0.92 0.358 

140+ sqm 0.0833 0.0331 2.52 0.012 -0.0696 0.0354 -1.97 0.049 

Primary fuel: natural gas -0.7612 0.0319 -23.85 <0.001 -0.7901 0.0344 -22.95 <0.001 

No central heating 0.1279 0.0240 5.34 <0.001 0.1482 0.0260 5.71 <0.001 

Renewable resources -0.3189 0.0650 -4.9 <0.001 -0.8113 0.0733 -11.08 <0.001 

Number of dwellings in the building (Ref: One)     
2 -0.0066 0.0272 -0.24 0.809 -0.0207 0.0295 -0.7 0.483 

3-4 -0.0320 0.0271 -1.18 0.239 -0.0491 0.0306 -1.61 0.108 

5-8 -0.0011 0.0228 -0.05 0.961 0.0116 0.0268 0.43 0.665 

9+ -0.0316 0.0221 -1.43 0.152 -0.0292 0.0229 -1.28 0.201 

More than 500 inhab/km2 -0.0215 0.0200 -1.07 0.284 -0.0191 0.0226 -0.85 0.397 

Plain area -0.0948 0.0177 -5.36 0 -0.0919 0.0190 -4.84 0 

Owner occupied 0.0425 0.0192 2.21 0.027 0.0407 0.0206 1.98 0.048 

Family type (Ref: single)       
Couple 0.0163 0.0249 0.65 0.513 0.0146 0.0294 0.5 0.62 

Couple with children 0.0001 0.0393 <0.01 0.998 -0.0019 0.0434 -0.04 0.965 

Single parent 0.0145 0.0344 0.42 0.674 0.0110 0.0418 0.26 0.793 

Other 0.0886 0.0586 1.51 0.131 0.0771 0.0660 1.17 0.243 

At least high school -0.0396 0.0159 -2.49 0.013 -0.0244 0.0169 -1.44 0.15 

Age class (Ref: at most 40) 

41-65 0.0122 0.0199 0.61 0.54 0.0298 0.0213 1.4 0.162 

66+ 0.0318 0.0279 1.14 0.254 0.0599 0.0347 1.73 0.084 

Female 0.0017 0.0193 0.09 0.931 0.0010 0.0217 0.05 0.964 

Household size -0.0029 0.0132 -0.22 0.824 -0.0020 0.0155 -0.13 0.9 

Immigrants 0.0255 0.0213 1.2 0.232 0.0211 0.0260 0.81 0.416 

Occupational status (ref: employed) 

Retired from work -0.0628 0.0274 -2.29 0.022 -0.0580 0.0296 -1.96 0.05 

Other not employed 0.0266 0.0274 0.97 0.333 0.0483 0.0312 1.55 0.122 

Constant 2.0620 0.0715 28.83 <0.001 3.2483 0.0560 57.97 <0.001 

Note: Estimates use post-stratification weights, standard errors obtained by bootstrapping the entire matching 

procedure (and the computation of the post-stratification weights) 100 times. Age, education, gender and occupational 

status refer to the reference person of the family. Number of observations: 17,023. 
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4.3  - Determinants of fuel poverty 

To investigate the incidence of fuel poverty in Treviso province, we need to define an indicator of 

fuel poverty and to complement our dataset with information on household disposable income. As 

for the fuel poverty index, we mimic the LIHC index suggested by Hills (2012) and described in 

detail in the recent BEIS Department handbook (2019). The basic idea of the LIHC index is to classify 

as fuel poor households in relative poverty whose standardized heating costs are above the median 

standardized heating cost. The indicator does not refer to households’ actual expenditure on heating. 

This might be higher or lower than the standardized costs, either because the family tends to overheat 

its home or because, faced with the ‘eat or to heat’ dilemma, the family lives in an uncomfortably 

cold environment. Operationally, we classify a household as being in relative poverty if its imputed 

net disposable income falls below the national relative poverty line, which is provided by the Italian 

Statistical Office (ISTAT). For fuel costs, we consider the costs, inferred from the EPC, of keeping 

the dwelling at a constant 20C temperature for 14 hours a day during winter (see Section 2). We 

depart from Hills (2012), in two ways. First, we do not subtract housing costs (rent or mortgage 

repayments) from the household disposable income to be consistent with the poverty line we refer to. 

Second, we consider that the entire accommodation needs to be heated. We show how the dimension 

of the house relative to household size is a key determinant of fuel poverty (see Table 6).  

We impute household disposable income based on the 1,454 observations in the 2015 EU SILC for 

the Veneto region. We use a log-linear specification for the expected value of total per capita 

household disposable income as a function of education attainment, occupational status, housing 

conditions and household demographic characteristics. We estimate the parameters via weighted 

ordinary least squares using EU-SILC data, and relying on them we impute the income information 

missing from the enriched EPC dataset. When imputing, we add to the deterministic component a 

random draw from the normal distribution ( )2

ˆ0, ,uN s  where 2

ûs  is the sample variance of the residuals 

of the log-linear regression. At the end of the process, we have an integrated dataset of 17,405 EPCs 
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complemented by socio-demographic information on the households (likely) living in those 

dwellings, and their imputed income. Combining information on disposable income and standardized 

heating costs to define the LIHC fuel poverty index, we obtain the results showed in Table 5. Our 

results highlight that 7.87% of households in the Treviso province live in fuel poverty, that is, an 

estimated total of 27,374 households. 

Table 5: Fuel poverty in Treviso province.  

 Low heating costs High heating costs Total 

High income 41.71 42.12 83.83 

Low income 8.30 7.87 16.17 

Total 50.01 49.99 100 
Note: Percentage of households with standardized heating costs below or above the median (low/high heating cost) and equivalent 

income above or below the relative poverty line (high/low income). According to the LIHC indicator, a family is fuel poor if its income 

is low and its fuel costs are high, which applies to 7.87% of cases. Statistics use post-stratification weights. 

 

We can tentatively reconstruct the spatial distribution of poverty in the province by exploiting 

information on the exact location of the EPCs in the dataset. Figure 4 includes three maps showing, 

for each municipality, the estimated fractions of households with, respectively, low income, high 

heating costs and that live in fuel poverty according to the LIHC indicator. It is worth stressing that 

while the map for the high heating costs does not depend on the matching procedure adopted, those 

showing the shares of households in relative and fuel poverty do depend on that matching procedure 

and their spatial distribution should be treated with caution. Nevertheless, we think these maps help 

to identify the areas at highest risk, that is, those areas where heating costs are highest while incomes 

are relatively low. In fact, according to our results, not all the lowest income municipalities (e.g., 

many municipalities in the south-west of the province) or those with the highest heating costs (e.g., 

many municipalities in the northeast of the province) are in or at risk of fuel poverty.  Rather, it is the 

combination of the two (i.e., low income and high heating costs) which leads to a high risk of being 

in fuel poverty. 
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Figure 4: Fuel poverty map 

 

Note: Estimated percentage of households with equivalent income below the national relative poverty line (Low income); with 

standardized heating costs above the provincial median standardized heating cost (High cost), and in fuel poverty, i.e., with low income 

and high heating costs. Statistics use post-stratification weights. 

 

Table 6 reports the weighted maximum likelihood estimates of a logit model for the probability of a 

household of being in fuel poverty according to the LIHC indicator and the corresponding average 

marginal effects. 
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Table 6: Maximum likelihood estimates of a logit model for the probability of being in fuel poverty according 

to the LIHC indicator.  

          
Average marginal effects (AME) on 

the probability to be in fuel poverty 

  Coef. std.err. z p-value AME std.err. z p-value 

EPC class (ref: A-B)         
C-E 1.2841 0.5328 2.4100 0.0160 0.0236 0.0079 2.9800 0.0030 

F-G 2.2160 0.5241 4.2300 <0.001 0.0508 0.0077 6.5800 <0.001 

ln(Per capita income) 
-6.5585 0.2736 -23.9700 <0.001 -0.1881 0.0070 

-

26.8300 <0.001          
Construction period (ref: pre-1960)   

     
1960-1969 -0.2123 0.1956 -1.0900 0.2780 -0.0069 0.0064 -1.0800 0.2790 

1970-1979 -0.4796 0.2056 -2.3300 0.0200 -0.0148 0.0064 -2.2900 0.0220 

1980-1989 -0.5188 0.2431 -2.1300 0.0330 -0.0159 0.0073 -2.1800 0.0290 

1990-1999 -0.6163 0.3029 -2.0300 0.0420 -0.0185 0.0088 -2.1100 0.0350 

From 2000 -1.4244 0.2949 -4.8300 <0.001 -0.0367 0.0071 -5.1800 <0.001          
Surface/Household members  (up to 20 sqm)    

    
21-40 1.3124 0.2967 4.4200 <0.001 0.0248 0.0047 5.2500 <0.001 

41-60 2.1397 0.3572 5.9900 <0.001 0.0482 0.0072 6.7100 <0.001 

61-80 2.7911 0.3906 7.1500 <0.001 0.0717 0.0101 7.1200 <0.001 

81-100 3.4921 0.4546 7.6800 <0.001 0.1023 0.0147 6.9800 <0.001 

121-140 3.1613 0.4670 6.7700 <0.001 0.0872 0.0154 5.6400 <0.001 

>140 4.4210 0.4534 9.7500 <0.001 0.1519 0.0222 6.8500 <0.001 

Primary fuel: natural gas -0.9900 0.1668 -5.9400 <0.001 -0.0305 0.0057 -5.3400 <0.001          
No central heating 0.4445 0.2406 1.8500 0.0650 0.0120 0.0060 2.0000 0.0450 

Renewable resources -0.0714 0.4874 -0.1500 0.8840 -0.0020 0.0136 -0.1500 0.8820          
Number of dwellings in the building (Ref: One)   

    
2 -0.3946 0.1939 -2.0400 0.0420 -0.0112 0.0055 -2.0500 0.0400 

3-4 -0.2780 0.2169 -1.2800 0.2000 -0.0081 0.0062 -1.3000 0.1920 

5-8 -0.2254 0.2520 -0.8900 0.3710 -0.0066 0.0073 -0.9100 0.3630 

9+ -0.0896 0.2042 -0.4400 0.6610 -0.0027 0.0061 -0.4400 0.6590          
More than 500 inhab/km2 -0.2860 0.1821 -1.5700 0.1160 -0.0080 0.0050 -1.6000 0.1100          
Plain area -0.0756 0.1700 -0.4400 0.6560 -0.0022 0.0049 -0.4400 0.6570 

Owner occupied 0.4764 0.1948 2.4400 0.0140 0.0131 0.0051 2.5700 0.0100          
Family type (ref: single)   

      
Couple 0.1088 0.3831 0.2800 0.7760 0.0033 0.0115 0.2900 0.7730 

Couple with children -0.1726 0.5647 -0.3100 0.7600 -0.0050 0.0167 -0.3000 0.7630 

Single parent -0.2438 0.4400 -0.5500 0.5790 -0.0070 0.0130 -0.5400 0.5900 

Other -0.5252 0.5787 -0.9100 0.3640 -0.0143 0.0161 -0.8900 0.3730          
At least high school 0.0493 0.1818 0.2700 0.7860 0.0014 0.0053 0.2700 0.7870          
Age class (ref: at most 40)   

      
41-65 -0.0316 0.1688 -0.1900 0.8520 -0.0009 0.0047 -0.1900 0.8520 

66+ 0.3680 0.2822 1.3000 0.1920 0.0110 0.0086 1.2800 0.2000          
Female -0.0501 0.2100 -0.2400 0.8110 -0.0014 0.0060 -0.2400 0.8100 

Household size 0.7072 0.4095 1.7300 0.0840 0.0006 0.0046 0.1200 0.9040 

Household size2 -0.1103 0.0463 -2.3800 0.0170     
Immigrants 0.0132 0.2467 0.0500 0.9570 0.0004 0.0071 0.0500 0.9570 

Occupational status (ref: employed)        
         

Retired from work -0.3643 0.2696 -1.3500 0.1770 -0.0102 0.0074 -1.3800 0.1690 

Other not employed 0.1003 0.2671 0.3800 0.7070 0.0029 0.0079 0.3700 0.7120 

Constant 50.7757 2.5554 19.8700 <0.001         
Note: Estimates use post-stratification weights; standard errors obtained by bootstrapping the entire matching procedure, the 

computation of the post-stratification weights and income imputation, 100 times. A variable with a positive estimated coefficient 

increases the probability of being in fuel poverty. Age, education, gender and occupational status refer to the household reference 

person. The last four columns show the weighted average marginal effects on the predicted probability to be in fuel poverty. Number 

of observations: 17,405. 

 

The estimates and the average marginal effects show that fuel poverty is due to a combination of low 

income and housing conditions. Ceteris paribus, households living in dwellings classed F or G have 
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a 5.08 percentage points (pp) higher fuel poverty risk than households living in the most efficient 

houses; keeping housing conditions constant, a 10% per capita income increase reduces this risk by 

1.9 pp. Even after controlling for income and energy class, construction date and dwelling size 

relative to the size of the household are crucial factors: on average, the newer the building and the 

smaller the surface per capita, the lower the fuel poverty risk. Having natural gas as the main heating 

fuel reduces the risk of fuel poverty by 3 pp on average, whereas homeowners, ceteris paribus, have 

an augmented risk (+1.3 pp). Other household and dwelling characteristics are not significant, on 

average. 

Figure 5 depicts the main results of our analysis. It plots the predicted average probabilities (and 

confidence intervals) of being in fuel poverty as a function of the surface/occupants ratio. We consider 

separately six clusters of households, based on use of natural gas (Gas/No gas) and the dwelling 

energy class (A or B; C to E, and F or G). All the variables are considered at the observed values, 

except the per capita income, for which we contrast the predicted values when income is at the 10th 

and 25th percentiles. 

Figure 5 highlights the scope of policy interventions for low-income households. In the case of 

income at the 1st quartile (i.e., the 25th percentile), the risk of fuel poverty for households that use 

natural gas for their heating is almost always at or below the mean (the horizontal line at 7.87%). 

Improvements to energy efficiency or a shift to use of natural gas, would reduce the fuel poverty risk 

appreciably only for those households without natural gas and living in dwellings with more than 60 

sqm per capita (9.45% of the total). Overall, Figure 5 suggests that, apart from households living in 

very large and inefficient dwellings, there is no scope for policy intervention to help households 

whose income is at around the 25th percentile of the income distribution.  
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Figure 5: Predicted average probabilities (and 95% confidence intervals) of being in fuel poverty, based on sq metres 

per capita (horizontal axis) for six clusters of households based on their primary heating fuel (Gas/No gas) and the 

dwelling’s energy class (A or B; C to E, and F or G). 

 

Note: Most of the variables are considered at the observed values with the exception of per capita income; in that case, we contrast 

predicted values for income at the 10th (1st income decile) and 25th percentiles (1st income quartile). Standard errors obtained by 

bootstrapping the entire matching procedure, computation of the post-stratification weights and income imputation, 100 times. Number 

of observations: 17,405. 

 

For incomes in the 10th percentile the picture changes: if the energy class is above B, the risk of fuel 

poverty is usually higher than average, regardless of dwelling size or main energy source. In this case, 

the reduced fuel poverty risk associated to a reduction in the (relative) size of the accommodation 

could be substantial and similar to that achieved by improving building efficiency. Keeping other 

aspects constant, switching to natural gas could have equally large effects. For instance, a household 

living in class F accommodation providing 50 sqm per capita, without natural gas and in the 10th 

percentile of the per capita income distribution, faces a 50% risk of fuel poverty. Moving to a smaller 

accommodation - say 30 sqm per capita - would reduce the risk to 30%; but this improvement could 
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be obtained - alternatively - by switching to natural gas or improving the dwelling’s energy efficiency 

to class D.  

 

5 - Conclusions 

In this paper, we propose a novel methodological approach to investigate the energy efficiency of 

dwellings and the socio-demographic and economic characteristics of the households residing in 

them. By exploiting a nearest neighbour statistical matching procedure, we construct an integrated 

dataset which combine the information included in the EPCs with that in the census data. Specifically, 

we link the publicly registered EPCs to the census records for accommodations in the same 

municipality, with the same heating systems and characteristics most likely to match the certified 

dwellings. Finally, we enrich these data with income information imputed from SILC, which resulted 

in 17,405 records for the Treviso province, a small and densely populated county in the north-east of 

Italy. Thus, each record in our dataset contains the standardized heating cost of the dwelling as well 

as the socio-demographic condition and the income of the household most likely to live there. 

This dataset is used to estimate the households’ risk of fuel poverty at the municipal level. We follow 

the LIHC index (Hills, 2012), which classifies as fuel poor households in relative poverty whose 

standardized heating costs are above the median standardized heating cost. Operationally, we classify 

a household as being in relative poverty if its imputed net disposable income falls below the national 

relative poverty line published by ISTAT, the national statistical office. In relation to fuel costs, we 

used the information on the EPCs to quantify the amount of fuel necessary to maintain a standard 

indoor temperature, given the observed efficiency of the dwelling.  

Our findings confirm that measuring fuel poverty is a complex task, and that low income and 

inefficient housing conditions are the main drivers of fuel poverty. In this perspective, policies aimed 

at reducing fuel poverty need to consider not only the household income, but also the type of the 

dwelling’s heating system and the efficiency and size of the accommodation relative to the household 
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size. Our results suggest also that such policies should differentiate among municipalities in the same 

local area (province).  

Finally, our analysis highlights the utility of the EPC database to investigate energy poverty in EU 

member states and design policies to fight it. Reducing fuel poverty in Europe is key for at least two 

reasons: by increasing buildings’ efficiency, on the one hand, it would improve vulnerable 

households’ living conditions; on the other hand, it would contribute to decreasing carbon emissions 

since energy poor households tend to live in high energy cost dwellings. 
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