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Abstract

We employ a nonlinear VAR framework and a state-of-the-art identification
strategy to document the large response of real activity to a financial uncer-
tainty shock during and in the aftermath of the great recession. We replicate
this evidence with an estimated DSGE framework featuring a concept of uncer-
tainty comparable to that in our VAR. We then use the estimated framework to
quantify the output loss due to the large uncertainty shock that materialized in
2008Q3. We find such a shock to be able to explain about 60% of the output loss
in the 2008-2014 period. The same estimated model unveils the role successfully
played by the Federal Reserve in limiting the output loss that would otherwise
have occurred had monetary policy been conducted as in normal times. Finally,
we show that the rule estimated during the great recession is able to deliver an
economic outcome closer to the flexible price one than the rule describing the
Federal Reserve’s conduct in normal times.
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1 Introduction

Financial uncertainty has been identified as one of the drivers of the US business cycle

(Bloom (2009), Leduc and Liu (2016), Basu and Bundick (2017), Ludvigson, Ma, and Ng

(2019)). Notably, the two highest realizations of the VIX (a popular proxy of financial

uncertainty) materialized in correspondence with two of the largest drops in real activity

occurred in the last two centuries, i.e., the great recession and the Covid-19 recession.1

Such dramatic drops in real activity called for immediate and massive interventions

by the Federal Reserve to sustain the business cycle. The synchronous occurrence of

record large jumps in financial uncertainty, recessions of the magnitude of the 2007-09

one and the one that began in 2020, and unprecedented monetary policy moves naturally

calls for the investigation of the output loss due to financial uncertainty shocks during

these extreme events on the one hand, and on the stabilizing role played by systematic

monetary policy on the other hand. Given the current data availability, we focus on the

great recession episode and ask two questions. First, were financial uncertainty shocks

relevant contributors to the US great recession? Second, how important was monetary

policy in alleviating the business cycle costs due to uncertainty shocks?

This paper addresses these questions by proceeding in three steps. First, working

with a nonlinear VAR estimated with post-WWII US data, we document the response of

real activity to the large uncertainty shock occurred in 2008Q4 in correspondence with

Lehman Brothers’bankruptcy. Our nonlinear VAR identifies the business cycle impact

of exogenous changes in uncertainty thanks to the information carried by selected events

occurred during the post-WWII period. In particular, we follow Ludvigson, Ma, and

Ng (2019) and focus on events characterized by bursts in financial uncertainty that

are likely to be informative on the realizations of financial uncertainty shocks. This

narrative identification strategy, recently put forth by Ludvigson, Ma, and Ng (2019)

and Antolín-Díaz and Rubio-Ramírez (2019), enables us to avoid imposing questionable

zero restrictions on the uncertainty-business cycle contemporaneous relationship.2 We

1The VIX reached its historical record level of 82.69 on March 16, 2020. The second highest value
ever recorded by the VIX is 80.06, which occurred on October 27, 2008. These extreme realizations
are associated with spectacular drops in output during the Great Recession (-3.92% in terms of y-o-y
real GDP growth in 2009Q2) and the Covid-19 pandemic (-9.03% in 2020Q2). For a paper exploiting
the information associated with natural disasters (a different type of extreme events) to estimate the
macroeconomic impact of uncertainty shocks, see Baker, Bloom, and Terry (2020).

2We follow Ludvigson et al.’s (2019) approach (vs. Antolín-Diaz and Rubio-Ramírez’s 2019) for
two reasons. First, Ludvigson, Ma, and Ng (2019) are concerned with the identification of financial
uncertainty shocks, as we are. Second, Ludvigson, Ma, and Ng (2019) pursue a frequentist approach.
This enables us to consider as "data" the impulse responses produced with their identification strategy,
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find that nonlinearities are present, statistically relevant, and quantitatively important.

In particular, with respect to "normal times" (whose dynamics are captured via a linear

VAR), we document a peak response of output 50% larger during the great recession

(conditional on a same-size shock), and a peak monetary policy response twice as large

(a cut of the federal funds rate of about 100 basis points in normal times vs. 200 basis

points during the great recession). Our results are robust to a variety of perturbations

of the baseline nonlinear VAR, which also include controlling for the role played by

first-moment financial shocks during the great recession.3

The second step of our analysis estimates a version of the Basu and Bundick (2017)

model with the Bayesian minimum-distance direct inference approach developed by

Christiano, Trabandt, and Walentin (2010), which we extend to the case of a nonlin-

ear, third-order approximated DSGE model. This is a limited information method -

alternative to the GMM approach developed by Andreasen, Fernández-Villaverde, and

Rubio-Ramírez (2018) - that treats as "data" the impulse responses produced with our

nonlinear VAR. This approach makes the estimation of a large set of structural para-

meters easy to implement. To our knowledge, the Bayesian estimation of a third-order

approximated DSGE model by impulse response function matching is a novel contri-

bution to the literature per se.4 The presence in the DSGE framework of a theoretical

concept of financial uncertainty in line with the proxy we use in our empirical analysis

makes Basu and Bundick’s model particularly suited to our purposes, because it enables

us to match the dynamics of financial uncertainty in the data with its theoretical coun-

terpart.5 This part of the analysis shows that our DSGE framework goes a long way

something we need to do to estimate our DSGE model, as explained in Section 4. Differently, the
approach by Antolín-Díaz and Rubio-Ramírez (2019) is Bayesian. Hence, their impulse responses are
related to posterior densities, which naturally merge information coming from the data and the prior
densities used to estimate their framework.

3Lhuissier and Tripier (2016), Alessandri and Mumtaz (2019) and Caggiano, Castelnuovo, Delrio,
and Kima (2020) show that uncertainty shocks exert larger business cycle effects in presence of financial
stress. Nonlinear structural DSGE frameworks such as the ones proposed by Gilchrist, Sim, and Zakra-
jšek (2014), Arellano, Bai, and Kehoe (2019), Alfaro, Bloom, and Lin (2019), and Fernández-Villaverde
and Guerron-Quintana (2020) provide economic intuitions on the role of financial frictions in magni-
fying the real effects of uncertainty shocks. While all these DSGE models assume fully flexible prices
(for an exception dealing with a calibrated model, see Bonciani and van Roye (2016)), our estimated
model deals with sticky prices and focuses on the role played by monetary policy in dampening the
real effects of uncertainty shocks working through channels such as households’precautionary savings
and precautionary labor supply and firms’upward pricing bias.

4The codes to implement this procedure are available at the following address:
https://sites.google.com/site/giovannipellegrinopg/home.

5As in Basu and Bundick (2017), we conceptually focus on the identification and modeling of ex-
ante, implied financial volatility shocks and their macroeconomic effects. While the majority of the
contributions in this uncertainty literature deal with implied volatility, it is important to acknowledge
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in replicating our empirical facts, therefore providing us with an empirically credible

microfounded framework to perform counterfactual analysis, which is what we do in

the final step of our investigation. Conditional on our estimated framework, we find

that an uncertainty shock as large as the one that hit the US economy in 2008Q4 might

be responsible of about 60% of the output lost by the US economy during and in the

aftermath of the great recession.6

The third step of our analysis assesses the role played by the US monetary policy in

tackling the negative effects on real activity of the uncertainty shock occurred during

the acceleration of the global financial crisis in correspondence with Lehman Brothers’

bankruptcy. First, we show that the monetary policy response engineered by the Fed-

eral Reserve during the great recession (as interpreted by our estimated framework)

successfully limited the output cost generated by the spike in financial uncertainty in

2008Q4. A comparison between the economic outcome implied by the policy rule esti-

mated with great recession data and that estimated in normal times (i.e., conditional

on the impulse responses produced with a linear VAR) reveals that the stronger policy

response to output growth fluctuations during the great recession possibly halved the

uncertainty shock-induced output loss, and shortened the duration of the recession. We

then use our estimated DSGE framework to simulate the economic outcome implied by

an unfeasible optimal simple rule tracking the evolution of the real natural interest rate,

a policy conduct that would imply an allocation of resources as under flexible prices.

We find that, both in terms of implied dynamics after an uncertainty shock and in terms

of macroeconomic volatilities, the rule estimated under the great recession brings the

economy closer to such allocation of resources. Our results offer support to prompt and

aggressive policy interventions as those implemented by the Federal Reserve during the

great recession.7

The paper develops as follows. Section 2 discusses the related literature. Section

3 presents our non-linear VAR model, the identification strategy we use, and the em-

pirical results. Section 4 describes the DSGE model and the estimation approach, and

that also realized volatility can be a driver of the business cycle. Berger, Dew-Becker, and Giglio (2020)
find that innovations in realized stock market volatility are robustly followed by contractions, while
shocks to forward-looking uncertainty have no significant effect on the economy.

6In a short companion paper, we show that this figure can be severely underestimated if the empirical
facts used to estimate the nonlinear DSGE framework at hand are generated via a standard linear VAR.
For details, see Caggiano, Castelnuovo, and Pellegrino (2020).

7The DSGE model we work with does not explicitly feature unconventional policy interventions
(namely, quantitative easing). Following Wu and Zhang (2019), Mouabbi and Sahuc (2019), and Sims
and Wu (2020), we interpret a negative interest rate in presence of the zero lower bound as a close
substitute for unconventional policies.
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it presents the estimation results. Section 5 documents the business cycle effect of

the uncertainty shock that occurred in 2008Q4; it compares the outcome of differently

aggressive output-stabilizing policies; it uses the estimated DSGE framework as a lab-

oratory to compare the macroeconomic performance implied by different policy rules.

Section 6 concludes.

2 Related literature

Our focus on financial uncertainty is due to the recent paper by Ludvigson, Ma, and Ng

(2019), who find that shocks to expected financial market volatility are relevant drivers

of the US business cycle (for similar results, see Angelini, Bacchiocchi, Caggiano, and

Fanelli (2019)).8 We borrow their identification strategy to isolate exogenous changes

in financial uncertainty and quantify their effects on the business cycle. There are

three fundamental differences between our paper and theirs. First, we use a nonlinear

framework to focus on the dynamic response of the US economy to the large uncer-

tainty shock occurred in 2008Q4. Second, we identify financial uncertainty shocks by

appealing to a larger set of narrative restrictions with respect to theirs. In particular,

we merge their dates with those exploited by Bloom (2009) for the identification of

large jumps in financial uncertainty, which are also assumed to be informative on the

occurrence of financial uncertainty shocks. Third, we interpret our responses by taking

a version of Basu and Bundick’s (2017) microfounded DSGE model to the data, which

is then used to assess the role played by systematic monetary policy in contrasting the

recessionary effects of the uncertainty shock materialized in 2008Q3 in correspondence

with Lehman Brothers’bankruptcy. Differently, Ludvigson, Ma, and Ng (2019) focus

on the identification of the real effects of uncertainty shocks in a VAR-only context.

Methodologically, we use a nonlinear Interacted VAR (IVAR) model to establish

novel facts regarding the different impact of financial uncertainty shocks on a battery of

real activity indicators. In computing our impulse responses, we follow Pellegrino (2017,

2021), Caggiano, Castelnuovo, and Pellegrino (2017), and Amendola, Serio, Fragetta,

8Larsen (2021) conducts a study on Norwegian data and finds financial uncertainty to be a driver
of the Norwegian business cycle. Similarly to our findings, he also documents a negative response of
real activity to a financial uncertainty shock. Interestingly, Larsen (2021) shows that not all types of
uncertainty are alike. For instance, uncertainty surrounding future mergers and acquisitions is found
to be positively correlated with the Norwegian business cycle. We reiterate that our focus on financial
uncertainty is justified by: i) the conceptual adherence to the measure of uncertainty we deal with in
our DSGE framework; ii) the empirical literature that points to financial uncertainty as a driver of the
US business cycle.
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and Melina (2020) and allow the elements composing the interaction term in the non-

linear VAR - in our case, uncertainty and real activity - to endogenously evolve after an

uncertainty shock. We do so to minimize the bias in our estimated responses that could

otherwise emerge if uncertainty were not allowed to be endogenous and, above all, the

business cycle were not allowed to react to shocks in uncertainty. Our IVAR-related

findings, which point to more severe consequences of uncertainty shocks for output,

investment, consumption, and hours during the great recession compared to normal

times, echo those by Caggiano, Castelnuovo, and Groshenny (2014) on unemployment,

and those obtained with indicators correlated with the business cycle like financial stress

(Alessandri and Mumtaz (2019)). Differently from these contributions, which analyze

a generic recession, our focus is on the great recession, and our identification strategy

relies on narrative sign restrictions.

As anticipated above, we estimate a version of Basu and Bundick’s (2017) framework

with the impulse-response matching approach popularized by Christiano, Trabandt, and

Walentin (2010). With respect to Basu and Bundick (2017), our stylized facts - that are

specifically related to the great recession - are obtained with a nonlinear VAR frame-

work, which we use to show that the response of real activity to an uncertainty shock is

economically and significantly larger during the great recession than in normal times.

Bretscher, Hsu, and Tamoni (2018) also investigate the role of uncertainty shocks during

the great recession. They find that a large degree of risk aversion is needed to replicate

the real effects of uncertainty shocks found in the data. Our analysis differs in at least

three respects. First, our main focus is on the role played by systematic monetary pol-

icy in stabilizing the business cycle after the spike in uncertainty in 2007-09. Second,

we establish the empirical facts on the response of the US business cycle to an uncer-

tainty shock during the great recession with a nonlinear VAR where uncertainty shocks

are identified using a state-of-the-art narrative sign restrictions approach. Third, we

take our DSGE framework to the data by matching the nonlinear impulse responses of

our VAR, which enables us to focus on the dynamics of the great recession. Finally,

from a methodological standpoint our analysis deals with a one-off shock and the dy-

namic response of real activity it triggers. For a contribution dealing with sequences of

uncertainty shocks, see Diercks, Hsu, and Tamoni (2020).

Methodologically, the closest approach to ours is probably the one by Ruge-Murcia

(2014). He estimates a small-scale third-order approximated DSGE model with an

impulse-response matching procedure based on a class of nonlinear VARs as auxiliary

models for the purpose of indirect inference via a classical minimum distance estimator.
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In doing so, he imposes the perturbation solution of the nonlinear DSGE model on

the nonlinear VAR framework to approximate as closely as possible the DSGE-related

policy functions. His approach, which is extremely neat, becomes unfortunately diffi cult

to implement when one works with models with several states. Our novel estimation

strategy easily accommodates large state spaces.

3 The real effects of uncertainty shocks: Empirical
evidence

3.1 Nonlinear empirical methodology

Reduced-form nonlinear VAR. We represent the US macroeconomic environment
with an IVAR, which augments a standard linear VAR model with interaction terms

to determine how the effects of a shock to a variable depend on the level of another

conditioning variable. We focus on a parsimonious IVAR to maximize the available

degrees of freedom while capturing the nonlinearity of interest.

Our IVAR is the following:

Yt = α+
l∑

j=1

AjYt−j +

[
l∑

j=1

cj lnV XOt−j ×∆ lnGDPt−j

]
+ ηt, ηt ∼ d(0,Ω) (1)

where Yt is the (n× 1) vector of the endogenous variables, α is the (n× 1) vector

of constant terms, Aj are (n× n) matrices of coeffi cients, and ηt is the (n× 1) vector

of error terms whose variance-covariance matrix is Ω, and d(·) is the distribution of the
residuals. The interaction term in brackets makes an otherwise standard linear VAR a

non-linear IVAR model. For each lag j, such interaction term includes a (n× 1) vector

of coeffi cients cj, a measure of uncertainty lnV XOt, and an indicator of the business

cycle ∆ lnGDPt−j ≡ lnGDPt−j − lnGDPt−j−1, which is the quarter-on-quarter growth

rate of real GDP. The interaction term lnV XOt−j×∆ lnGDPt−j enables us to capture

the potentially state-contingent effects of a shock to lnV XOt−j (i.e., an uncertainty

shock) conditional on the state of the business cycle, which is proxied by the growth

rate of real GDP. Given the focus of our study, we will refer to the responses produced

with the nonlinear framework calibrated with initial conditions at time t−1 = 2008Q3,

t−2 = 2008Q2, etc. as "great recession" moments. Differently, the responses produced

with the nested linear VAR characterized by cj = 0 per each j = 1, ..., l will be referred

to as average responses, or responses in "normal times".
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Alternatives to IVAR frameworks - such as, e.g., regime switching frameworks or

smooth transition VARs - are available to capture the nonlinear effects of macroeco-

nomic shocks (for a recent survey, see Teräsvirta (2018)). We prefer to employ the IVAR

framework (1) for three reasons. First, it resembles the approximated nonlinear policy

functions of the DSGE framework we work with.9 Second, it allows uncertainty shocks

to have different effects over time because of the changing business cycle stance, which

is key to isolate the impact of uncertainty during a specific recession. Third, it does not

feature nuisance parameters, which are often diffi cult to estimate in nonlinear frame-

works.10 Finally, our IVAR does not technically allow us to deal with heterogeneities in

impulse responses due to differently signed shocks or differently sized shocks. Here it

is worth noticing that: i) our study aims at understanding the effects of an increase in

uncertainty; ii) we want to impose the same size of the shock whose effect we simulate in

the two regimes (great recession vs. normal times) to focus on the transmission mech-

anism and, in particular, on the role played by the systematic component of monetary

policy.

Data. Wemodel the vectorYt = [lnV XO, lnGDP, lnC, ln I, lnH, lnP, SR]
′
, where

V XO denotes the stock market S&P 100 implied volatility index, GDP per capita GDP,

C per capita consumption, I per capita investment, H per capita hours worked, P the

price level, and SR the policy shadow rate. The variables in this vector are those

used by Basu and Bundick (2017) in their linear VAR analysis.11 We estimate our

IVAR model with four lags over the 1962Q3-2017Q4 sample. The end of the sample is

relatively similar to that of Basu and Bundick (2017). We do not include observations

related to the COVID-19 period to avoid distorting our VAR impulse responses (Lenza

and Primiceri (2020)). Given that the VXO is unavailable before 1986, we follow Bloom

(2009) and splice it with the within-month volatility of S&P500 daily returns, which

has displayed an extremely high correlation with the VXO since 1986. The sample

includes the zero lower bound period experienced by the Federal Reserve during the

period 2008Q4-2015Q4. We then work with the shadow rate constructed by Wu and

9Nonlinear policy functions feature different, higher order interaction terms. Our IVAR focuses
on just one of the many interaction terms one could work with. We focus on the term featuring
uncertainty and the real GDP growth because we are interested in isolating the impact of uncertainty
shocks during the 2008-2009 downturn. Simulations conducted with higher order terms, and reported
in our Appendix, deliver even stronger empirical results in favor of such nonlinear effects.
10Notice that IVARs featuring interactions terms resemble approximated Smooth Transition VAR

frameworks (Teräsvirta, Tjøstheim, and Granger (2010)).
11Basu and Bundick’s (2017) VAR also features the presence of money. Adding money implies no

changes in our empirical results. The definition and construction of the variables common to our
investigations is exactly the same as in Basu and Bundick (2017).
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Xia (2016) to account for the effects of unconventional policy responses to financial

uncertainty shocks.

A standard likelihood-ratio test favors our IVAR specification against the Basu and

Bundick’s (2017) linear VAR model (which is nested in our IVAR model in case of the

overall exclusion of the interaction terms from model (1)). In particular, the LR test

suggests a value for the test statistic χ28 = 61.99, which allows us to reject the null

hypothesis of linearity at any conventional statistical level in favor of the alternative of

our I-VAR model (p-value << 0.01).

Identification. We move from the reduced-form IVAR in (1) to the structural one

as follows. First, we assume that the system of contemporaneous relationships mapping

reduced form residuals ηt and structural shocks et can be described as

ηt = Bet, et ∼ d(0, In) (2)

where B is a matrix featuring n2 elements. Given that the reduced form covariance

matrix Ω features only n(n + 1)/2 restrictions, further restrictions have to be im-

posed to identify the effects of the structural shocks et on the endogenous variables

Yt. Without such further restrictions, infinitely many solutions satisfy the covari-

ance restrictions Ω = BB′. We collect these uncountably many solutions into the set

B = {B = PQ :Q ∈ On, diag(B) > 0,Ω = BB′}, where On is the set of (n× n) or-

thonormal matrices (i.e., QQ′ = In), P is the unique lower-triangular Cholesky factor

with non-negative diagonal elements, i.e., Ω = PP ′.

The set B is constructed by implementing the algorithm proposed by Rubio-Ramírez,
Waggoner, and Zha (2010). First, we initialize the algorithm by setting B = P . Then,

we rotate B by randomly drawing one million matrices Q. Each rotation is performed

by drawing a (n × n) matrix M from a N (0, In) density. Then, Q is taken to be

the orthonormal matrix in the QR decomposition of M . Given that B = PQ and

QQ′ = In, the covariance restrictions Ω = BB′ are satisfied. Let et(B) = B−1ηt be

the shocks implied by B ∈ B for a given ηt. Then, one million different B imply one

million unconstrained et(B) = B−1ηt, t = 1, ..., T .

While the set B contains infinitely many solutions mathematically coherent with
equations (1)-(2), not all these solutions are equally credible from an economic stand-

point. Following Ludvigson, Ma, and Ng (2019), we impose shock-based restrictions to

select the economically interesting shocks. In particular, we impose restrictions directly

on the shocks et(B) to work out the set of admissible solutions B that can be considered
as economically sensible. We identify uncertainty shocks by working with two types of
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restrictions, i.e., event constraints and external variable constraints.

Event constraints. Event constraints are justified by large jumps in financial uncer-

tainty which have a clear interpretation from an historical standpoint. Figure 1 plots

the financial uncertainty measure used in this study and identifies the events we work

with. In our estimation sample, the two largest peaks occur in 1987Q4 (Black Monday

in October 1987) and in 2008Q4 (acceleration of the financial crisis after the collapse

of Lehman Brothers). For a financial uncertainty shock to be credible, we require it

to be larger than the 75th percentile of the empirical distribution of the realizations

of financial uncertainty shocks eFUt(B) in 1987Q4 and 2008Q4.12 Other two peaks we

target are the ones in 1979Q4 and 2011Q3, which correspond to the beginning of the

Volcker experiment (targeting of non-borrowed reserves) and to the debt-ceiling crisis,

respectively. We require the realizations of our identified uncertainty shocks to be larger

than the median value of the empirical density of the uncertainty shocks eFUt(B) in

these two dates. These four restrictions are those imposed by Ludvigson, Ma, and Ng

(2019) for the identification of their financial uncertainty shocks. In an attempt to

sharpen our VAR’s ability to correctly identify financial uncertainty shocks, we then

add further constraints. In particular, we consider all events identified by Bloom (2009)

as possibly related to exogenous variations in financial uncertainty.13 These events in-

clude, among others, the assassination of JFK, two OPEC crisis, two Gulf wars, 9/11,

the Asian crisis, and the LTCM default. Bloom’s (2009) sample ends in June 2008.

When checking peaks in financial uncertainty in more recent times, we identify one in

2016Q1. Several uncertainty-triggering events occurred right before or during this quar-

ter, e.g., the first increase of the federal funds rate which ended the zero lower bound

phase after seven years; fears about China’s economic fragility; the Central Bank of

Japan going negative with the policy rate; and the announcement in February 2016 by

British Prime Minister David Cameron of the Brexit referendum in June that year. For

all these events (Bloom’s plus those related to 2016Q1), we impose that our identified

shocks must be larger than the median value of the empirical density of the uncertainty

shocks eFUt(B). Table 1 reports all the event constraints we work with.

External variable constraints. We further narrow down the set of models surviving

12This paper focuses on financial uncertainty. Ludvigson, Ma, and Ng (2019) jointly deal with
financial and macroeconomic uncertainty, and require either one or the other (or both) to be large
during the great recession. Interestingly, they find financial uncertainty shocks to be largely prevailing
in correspondence to the spike in uncertainty in late 2008. A related paper that emphasizes the role of
financial uncertainty as a driver of the business cycle during the great recession is Angelini, Bacchiocchi,
Caggiano, and Fanelli (2019)
13Bloom (2009) reports the list of these events in Table A.1, page 676.
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the selection conditional on the event constraints described above by imposing external

variable constraints. Again following Ludvigson, Ma, and Ng (2019), we impose two

such constraints. We impose that the correlation between eFUt(B) and the aggregate

stock market returns (growth rate of the real price of gold) to be below (above) the

median of its empirical density. The rationale for these constraints is the negative

correlation between financial volatility and stock market returns typically predicted by

macro-finance models, and the role of gold as a safe asset investors go to when financial

uncertainty is high.14 These two constraints are also indicated in Table 1.15

Generalized impulse responses. The interaction term of our IVAR is treated as
an endogenous object. We compute GIRFs à la Koop et al. (1996) to account for both

the endogenous response of the growth rate of per capita GDP, i.e., our conditioning

variable, to the uncertainty shock and the feedback this reaction can imply on the

dynamics of the economy. Theoretically, the GIRF at horizon h of the vector Yt to a

shock of size δ computed conditional on an initial history $t−1 = {Yt−1, ...,Yt−l} is
given by the following difference of conditional expectations:

GIRFY,t(h, δt, $t−1) = E [Yt+h | δ,$t−1]− E [Yt+h | $t−1] .

In our analysis, we are interested in recovering the response ofYt to an uncertainty shock

conditional on a specific initial history$t−1 = {Yt−1, ...,Yt−4}, where t− 1 = 2008Q3,

the initial history that corresponds to the quarter before the remarkable uncertainty

spike in 2008Q4 (see Figure 1). Hence, the IVAR GIRFs ψ̂i for the great recession are

computed by iterating forward the system starting from the initial condition $2008Q3.

Our Appendix describes the algorithm used to compute the GIRFs. As regards the size

of the shock δ, we impose a 4.4 standard deviation shock, which is the median size of

the uncertainty shock in t = 2008Q4 among all retained shocks series.

14As stressed by Ludvigson et al. (2019), the external variables used here are not required to be
valid exogenous instruments. Hence, this identification approach is conceptually different with respect
to the one used in the proxy-SVAR literature. For a contribution in this latter direction, see Carriero,
Mumtaz, Theodoridis, and Theophilopoulou (2015), Piffer and Podstawski (2018), and Alessandri,
Gazzani, and Vicondoa (2020).
15Conditional on all the constraints we impose, the number of accepted draws is about 0.2% for both

the linear VAR and the IVAR. More precisely, out of one million, we retain 2,116 draws for the linear
VAR, and 2,168 for the IVAR.
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3.2 Empirical results

Figure 2 plots the generalized impulse responses computed with our IVAR approach

for the great recession. To appreciate the role played by nonlinearities in this analysis,

the same Figure plots the corresponding responses generated by the nested linear VAR

framework. In plotting the dynamic response of the US economy to an uncertainty

shock, we focus on the median target model à la Fry and Pagan (2011).16 The focus on

the median target model is justified by two reasons. First, when searching for a reference

to quantify the effects of macroeconomic shocks, median impulse responses are often

taken as a reference. Second, in the second part of the paper, we will estimate our

DSGE framework with an impulse response functions matching approach that focuses

on the points estimates (as opposed to the identified sets) of the impulse responses

produced with our VAR.17

Looking at Figure 2, a few facts stand out. An uncertainty shock induces a gener-

alized drop in our real activity indicators during the great recession. The largest fall

is in investment. The fall is persistent, with all four real activity indicators taking 20

quarters (or more, in the case of consumption) to go back to their trends. Prices also

drop in a significant manner. The response of the federal funds rate is large and signif-

icant, with a peak drop of about 200 basis points after 2 years. All these responses are

significant according to their 68% confidence bands.18 Last but not least, nonlinearities

matter. The responses of the four real activity indicators during the great recession are

substantially larger than those suggested by the encompassed linear VAR. Moreover,

prices do not fall according to the linear framework. This is true despite of the close

similarity between the response of uncertainty according to the linear vs. nonlinear

16Following Fry and Pagan (2011), the median target impulse responses plotted in Figure 2 are those
implied by the (median target) model belonging to the set of admissible solutions common to the two
regimes we work with, i.e., normal times and great recession. This model is identified by searching for
the model-implied impulse responses that are the closest, according to a quadratic loss function, to
the responses computed by taking the median values across all models B per each single variable and
horizon. For details on the algorithm to identify the median target model, see Fry and Pagan (2011).
The plot with all response belonging to the identified set is reported in our Appendix.
17Ludvigson, Ma, and Ng (2019) consider (for instructive purposes) a different selection criterion,

i.e., the "max G" solution, which selects the model that maximizes the inequality constraints pertaining
to the external variable constraints. We prefer to pursue the median target model because it involves
all the constraints we impose to set-identify the macroeconomic responses we deal with.
18Our bootstrapped confidence bands are based over 1,000 realizations for the impulse responses,

which are used to compute the bootstrapped estimate of the standard errors of the impulse response
functions. As in Altig, Christiano, Eichenbaum, and Lindé (2011), the 68% confidence bands are con-
structed by considering the median target point estimates of the impulse response ± the bootstrapped
estimate of the standard errors.
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VAR. Table 2 reports the peak response of our business cycle indicators during the

great recession. Notably, it is about 50% larger than the average response produced

with the linear VAR. The same indication comes from consumption, whose peak reac-

tion is 32% larger in great recession, and even more so for investment and hours, whose

peak responses during the great recession are two and a half and two times larger than

average, respectively.

Are the above-commented responses statistically larger according to our nonlinear

VAR with respect to those predicted by the linear framework? Figure 3 shows the

outcome of the bootstrapped test for the differences, along with the 68% confidence

bands.19 As evident from the figure, the responses of output, investment, and hours

produced with our nonlinear VAR are significantly larger in the great recession. Turning

to consumption, the mass of the distribution of the retained models hints to a larger

response in the great recession. Finally, also the response of the price level and the

nominal interest rate is found to be significantly different between the great recession

and normal times.20

Our results are driven by an identification strategy - explained in the previous Sec-

tion - that hinges upon events some of which are not directly related to financial mar-

kets and financial volatility. The interpretation one has to give to those events is an

instrumental one, i.e., those events are such to generate financial volatility not caused

by movements in the business cycle. Obviously, this interpretation can be challenged

when dates such as the OPEC-related ones, or the Black Monday, or the one on the

appointment of Paul Volcker as the chairman of the Federal Reserve are considered to

achieve identification. The risk is that of confounding financial uncertainty shocks with,

19For each variable, the figure is based on the distribution constructed by considering 1,000 differences
between responses in the linear model and responses obtained from the IVAR for the great recession.
Such responses are generated from 1,000 samples obtained via the standard residual-based bootstrap
around the median target responses. For each sample, we estimate the IVAR and nested linear VAR,
compute the corresponding GIRFs and IRFs, and take their difference. The 68% confidence bands are
constructed by considering the point estimate of the impulse responses ± the bootstrapped estimate of
the standard errors. The construction of the test statistic takes into account the correlation between
the estimated impulse responses. Our Appendix shows that the difference in the responses holds true
also when model uncertainty is accounted for. We also find evidence in favor of a stronger response of
real activity during the great recession when considering the maximum and minimum peak responses
of real GDP to an uncertainty shock.
20Obviously, the great recession was characterized by a combination of first-moment financial shocks

and uncertainty shocks (Stock and Watson (2012)). Our Appendix documents an exercise in which we
model the BAA-AAA spread along with the other variables of our VAR, and we implement an event-
based approach to separately identify first and second-moment financial disturbances. The impulse
responses obtained with this expanded vector of variables are pretty close to the ones documented
here.
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respectively, oil shocks, first-moment financial shocks, and monetary policy shocks. Re-

assuringly, the correlations between our uncertainty shocks and proxies for the monetary

and first-moment financial shocks - respectively, the Romer and Romer (2004) mone-

tary policy shocks updated by Miranda-Agrippino and Rey (2020) and the estimates

by Gilchrist and Zakrajšek (2012) of first-moment credit supply shocks turn out to be

not significant at a 10% level.21 Differently, the correlation between our uncertainty

shocks and the oil supply shocks by Baumeister and Hamilton (2019) is 0.20, and it is

precisely estimated (p-value: 0.03). However, an exercise (reported in Appendix) run

by i) dropping the oil-related dates from our set of constraints, and ii) requiring the

identified uncertainty shocks implied by our retained models to be not significantly cor-

related with the oil supply shocks proxy by Baumeister and Hamilton (2019) confirms

the robustness of our findings.

Overall, these results point to an economically and significantly strong response of

real activity to an uncertainty shock in an extreme event like the great recession. To

interpret this fact, and above all to quantify the impact of the systematic policy response

to the macroeconomic situation materialized during the great recession, we now use a

nonlinear structural DSGE model.

4 Uncertainty-driven contractions: A structural in-
terpretation

4.1 DSGE model: Description and estimation

Description. The Basu and Bundick (2017) framework extends an otherwise standard
medium-scale New Keynesian model to consider an ex-ante second moment shock in

the preference shock process, which has got a direct influence on a well-defined ex-

ante financial volatility concept within the model. As stressed in the Introduction,

this is the reason why we prefer to work with this model with respect to other models

that have successfully captured the business cycle effects of other types of uncertainty

shocks, e.g., shocks to the volatility of the world interest rate (Fernández-Villaverde,

Guerrón-Quintana, Rubio-Ramírez, and Uribe (2011)), fiscal policy (Born and Pfeifer

21The correlations (p-values) between our uncertainty shocks (conditional on the median target
model) and the proxies indicated in the text are: with excess bond premium shocks 0.19 (0.20); with
monetary policy shocks -0.09 (0.19). Significance assessed by running an OLS regression involving our
uncertainty shocks (left hand side) vs. a constant and one proxy at a time (right hand side). We
consider White heteroskedasticity-consistent standard errors to control for heteroskedasticity.
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(2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015)),

technology (Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry

(2018)), and monetary policy (Mumtaz and Zanetti (2013)). We briefly describe the

Basu and Bundick (2017) model here, focusing on the parts that are crucial for our

study. We refer the reader to Basu and Bundick’s (2017) paper for further details.

Households work, consume, and invest in equity shares and one-period risk-free

bonds. They are all similar, and feature Epstein-Zin preferences over streams of con-

sumption and leisure, formalized as follows:

Vt =

[(
1− β)(atC̃

η
t (1−Nt,)

(1−η)
)(1−σ)/θV

+ β((EtVt+1)
1−σ)1/θV

]θV /(1−σ)
where C̃t = Ct − Ht , Ct is consumption, Ht = bCt−1 captures external habit

formation in consumption related to the level of aggregate consumption lagged one

period, Nt is hours worked, β is the discount factor, σ is a parameter directly influencing

the degree of risk aversion, ψ is the intertemporal elasticity of substitution, θV ≡
(1−σ)/(1−ψ−1)−1 captures households’preferences for the resolution of uncertainty, η
weights consumption and labor in households’happiness function, and at is a stochastic

shifter influencing the relevance of today’s realizations of consumption and labor vs.

those expected to occur during the next period.22

The stochastic process followed by this preference shock is:

at = (1− ρa)a+ ρaat−1 + σat−1ε
a
t

σat = (1− ρσa)σa + ρσaσ
a
t−1 + σσ

a

εσ
a

t

where εat is the first-moment preference shock, and ε
σa

t is a second-moment uncer-

tainty shock to the preference process which loads the law of motion regulating the

evolution of the time-varying second moment σat relative to the distribution of ε
a
t . With

respect to the framework in Basu and Bundick (2017), we add (external) habit for-

mation in consumption to capture the hump-shaped response of consumption in the

data (for another contribution jointly modeling Epstein-Zin preferences and habits in

consumption, see Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018)).

22de Groot, Richter, and Throckmorton (2018) show that households’ preferences in Basu and
Bundick’s (2017) paper imply an asymptote in the responses to an uncertainty shock with unit in-
tertemporal elasticity of substitution. Our paper employs the set of preferences proposed by Basu and
Bundick (2018), which do not imply any asymptote.
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Intermediate goods-producing firms operate in a monopolistically competitive envi-

ronment, rent labor from households, and pay wages. They own capital and choose its

utilization rate, issue equity shares and one-period riskless bonds, and invest in phys-

ical capital to maximize the discounted stream of their profits. In doing so, they face

quadratic costs of adjusting nominal prices à la Rotemberg (1982), capital adjustment

costs à la Jermann (1998), and capital utilization costs influencing the capital depreci-

ation rate.23 All intermediate firms have the same Cobb-Douglas production function,

and are subject to a fixed cost of production and stationary technology shocks. In-

termediate goods are packed by a representative final goods producer operating in a

perfectly competitive market. The model is closed by assuming that the central bank

follows a standard Taylor rule, which reads as follows:

rt = r + ρπ(πt − π) + ρy∆yt (3)

where rt = ln(Rt), πt = ln(Πt), ∆yt = ln(Yt/Yt−1), Rt is the gross nominal interest

rate, Πt is gross inflation, π is the net inflation target, and Yt is output. Hence, monetary

policymakers are assumed to systematically respond to changes in inflation and the

growth rate of output.

In this framework, an uncertainty shock propagates to the economy mainly via

precautionary savings and precautionary labor supply.24 The former effect reduces

current consumption in response to an increase in uncertainty, while the latter increases

labor supply, which drives real wages and firms’marginal costs down. Given that prices

are sticky, the price markup increases. Output, which is demand-driven in this model,

falls due to the drop in consumption, and labor demand contracts driving hours down.

Given the lower return on capital, investment falls too. Hence, in equilibrium, an

increase in uncertainty causes a drop in all four real activity indicators, i.e., output,

consumption, investment, and hours, which is what we observe in the data.

23Oh (2020) shows that the Rotemberg pricing scheme has got implications on the response of
inflation to an uncertainty shock that are not equivalent to those implied by Calvo. We prefer to
model price rigidities à la Rotemberg because, as shown in Oh (2020), the implications of this pricing
scheme are more consistent with the empirical evidence on the fall in inflation in response to an
uncertainty shock.
24Given that adjustment costs are convex, this model does not imply a "wait-and-see" effect after an

uncertainty shock. The reason is that, to solve the model, we use perturbation methods which require
policy functions to be differentiable, a feature which is not possessed by threshold policy functions
arising in presence of real option effects. Still, investment potentially matters for the propagation of
uncertainty shocks through the two channels explained in Bianchi, Kung, and Tirskikh (2019), i.e., an
investment risk premium channel, which depends on the covariance between the pricing kernel and the
return on investment, and a investment adjustment channel, which arises because of rigidities which
prevent firms to immediately adjust investment to the desired level.
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As anticipated above, the model features a well-defined implied financial volatility

index. This is because intermediate firms issue equity shares on top of one-period

riskless bonds.25 Each equity share has a price PE
t and pays dividends DE

t , implying a

one-period return RE
t+1 =

(
PE
t+1 +DE

t+1

)
/PE

t . The model-implied financial uncertainty

index V M
t is computed as the annualized expected volatility of equity returns, i.e.,

V M
t = 100

√
4 · V ARt

(
RE
t+1

)
, where V ARt

(
RE
t+1

)
is the quarterly conditional variance

of the return on equity RE
t+1. Equity returns are endogenous in the model, which makes

the ex-ante volatility V M
t endogenous too. However, in this model V M

t is almost entirely

driven by second-moment preference shocks for a variety of plausible calibrations. This

enables us to treat the uncertainty shock as a financial uncertainty shock proxied by

V M
t , and to sensibly match our VAR impulse responses to a financial uncertainty shock

with those of the DSGE framework we aim at estimating.26

We work with a third-order approximation of the nonlinear DSGE model, which we

solve via perturbation techniques (Schmitt-Grohe and Uribe (2004)). The third order

approximation of agents’decision rules features an independent role for uncertainty,

whose independent effect on the equilibrium values of the endogenous variables of the

framework can therefore be studied (Andreasen (2012)). Perturbation represents an

accurate and fast way to find a solution also working with frameworks featuring recursive

preferences (Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao (2012)).

Estimation. We estimate the model described above via the impulse response

function-matching approach popularized by Christiano, Trabandt, andWalentin (2011).

This is a limited information Bayesian approach, which allows to write an approxima-

tion of the likelihood of the VAR impulse responses (that are treated as "data" here) as

a function of the parameters of the DSGE model one aims at estimating (Kim (2002)).

Being Bayesian, this approach enables us to impose economically sensible prior densities

on the structural parameters while asking the data (i.e., our IVAR impulse responses)

to shape the posterior density of the estimated model. With respect to Christiano, Tra-

bandt, and Walentin (2011), who focus on a linearized DSGE framework and a linear

25Basu and Bundick (2017) assume that firms finance a share ν of their capital stock each period
with one-period riskless bonds. Given that the Modigliani-Miller theorem holds in their model, leverage
does neither influence firms’value nor firms’optimal decisions. Firms’leverage only influences the first
two unconditional moments of financial-related quantities (e.g., the average level and unconditional
volatility of the model-implied VXO and the equity premium), but it does not influences impulse
responses to an uncertainty shock.
26A Monte Carlo simulation documented in our Appendix shows that the identification strategy

based on the Narrative Sign Restrictions we work with enables our VAR to recover the "true" responses
produced by the DSGE model.
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VAR as auxiliary model, we estimate a nonlinear DSGE framework approximated at a

third order with moments produced with an Interacted VAR. To our knowledge, this

is the first application of Christiano et al.’s (2011) Bayesian estimation strategy to a

nonlinear DSGE framework. Technical details on this estimation approach are offered

in our Appendix.27

We estimate 7 structural parameters, i.e. ζ i =
[
ρσa , σ, b, φK , φP , ρπ, ρy

]
. These pa-

rameters are the persistence of the second moment preference shock ρσa, the household

risk aversion parameter σ, the consumption habit formation parameter b, the parameter

regulating investment adjustment costs φK , the parameter regulating price adjustment

costs φP , and the parameters of the Taylor rule ρπ, ρy. Our priors are reported in the

third column of Table 3. We calibrate the prior means with the values in Basu and

Bundick’s (2017) analysis, and we use diffuse priors. For the habit formation parame-

ter and the parameters of the Taylor rule, we use the priors employed by Christiano,

Trabandt, and Walentin (2011). The remaining parameters of the model are calibrated

as in Basu and Bundick (2018). We discuss the calibration of these parameters in our

Appendix.

It is important to stress that, consistently with our VAR analysis that features the

Wu and Xia’s (2015) shadow rate, our DSGE model does not impose the zero lower

bound constraint on the policy rate. We do so because we interpret a possibly negative

rate according to the model as a shadow rate, i.e., a short-term interest rate capturing

unconventional policies whose effect is comparable to the one of a counterfactual policy

leading the rate to the negative territory (for a similar approach and interpretation, see

Wu and Zhang (2019) and Mouabbi and Sahuc (2019)). The underlying assumption

behind this approach is that the impact of unconventional policies implemented during

the great recession to circumvent the zero lower bound issue was comparable to the one

of conventional policies before the great recession. Empirical support to this assumption

is provided by Swanson (2020).28

27It is important to reiterate that this approach, which requires the VAR impulse responses to be
interpretable as data, calls for a frequentist VAR analysis (as opposed to a Bayesian one).
28It is worth noticing that the federal funds rate was 1.94% in 2008Q3. Hence, according to the

policy rate response predicted by our IVAR (median target estimate), the Federal Reserve had enough
room to intervene with a conventional policy move to tackle the real effects of the 2008Q4 uncertainty
shock.
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4.2 DSGE model: Results

Our DSGE model-based estimated responses are reported in Figure 4, along with the

VAR-based bootstrapped confidence bands. The model captures remarkably well the

great recession facts documented with our nonlinear VAR. The DSGE impulse responses

mostly lie within the 68% confidence bands of the IVAR impulse responses. As far as real

activity is concerned, the model performs extremely well for output, consumption, and

investment, while it goes short for hours, although it suggests a prolonged recession as in

the data. Possible explanations are: i) the assumption of homogeneous workers, which

misses to take into account differences the relatively faster exit from the labor market

by unskilled workers during recessions (for a discussion, see Basu and Bundick (2017);

for a paper dealing with skilled and unskilled workers and the responses of hours worked

to an uncertainty shock, see Belianska (2020)); ii) the role played by the precautionary

labor supply channel, which leads to an increase in labor supply under uncertainty and

dampens the magnitude of the drop in hours worked in equilibrium (Bianchi, Kung, and

Tirskikh (2019)); iii) the absence of search frictions, which can magnify the real effects of

uncertainty shocks (Leduc and Liu (2016)), above all if combined with an occasionally

binding constraint on downward wage adjustment (Cacciatore and Ravenna (2020)).

While leaving the modification of the labor market framework in this model to future

research, we note that the analysis on the role played by the Federal Reserve in tackling

the recessionary effects of uncertainty shocks we carry out in Section 5 will focus on the

responses of output, which the model captures well.

Turning to the nominal side, the model is able to capture the response of prices

during the great recession, while it underestimates the response of the policy rate. Still,

it clearly captures the persistence of the policy easing implemented by the Federal

Reserve during and in the aftermath of the great recession.

Table 3 collects the estimated parameters of the DSGE model. We focus our at-

tention on the implied estimate of relative risk aversion and on the parameters of the

Taylor rule. As explained by Swanson (2012), the coeffi cient of relative risk aversion

in this type of models is affected by the labor market structure as well as households’

preference. Building on Swanson (2012), Swanson (2018) works out the expression for

the coeffi cient of relative risk aversion conditional on endogenous labor supply, habits

in consumption, and generalized recursive preferences (which include Epstein-Zin pref-

erences). Following Swanson (2018), our estimated parameters imply a coeffi cient of
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relative risk aversion equal to 145 (see Table 3).29 This value is larger than that cali-

brated (75) or estimated (110) by Rudebusch and Swanson (2012). One obvious reason

for this discrepancy is that our paper aims at matching impulse responses during an

extreme event, i.e., the great recession.30 Cohn, Engelmann, Fehr, and Maréchal (2015)

provide experimental evidence suggesting that financial market professionals are more

risk averse during a financial bust than a boom. Guiso, Sapienza, and Zingales (2017)

propose experimental evidence in favor of a fear model in which agents experience higher

risk aversion in periods of crisis. Schildberg-Horisch (2018) surveys the literature on

risk aversion and finds that for negative economic shocks such as the 2007-09 financial

crisis, the evidence consistently points to an increase in risk aversion. A somewhat

related finding is that by Cox, Greenwald, and Ludvigson (2020), who find evidence

pointing to a jump in risk aversion as a relevant driver of the stock market during the

first months of the COVID-19 pandemic. More in general, Cochrane (2017) points to

countercyclical risk aversion as a feature macro-finance models should possess to match

the data. Finally, Barillas, Hansen, and Sargent (2009) employ a max-min expected

utility theory approach to show that models with high risk aversion in which rational

agents are endowed with the knowledge of the true underlying structure of the economy

can be reinterpreted as frameworks in which risk aversion is low but households have

doubts about the model specification. Our model does not embed any doubts about

the underlying economy by households. Therefore, it is likely to understate the true

quantity of risk faced by households in the data, which is the reason why it requires

high levels or risk aversion to match the VAR facts.31

29The formula for the RRA in our extension of the Basu and Bundick (2017) model with habits
takes the following form (see our Appendix for the full derivation):

RRA =

(
η

η + (1− η) (1− b)

)
·

 1
ψ

(
1 + (1−η)

η (1− b)
)

(1− b)
(
1 + (1−η)

η

) + (σ − 1

ψ

)(
η

(1− b) + 1− η
)

30Our Appendix also documents the irrelevance of initial conditions for our DSGE results. Cacciatore
and Ravenna (2020) prove that pruning completely eliminates state dependence in the propagation of
uncertainty shocks from third-order approximated solutions. Hence, the unpruned solution of the
model may in principle generate state-dependent dynamics. However, an IVAR estimated with data
simulated from the unpruned approximated solution of our estimated model turns out to deliver impulse
responses that are quantitatively insensitive to variations in the initial conditions.
31Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018) show that, in a model featuring a

portfolio allocation problem related to short- and long-term bonds plus a systematic response of the
central bank to the term spread, uncertainty shocks to households’ preferences generate moments
consistent with the data even in presence of moderate values of risk aversion. The moments studied
by Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018) are, however, unconditional moments,
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Turning to the Taylor rule parameters, the systematic response to inflation is esti-

mated to be lower than that typically found in the literature (see, e.g., Clarida, Galí,

and Gertler (2000)). The reason is that, for uncertainty shocks to generate a large re-

sponse of real activity, a countercyclical price markup has to materialize. A too strong

monetary policy response to inflation would prevent the increase of the price markup,

forcing other parameters of the model (e.g., risk aversion) to adjust to enable the DSGE

framework to match the empirical facts. At the same time, the imposition of a unique

equilibrium under rational expectations pushes the optimizer toward delivering a policy

response to inflation larger than one. Table 3 reports the estimates of the Taylor rule

parameters obtained by matching the impulse responses of the linear VAR nested in

our nonlinear IVAR, where the former are interpreted as "normal times" dynamics.32

Quite interestingly, the policy response of inflation turns out to be basically the same

as the one during the great recession. Differently, the policy response to output growth

is estimated to be larger during the great recession. This evidence captures the rapid

and massive interventions by the Federal Reserve in response of the dramatic drop in

real activity occurred in 2008-09. This intuitive interpretation is supported by policy

statements on the importance of contrasting the negative pressures on real activity in

that period.33

4.3 Monetary policy and output loss during the great recession

Output loss due to the 2008Q4 uncertainty shock. What is the contribution of
the large uncertainty shock materialized in 2008Q4 to the output loss recorded during

and in the aftermath of the great recession? We address this question by contrasting

the response of output predicted by our estimated framework with the CBO output

gap, which we take as a proxy for detrended output.34 We consider the period 2008Q4-

i.e., they are not state-specific.
32When taking the model to normal times data, all estimated parameters are re-optimized to ensure

that adjustments in the Taylor rule parameters do not proxy for other possible changes in the structure
of the economy (e.g., a lower degree of risk aversion). Given our research question, our focus is on the
changes in the values of the policy rule parameters.
33See, for instance, the minutes of the Federal Open Market Committee meeting held on October

28-29, 2008, where all FOMC members "[...] judged that a significant easing in policy at this time was
appropriate to foster moderate economic growth and to reduce the downside risks to economic activity."
After that meeting, the federal funds rate target was cut by 50 basis points.
34The DSGE framework we work with does not feature any random walk or deterministically trending

process. Hence, a comparison with actual data requires detrending or filtering actual output. Following
Basu and Bundick (2017), we focus on the estimate provided by the Congressional Budget Offi ce (CBO),
which is based on a production function approach and on sectoral and aggregate data. For a detailed
description on the estimation of the potential level of output by the CBO, see Shackleton (2018).
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2014Q4, which is the period during which the output gap (normalized to zero in 2008Q3)

recorded consecutive negative values before going back to a plus sign in 2015Q1.

Figure 5 plots contrasts the impulse response of output predicted by our model with

the data. The response of output to an uncertainty shock follows a path pretty similar

to that of output in the data, although the peak realization of the output gap occurs

in 2009Q2, two quarters earlier than that predicted by the model. Then, both the

model-implied output and actual output gradually go back to their trends, displaying a

similar persistence. In terms of cumulative output over the 2008Q4-2014Q4 period, the

model attributes a share of the actual output loss as large as 60% to the uncertainty

shock materialized in 2008Q4.

Role of the switch to a more aggressive output stabilization. Equipped with
the DSGE model estimated using the great recession-specific impulse responses, we now

turn to the analysis of the role played by monetary policy in the propagation of the

2008Q4 uncertainty shocks. Table 3 documents a more aggressive systematic response

to output growth during the great recession (the parameter attached to output in the

DSGE policy rule is 0.28 for the great recession, compared with 0.20 in normal times).

A natural question is to what extent such a more aggressive response of the Fed worked

in favor of mitigating the depth of the great recession. This question parallels the one

asked by Christiano (2003) on the role monetary policy could have played in limiting the

depth of the great depression. In particular, while the depth of the great depression has

been attributed to a monetary policy response not accommodative enough (Friedman

and Schwartz (1963)), the avoidance of a deeper great recession has been credited to

the timely and aggressive response by monetary authorities.35 To understand the role

played by the systematic monetary policy in place during the great recession, we perform

a counterfactual exercise in which we replace the policy response to output growth

estimated with great recession data with the value of the same parameter obtained in

normal times, i.e., we replace ρGRy = 0.28 with ρlineary = 0.20.36 We then generate the

corresponding GIRF to a 4.4 standard deviation uncertainty shock.

Figure 6 presents the results. The counterfactual fall in output would have been

roughly doubled in 2008Q4 and the recession would have been longer, lasting until the

second half of 2010. Hence, according to our estimated framework, the Fed played a

35For instance, Jason Furman, Chairman of the Council of Economic Advisers, gave a speech at the
Macroeconomic Advisers’25th Annual Washington Policy Seminar on Sept. 9 2015 titled "It Could
Have Happened Here: The Policy Response That Helped Prevent a Second Great Depression".
36It is useful to recall that the estimated policy response to inflation either with great recession data

or with normal times data is the same.
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significant role in mitigating the depth of the great recession.

Distance from scenario under optimal (unfeasible) rule. As explained by
Basu and Bundick (2017), the rule that mimics the optimal policy conduct in this

framework is the one that postulates a systematic response of monetary policymakers

to fluctuations in the natural interest rate and the output gap, i.e.,

rt = rnt + π + ρπ(πt − π) + ρxxt (4)

where rnt is the "natural" real interest rate from the equivalent flexible-price economy,

and xt is the output gap, i.e., the difference between the equilibrium level of output

under sticky prices and that under flexible prices. This rule is, in fact, unfeasible in

the real world due to the lack of perfect knowledge of latent processes such as the real

natural interest rate or the model-consistent output gap. However, it is of interest to

understand how different a picture we get when contrasting the macroeconomic outcome

under the estimated simple rules as opposed to the one under the optimal rule.

Figure 7 jointly plots the impulse responses generated by our model under the two

estimated rules and the optimal one.37 Let us analyze the macroeconomic response

under the optimal rule first. Evidently, the response of the federal funds rate tracks

more closely that of the natural interest rate. As a consequence, the drop in consumption

is dramatically attenuated. As far as output, investment, and hours are concerned, we

observe a larger on impact reaction, but also a much more rapid return of these real

activity indicators to their trend values, with the temporary effects of uncertainty shocks

fully absorbed within two years after the shock. The crucial point here is the absence of

a countercyclical markup. The "optimal" policy (4) prevents the equilibrium markup

to exceed the desired one, therefore aligning the demand for output, investment, and

hours to the one optimally supplied by firms and consumers in a flexible price scenario

in spite of the presence of sticky prices.38 Consumption decreases under all policy

37To minimize deviations with respect to the estimate rule (3), we calibrate ρπ = 1.05, and ρx = 0.28
(where, for the latter parameter, we use our estimate of the response to the output growth to calibrate
the response to the output gap). Given that the interest rate path under the optimal rule is fully
determined by the evolution of the real natural interest rate, the calibration of the policy response to
inflation and the growth rate does not play any role in determining the macroeconomic outcome under
such a rule.
38The switch in sign in the response of output, investment, and hours is due to precautionary labor

supply, which is due to the increase in the marginal utility of consumption due to precautionary savings
channel that becomes active after an unceratainy shock. The increase in labor supply drives real wages
downward, therefore reducing firms’marginal costs, an effect that contrasts firms’upward pricing bias
in presence of uncertainty and stabilizes the price markup. Given the level of technology and capital,
the larger amount of hours worked in equilibrium increases output and the returns from capital, which
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rules as a consequence of agents precautionary savings. The minimum contraction

of consumption is the one associated to the optimal policy rule, followed by the rule

estimated with great recession data, which was more aggressive in stabilizing output,

something that implies, in our model, a more effective stabilization of consumption as

well. Interestingly, an outcome associated with the optimal policy is the lower on-impact

hike of financial volatility, an endogenous object in our model. This result mimics the

empirical evidence on the impact of expansionary monetary policy shocks on measures

of uncertainty (Bekaert, Hoerova, and Lo Duca (2013), Mumtaz and Theodoridis (2019),

and Pellegrino (2021)).

Turning to the comparison between the performance implied by our estimated rules

and the one we would have observed if the (unfeasible) optimal rule had been imple-

mented, the impulse responses in Figure 7 point to macroeconomic dynamics under

the estimated great recession rule closer to the responses implied by the optimal rule

than the dynamics implied by the rule estimated with normal times data. Moreover,

Table 4 documents the lower business cycle volatility (computed both as model-implied

moments and as stochastic volatility) experienced under the three rules at play.39 The

path is clear, i.e., for all business cycle indicators, the volatility turns out to be lower

(and clearly so for output, investment, and hours) under the great recession rule.

5 Conclusion

This paper documents the large output costs due to financial uncertainty during the

great recession and assesses to what extent the prompt and strong monetary policy inter-

vention implemented by the Federal Reserve limited such costs. We employ a nonlinear

VAR and a state-of-the-art identification strategy to estimate the causal effect going

from the large jump in financial uncertainty that occurred in 2008Q4 to the US business

cycle. We find evidence in favor of co-movement of output, consumption, investment,

and hours, with a generalized drop in real activity substantially larger than the one

predicted by a linear VAR that does not account for the nonlinear transmission of un-

certainty shocks to the economy during an extreme event such as the great recession.

The second part of the paper exploits the VAR evidence to estimate a nonlinear DSGE

justifies the positive response of investment. For further details on the flexible price allocation in this
model, see Basu and Bundick (2017).
39The computation of the stochastic volatility controls for the fact that, given the stochastic volatility

process of the preference shock in our model, also the endogenous variables in our DSGE framework
feature a time-varying second moment.
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framework that features a time-varying financial volatility concept comparable to the

one modeled with our VAR. We show that such a framework replicates remarkably well

our great recession facts. A simulation conducted with our estimated framework points

to a contribution to the output loss during and after the great recession by the large

uncertainty shock that hit the US economy in the fourth quarter of 2008 as large as 60%.

A counterfactual simulation imposing monetary policy as in normal times (that features

a weaker response to output growth than the one we estimate with great recession data)

to the great recession scenario point to a dramatically larger output loss that the econ-

omy would have born. Finally, a comparison between the macroeconomic performance

implied by our estimated rules and the one induced by the optimal (but unfeasible)

simple rule suggests that the rule in place during the great recession performs better

than the one relatively more concerned with inflation consistent with normal times data.

Our findings support the switch to an aggressive, output stabilization-focused monetary

policy during extreme events characterized by large uncertainty shocks.
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Event constraints
t Event Source Constraint on eFU.t

1963Q4 Assassination of JFK B eFU.t > p(eFUt(B), 50th)
1966Q3 Vietnam buildup B eFU.t > p(eFUt(B), 50th)
1970Q2 Cambodia and Kent state B eFU.t > p(eFUt(B), 50th)
1973Q4 OPEC I, Arab-Israeli War B eFU.t > p(eFUt(B), 50th)
1974Q3 Franklin National B eFU.t > p(eFUt(B), 50th)
1978Q4 OPEC II B eFU.t > p(eFUt(B), 50th)
1979Q4 Volcker experiment B, LMN eFU.t > p(eFUt(B), 50th)
1980Q1 Afghanistan, Iran hostages B eFU.t > p(eFUt(B), 50th)
1982Q4 Monetary policy turning point B eFU.t > p(eFUt(B), 50th)
1987Q4 Black Monday B, LMN eFU.t > p(eFUt(B), 75th)
1990Q4 Gulf War I B eFU.t > p(eFUt(B), 50th)
1997Q4 Asian crisis B eFU.t > p(eFUt(B), 50th)
1998Q3 Russian, LTCM default B eFU.t > p(eFUt(B), 50th)
2001Q3 9/11 B eFU.t > p(eFUt(B), 50th)
2002Q3 Worldcom, Enron B eFU.t > p(eFUt(B), 50th)
2003Q1 Iraq invasion B eFU.t > p(eFUt(B), 50th)
2008Q4 Great recession B, LMN eFU.t > p(eFUt(B), 75th)
2011Q3 Debt ceiling crisis LMN eFU.t > p(eFUt(B), 50th)
2016Q1 End of the US ZLB in the US, China, This paper eFU.t > p(eFUt(B), 50th)

Japanese neg. rate, Brexit refer. ann.

External variable constraints
External variable St Source Constraint on ρ(eFUt, St)
Stock market return LMN ρ(eFUt, St) 6 p(ρ(eFUt, St), 50th)
Real price of gold (log difference) LMN ρ(eFUt, St) > p(ρ(eFUt, St), 50th)

Table 1: Event and external variable constraints. Constraints imposed to identify
financial uncertainty shocks. Sources: B = Bloom (2009); LMN = Ludvigson et al.
(2019). p(X,Zth) refers to the Zth percentile of the empirical density of the variable X.

Output Consumpt. Investment Hours
Baseline IVAR and VAR
Peak response: Linear -1.54% -1.03% -3.34% -1.90%
Peak response: Great Recession -2.32% -1.36% -8.32% -3.75%
Ratio GR/Linear 1.50 1.32 2.49 1.97

Table 2: Peak responses. Peak responses to a one standard deviation uncertainty
shock estimated with linear VAR and nonlinear IVAR for the great recession.
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Implied standard deviations Output Cons. Invest. Hours
Normal times Taylor rule 2.91 1.18 8.27 2.40
Great Recession Taylor rule 2.47 1.16 7.46 2.15
Optimal policy rule 1.23 0.68 6.60 1.72

Stochastic standard deviations Output Cons. Invest. Hours
Normal times Taylor rule 0.63 0.28 1.85 0.43
Great Recession Taylor rule 0.52 0.26 1.62 0.35
Optimal policy rule 0.24 0.13 1.29 0.28

Table 4: Simulated standard deviations under different rules. Implied standard
deviations computed on simulated time series over a sample featuring 2-million obser-
vations. Stochastic standard deviations computed by considering, conditional on the
above sample, the standard deviation of the time series of standard deviations computed
with observations in a 5-year rolling window.
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Figure 2: Impulse responses: linear vs. great recession. Impulse responses to
a 4.4-standard deviation uncertainty shock. Solid green (dashed red) lines: Point esti-
mates of the response of our VAR variables in normal times (during the great recession)
conditional on the median target model à la Fry and Pagan (2011). Gray area (area
identified by solid red lines): 68% bootstrapped confidence interval surrounding the
median-target model.
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Figure 3: Bootstrapped test for the difference of median target responses.
Grey bands: 68% confidence bands.
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Figure 4: VAR and DSGE impulses responses to an uncertainty shock during
the great recession. Dashed red lines: IVAR impulse reponses for the great recession
with 68% confidence bands. Solid red lines with circles: Responses of the DSGE model
estimated with nonlinear VAR moments. VAR estimated with four lags.
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Figure 5: Contribution of uncertainty shocks to the output loss during the
great recession. Red line with circles: Response of output to a 4.4 standard-deviation
uncertainty shock according to our estimated DSGE framework. Yellow solid line:
Output gap estimated by the Congressional Budget Offi ce. Output gap normalized to
zero in 2008Q3.
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Figure 6: Counterfactual experiment on the role of monetary policy for the
propagation of the 2008Q4 uncertainty shocks and the depth of the great
recession. Baseline: GIRFs conditional on the parameters estimated with the great
recession impulse responses. Counterfactual experiment conducted by replacing the
Taylor rule parameter ρGRy = 0.28 with the "normal times" value ρlineary = 0.20.
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Figure 7: DSGE impulse responses conditional on estimated vs. optimal
policy rule. Red solid line with circles: GIRFs during the great recession. Green
dotted lines with diamonds: GIRFs conditional on the economy estimated with great
recession data but with the policy rule estimated with normal times data. Optimal
policy: GIRFs implied by the policy rule that features a systematic response of the
policy rate to movements in the real natural interest rate.
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Appendix of the paper "Uncertainty and Monetary
Policy During the Great Recession", by Giovanni
Pellegrino, EfremCastelnuovo, and Giovanni Caggiano

This Appendix contains additional material with respect to the contents of our paper.

In particular:

• Section A offers details on the way we compute the generalized impulse responses
(GIRFs) with our nonlinear VAR;

• Section B documents additional results related to our baseline nonlinear VAR

analysis. In particular, it documents: a) the identified set of the impulse response

functions of our baseline VARs; b) a difference test that accounts for model un-

certainty; c) an alternative difference test accounting for sampling uncertainty

around GDP peak responses.

• Sections C offers several extensions and robustness checks to our baseline results.
In particular, our results are robust to: a) adding extra interaction terms to our

baseline nonlinear VAR framework; b) controlling for a proxy of credit spread,

which is meant to capture first-moment financial shocks; c) excluding the dates

referring to oil-related events from our baseline set of restrictions.

• Section D shows that our event-based approach for the identification of uncertainty
shocks works well if the data generating process is the Basu and Bundick (2017)

model;

• Section E derives the formula we use in the paper to compute the value of the
relative risk aversion in the estimated DSGE framework, which depends (as also

explained in the text of the paper) on the structure of the economy because of

the presence of habits in consumption and endogenous labor supply;

• Section F offers details on the Bayesian IRFs matching econometric strategy used
in the paper to estimate the DSGE framework in a state-dependent fashion;

• Section G discusses the calibration of the set of structural parameters of the DSGE
model we work which we do not estimate;

• Section H shows that initial conditions do not materially affect the generalized

impulse responses computed with our DSGE framework.
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A: Computation of the Generalized Impulse Response Func-
tions

The algorithm for the computation of the Generalized Impulse Response Functions

follows the steps suggested by Koop, Pesaran, and Potter (1996), and it is designed to

simulate the effects of an orthogonal structural shock as in Kilian and Vigfusson (2011).

The idea is to compute the empirical counterpart of the theoretical GIRFY(h, δ,ωt−1)

of the vector of endogenous variables yt, h periods ahead, for a given initial condition

ωt−1 = {Yt−1, ...,Yt−l}, where l is the number of VAR lags, and δ is the structural

shock hitting at time t. Following Koop, Pesaran, and Potter (1996), such GIRF can

be expressed as follows:

GIRFY(h, δ,ωt−1) = E[Yt+h |δ,ωt−1] − E[Yt+h |ωt−1]

where E[·] is the expectation operator, and h = 0, 1, ..., H indicates the horizons

from 0 to H for which the computation of the GIRF is performed.

In our case, ωt−1 corresponds to our "Great Recession" initial condition, i.e., the

initial condition corresponding to the uncertainty spike occurred in t = 2008Q4 or:

ωt−1 = ω2008Q3 = {Y2008Q3, ...,Y2008Q3−l+1} .

Notice that, given that uncertainty and GDP are modeled in the VAR, such set

includes the values of the interaction terms (lnV XO ×∆ lnGDP )t−j, j = 1, ..., l.

Given our IVAR model (formalized in the paper, see eq. (1)), we compute our

GIRFs as follows:

1. use the initial condition ωt−1 = ω2008Q3 . Pick a matrix B among the set of

retained matrices B that satisfy our identifying narrative sign restrictions (see
identification in Section 2 of the paper);

2. conditional on ωt−1, B and the structure of the model (1), we simulate the

path [Yt+h |ωt−1]r , h = [0, 1, ..., 19] (which is, realizations up to 20-step ahead)

by loading our VAR with a sequence of randomly extracted (with repetition)

residuals η̃rt+h ∼ d(0,Ω), h = 0, 1, ..., H, where Ω is the VCV matrix of the IVAR

residuals, d(·) is the empirical distribution of the residuals, and r indicates the
particular sequence of residuals extracted;

3. conditional on ωt−1, B and the structure of the model (1), we simulate the path

[Yt+h |δ,ωt−1]r , h = [0, 1, ..., 19] by loading our VAR with a perturbation of the
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randomly extracted residuals ũrt+h ∼ d(0,Ω) obtained in step 2. In particular,

we use the decomposition Ω = BB′, where B is the picked admissible solution.

Hence, we recover the orthogonalized elements (shocks) ẽrt = B−1η̃rt . We then

add a quantity δ > 0 to the ẽrunc,t, where ẽrunc,t is the scalar stochastic element

loading the uncertainty equation in the VAR. This enable us to obtain ẽrt , which

is the vector of perturbed orthogonalized elements embedding ẽrunc,t. We then

move from perturbed shocks to perturbed residuals as follows: η̃rt = Bẽrt . These

are the perturbed residuals that we use to simulate [Yt+h |δ,ωt−1]r ;

4. we compute the difference between paths for each simulated variable at each

simulated horizon [Yt+h |δ,ωt−1]r − [Yt+h |ωt−1]r , h = [0, 1, ..., 19];

5. we repeat steps 2-4 a number of times equal to R = 500. We then store the

horizon-wise average realization across repetitions r. In doing so, we obtain a

consistent estimate of the GIRF given the matrix B, ĜIRFBY(h, δt,ωt−1) =

Ê[Yt+h |δ,ωt−1] − Ê[Yt+h |ωt−1] , h = [0, 1, ..., 19];

6. we repeat steps 1-5 for each given matrix B among the set of retained matrices

B. The set of all the GIRFs for each possible B ∈ B determines our identified
set. If a given matrix B leads to an explosive response (namely if this is explosive

for most of the R sequences of residuals η̃rt+h, in the sense that the response of

the shocked variable diverges instead than reverting to zero), then such initial

condition is discarded.1 In order to plot a summary GIRF out of this set we

use the Median Target (MT) response proposed by Fry and Pagan (2011), i.e.,

the GIRF corresponding to the B model whose implied impulse responses to an

uncertainty shock are the closest to the median responses computed across all

retained models;

7. confidence bands surrounding the MT GIRFs estimates obtained in step 6 are

computed via a bootstrap procedure. In particular, we simulate S = 1, 000 sam-

ples of size equivalent to the one of actual data. Then, per each simulated dataset,

we: i) estimate our nonlinear VAR model; ii) implement step 5.2 In implementing

1This never happens for our responses estimated on actual data. We verified that it happens quite
rarely as regards our bootstrapped responses.

2Per each simulated set we also estimate the linear VAR specification nested in the IVAR model and
compute the corresponding linear response to the same shock size, so that to be consistent with what
we do on the actual data. The bootstrap used is similar to the one used by Christiano, Eichenbaum,
and Evans (1999) (see their footnote 23). The code discards the explosive artificial draws to be sure
that exactly 1,000 draws are used. In our simulations, this happens a negligible fraction of times.
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this procedure the initial conditions and VCV matrix used for our computations

now depend on the particular dataset s used, i.e., ωst−1 and Ωs
t .
3 Hence, rather

than using the B which corresponds to the MT response, we use the rotation Q

which corresponds to the MT response, i.e., we use Bs = P sQ with P s being

the unique lower-triangular Cholesky factor associated to Ωs
t , i.e., Ωs

t = P sP s′.

68% confidence bands are constructed by considering the point estimates of the

impulse responses ±0.995 times the bootstrapped standard errors.

We use a shock size δ equal to the median size of the uncertainty shock in t = 2008Q4

among all retained shocks series.

B: Extra results on the baseline IVAR analysis

Identified set

Figure 2 in the main text shows the median target responses computed with our IVAR

approach for the great recession and the median target responses obtained with the

nested linear VAR together with their bootstrapped bands. Figure A1 instead reports

the identified set of impulse responses along with the median target impulse response

both for normal times and for the great recession.4 A few facts stand out. First, there

is evidence of a negative response of all real activity indicators to an uncertainty shock

according to both models. Looking at the identified set, real activity indicators go down

on impact after an uncertainty shock according to the large majority of retained models.

Second, this evidence is stronger for the great recession case. The responses during the

great recession are substantially larger than those in normal times. This is true despite

of the close similarity between the response of uncertainty in the two states we consider.

This latter evidence points to a different transmission mechanism at work in normal

times vs. during an extreme event as the great recession. Three, the response of real

activity indicators is more persistent during the great recession. Fourth, the response

of the policy rate is negative and persistent according to both models, while that of the

price level is negative during the great recession, and negligible in the linear case.

Below we show that the two identified sets are different from a statistical standpoint.
3To maximize comparability between the initial condition ωst−1 and the Great Recession one in the

actual sample, in the simulated dataset we pick the quarter t with the biggest uncertainty spike.
4The number of accepted draws is about 0.2% for both the linear VAR and the IVAR. More precisely,

out of one million, we retain 2,116 draws for the linear VAR, and 2,168 for the IVAR. Following Fry
and Pagan (2011), the median target (MT) response is produced by considering the unique retained
model whose implied impulse responses are the closest to the median responses (across models) over
the horizon we consider.
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Difference accounting for model uncertainty

Figure 3 in the main text shows the outcome of a test for the difference of median target

responses that only accounts for estimation (or sampling) uncertainty by means of the

bootstrap at point 7. Figure A2 instead shows a test for the difference of state-dependent

responses that focuses on model uncertainty, i.e., on the uncertainty related to all the

responses in the identified set. The differences are constructed as follows. We start

by considering the same set of rotations for both the linear and the interacted VARs.

Among all retained draws for each model, we consider only those that are common to

the two VARs. This leaves us with 77% of common retained draws. We then construct

the difference among the responses belonging to the set of common retained draws and

plot their distribution. Figure A2 shows that all differences remain significant, even

when looking at the 99% percentile of the empirical distribution.

A test accounting both for estimation and for model uncertainty is not proposed

here. Such a test would be extremely demanding from a computational standpoint,

given that our VAR model is a nonlinear one and the computation of the GIRFs is

time-consuming. A test of this sort is proposed by Ludvigson, Ma, and Ng (2019), who

- however - focus on a linear framework and, therefore, can compute impulse responses

pretty quickly given that such responses are independent from initial conditions and do

not require averaging out the outcome of different simulations accounting for different

initial conditions.

Difference around alternative responses than the MT responses

Figure 3 in the paper shows the outcome of a bootstrap test for the difference of our

median target responses between normal times and the great recession. Specifically,

we find that the responses of output, investment, consumption, and hours worked to

an uncertainty shock as produced with our nonlinear VAR for the great recession are

significantly larger than the same responses produced with a (nested) linear VAR once

accounting for sampling uncertainty. Figure A3 shows that we find the same result

if, rather than constructing the bootstrap test for the difference of responses around

MT responses, we construct it around alternative target responses. In particular, we

select two alternative target responses from the identified set in Figure A1: the response

relative to the biggest GDP peak reaction, and that relative to the smallest GDP peak

reaction. As Figure A3 documents, the response of real activity is still significantly

bigger during the great recession than normal times for the two alternative targets
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considered.5 The reaction of consumption is only borderline significant when targeting

to the smallest GDP peak response, with the mass of the distribution that however

hints to a larger response in the great recession. Overall the evidence in Figure A3

suggests that our baseline test for the difference of MT responses is representative for

the spectrum of real activity responses in the identified set.

C: Extensions and robustness checks for the IVAR analysis

Parsimonious (baseline) vs. extended IVAR

The IVAR model employed in the paper is a parsimonious version of a more sophisti-

cated IVAR which we estimated to check the robustness of our results. Thinking of the

third-order approximation of the DSGE model we work with, it is natural to extend

our baseline IVAR framework to add extra interaction terms involving quadratic terms

as follows:

Yt = α+
L∑
j=1

AjYt−j +


∑L

j=1 cj lnV XOt−j ×∆ lnGDPt−j
+
∑L

j=1 cj(lnV XOt−j)
2 ×∆ lnGDPt−j

+
∑L

j=1 cj lnV XOt−j × (∆ lnGDPt−j)
2

+ ut

Cubic terms ((lnV XOt−j)
3, (∆ lnGDPt−j)

3) are omitted to minimize the likelihood

of explosiveness.

Figure A4 contrasts the impulse responses obtained with our baseline model with

those produced with the enriched framework. If anything, the reactions produced by

this framework speak even more clearly in favor of nonlinearities in the data.

The role of first moment shocks

The Basu and Bundick (2017) model features frictionless financial markets. As such,

it acknowledges no role to first moment financial shocks as drivers of the business cy-

cle. Consistently with Basu and Bundick’s (2017) theoretical framework, our baseline

VAR specification(s) does not feature any measure of financial frictions. However, as

discussed by Stock and Watson (2012), the great recessions was likely caused by a

combination of first-moment financial shocks and uncertainty shocks. Hence, one may

5Our bootstrapped confidence bands are based over 1,000 realizations for the impulse responses,
which are used to compute the bootstrapped estimate of the standard errors of the impulse response
functions. As in Altig, Christiano, Eichenbaum, and Lindé (2011), the 68% confidence bands are
constructed by considering the target point estimates of the impulse response ± the bootstrapped
estimate of the standard errors. More details on the bootstrap we perform are available in Section A
on this Appendix.

A6



wonder if our finding on the larger business cycle effects caused by uncertainty shocks

during the great recession is in fact an artifact due to having left out of the picture the

role of first moment financial shocks. To address this issue, we augment our baseline

vector in the IVAR specification with a measure of spread, which is meant to cap-

ture frictions in financial markets. Our model of endogenous variables is then given

by: Yt = [SPREAD, lnV XO, lnGDP, lnC, ln I, lnH, lnP, FFR]
′
, where SPREAD

is the difference between the BAA yield and the AAA one, V XO denotes the stock

market S&P 100 implied volatility index, GDP per capita GDP, C per capita con-

sumption, I per capita investment, H per capita hours worked, P the price level, and

FFR the federal funds rate. To jointly identify first and second moment (uncertainty)

financial shocks we adopt the same methodology of Section 2. The narrative sign re-

strictions approach has the clear advantage of not imposing any timing restrictions on

the spread-uncertainty contemporaneous relationship. This implies that, conditional

on our identification strategy to separate first and second-moment financial shocks, the

results we obtain are not driven by questionable zero restrictions.

The challenge at this point is to disentangle spread and uncertainty shocks, which

are typically assumed to have similar effects on macro variables. To separate the two

shocks, we impose the following restrictions on top of our baseline ones. First, we use two

event-based identifying restrictions. First, recall that our uncertainty shock in 1987Q4

(the quarter related to the Black Monday) has to be greater than or equal to the 75th

percentile of the distribution of the shocks conditional on that quarter. In other words,

the uncertainty shock must be "suffi ciently large". Differently, we impose that our first

moment financial shock in 1987Q4 has to be smaller than or equal to the median. This

requirement is supported by the evidence provided by Gilchrist and Zakrajšek (2012),

whose measure of financial frictions - the excess bond premium (EBP) calculated as

the fraction of a microfounded credit spread index not explained by the underlying

fundamentals of bond issuers - has a negative spike in October 1987. Figure A5 plots our

proxy of uncertainty, the VXO, along with three commonly used measures of financial

frictions: the Baa-Aaa spread, the excess bond premium estimated by Gilchrist and

Zakrajšek (2012), and the National Financial Conditions Index produced by the Chicago

Fed. While all indicators show a large spike in the great recession, in October 1987 only

the VXO experienced a large increase, while all other indicators displayed value below

their average.

The second event-based identifying restriction we impose to separate first and second-

moment financial shocks is that our first-moment financial shock in 2008Q4 be greater
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than or equal to the median shock. This requirement is similar to that imposed for

the identification of our financial uncertainty shock. The 2008Q4-related restriction is

meant to make sure that we just retain models pointing to large financial shocks (both

first and second-moment financial shocks) during the great recession.

Second, we impose a further external variable restriction. We require that the iden-

tified first-moment financial shocks must be positively correlated with the Gilchrist and

Zakrajšek’s (2012) EBP shocks.6 Third, we use ratio restrictions following the approach

proposed by Furlanetto, Ravazzolo, and Sarferaz (2019). They identify financial and

uncertainty shocks using a sign restrictions approach which features, among others,

restrictions on ratios of the impulse responses of proxies for first and second-moment

financial indicators. Following their approach, we impose that a financial uncertainty

(spread) shock generates an on-impact response of the financial uncertainty-spread ratio

bigger (smaller) than one.7 We also impose that the spread shock and the uncertainty

shock have a positive on-impact effect on the uncertainty and spread proxies, respec-

tively, to be sure that the ratios that we constrain are also positive.

Figure A6 reports the median target GIRFs to an uncertainty shock for the great

recession scenario based on the IVAR model, as well as the impulse responses for the

linear case, together with their bands.8 Figure A7 reports the difference between the

linear and the nonlinear case, along with one standard deviations confidence bands.

Two results stand out. First, the recessionary impact on all real activity indicators is

larger, and statistically significant, in the great recession. Second, the peak responses

are overall in line with those of the baseline scenario (documented in Figures 2 and 3

in the paper). Hence, our results are robust to controlling for a measure of financial

frictions in our VAR. Finally, Table A1 documents the similarity between some moments

implied by our baseline IVAR and the same moments produced with the IVAR enriched

with financial frictions presented in this Section.

6We replicated Gilchrist and Zakrajšek’s (2012) Cholesky-VAR(2) model and worked with their
identified EBP-shock series.

7To implement this identification strategy, we standardized the financial spread to impose the same
standard deviation of our uncertainty proxy.

8Out of one million draws, we retain 84 draws for the linear VAR, and 83 for the IVAR, and compute
the median-target responses over these retained draws.We see the small number of retained draws as
a good sign. This is in line with Uhlig’s (2017) Principle 7: "When a lot of draws are rejected, the
identification is sharp. Good!".

A8



The role of oil supply shocks

The analysis in the paper revealed the risk of confounding financial uncertainty shocks

with oil shocks, something which would undermine our identification strategy. In par-

ticular, the correlation between our identified uncertainty shocks (conditional on the

median target model) and the oil supply shocks by Baumeister and Hamilton (2019) is

0.20, and it is precisely estimated (p-value: 0.03).9 ,10We here conduct an exercise where,

with respect to the baseline analysis, we do not restrict the shocks in correspondence

of Bloom’s uncertainty spikes dates related to oil-related events, i.e., 1973Q4 (OPEC I,

Arab-Israeli War) and 1978Q4 (OPEC II). We also impose that each retained rotation

Q should also imply an insignificant correlation coeffi cient (at the 5% significance level)

between the rotation-implied uncertainty shocks and the externally provided oil supply

shocks proxy. Figure A8 reports the median target GIRFs to an uncertainty shock

for the great recession scenario based on the IVAR model together with the impulse

responses for the linear case and their bootstrap confidence bands. Figure A9 docu-

ments the difference between the linear and the nonlinear case, along with one standard

deviation confidence bands. The figures confirm the robustness of our findings to this

robustness check and hence suggest that our findings are not driven by the confusion of

financial uncertainty shocks and oil shocks. In particular, the correlation between the

uncertainty shocks identified in this robustness check (conditional on the median target

model) and the oil supply shocks by Baumeister and Hamilton (2019) is now 0.12 and

turns out to be not significant at a 10% level.

D: Narrative Sign Restrictions and DSGE framework

This Section shows that the narrative sign restrictions (NSR) approach proposed in the

paper is able to recover the true impulse responses to an uncertainty shock conditional

on the Basu and Bundick (2017) model being the data generating process.

The Basu and Bundick (2017) model features an endogenous measure of financial un-

certainty, a model-consistent VXO, which responds to three shocks, i.e., a first-moment

technology shock, a first-moment preference shock, and a second-moment preference

9The oil supply shocks by Baumeister and Hamilton (2019) are online available at the website
https://sites.google.com/site/cjsbaumeister/BH2_supply_shocks.xlsx?attredirects=0&d=1 . This se-
ries is available only from 1975Q2.
10Significance assessed by running an OLS regression involving our uncertainty shocks (left hand side)

vs. a constant and the oil supply shocks proxy (right hand side). We consider White heteroskedasticity-
consistent standard errors to control for heteroskedasticity.
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shock, this last one being the uncertainty shock. The question is whether it is possi-

ble to identify uncertainty shocks only by observing the VXO, as we do in the data.

To address this question, we simulate a sample of 2,500 observations with the Basu

and Bundick (2017) model conditional on the estimates we obtained with the facts es-

tablished by the linear VAR.11 We then estimate a linear VAR and produce impulse

responses to an uncertainty shock identified via our NSR restrictions.12 In particular,

consistently with what Bloom (2009) does to identify the dates we use in our baseline

analysis, we select the dates with the biggest spikes in the HP-filtered (model-consistent)

VXO.13 Similarly to our baseline analysis, we require the realizations of our identified

uncertainty shocks to be larger than the median value of the empirical density of the

uncertainty shocks in the selected dates.14 We focus on a population analysis and on

a linear VAR to make sure that our result is not driven by any small-sample issue or

fancy nonlinear reduced-form framework.

Figure A10 documents the performance of the NSR-VAR in replicating the DSGE-

model consistent impulse responses. The ability of the VAR to correctly capture the

responses of the DSGE model is unquestionable. This is good news not only for our

VAR identification strategy, but also for the estimation of our DSGE framework. In-

deed, the results in this Section imply that it makes sense to use a direct inference

approach to estimate our DSGE framework, as opposed to a (much more computa-

tionally cumbersome) indirect inference approach, which would require the simulation

of pseudo-data and the estimation of VAR impulse responses identified with NSR per

each draw of the values of the structural parameters of the DSGE framework from its

posterior density.

11Even if we employ a DSGE model with three shocks to simulate data which we use to estimate
a seven variable-VAR model, no stochastic singularity issue arises in this exercise. The reason is that
our data generating process is a nonlinear framework, hence perfect collinearity among the simulated
series we use to estimate our VAR is not present even if the number of shocks is lower than the number
of "observables" generated via those shocks.
12Although the word "narrative" loses its meaning for an exercise based on data simulated from a

model, the proposed exercise resembles the identification strategy we use in our baseline analysis where
uncertainty shocks are identified using information related to the VXO biggest spikes.
13We select the dates corresponding to the biggest 2% among VXO spikes. This selection seems

appropriate because it guarantees that: i) enough responses are retained; ii) the selected dates are
informative enough to identify the uncertainty shocks.
14Similarly to our baseline analysis and to Ludvigson, Ma, and Ng (2019), we impose that the

correlation between the series of identified uncertainty shocks and (model-implied) stock market returns
be smaller than the median value of the empirical density of the correlation coeffi cients for all draws.
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E: Relative Risk Aversion for the Basu and Bundick (2017)
model extended with external habits

This Section derives the expression for the Relative Risk Aversion (RRA) coeffi cient in

the version of the Basu and Bundick (2017) model extended with external habits and

which features (as the original model) endogenous labor supply.

Equivalence with Rudebusch and Swanson’s (2012) notation

It is first useful to clarify that the value function that we use, which is:

Vt =

[(
1− β)(atC̃

η
t (1−Nt,)

(1−η)
)(1−σ)/θV

+ β((EtVt+1)
1−σ)1/θV

]θV /(1−σ)
can be equivalently reformulated in Rudebusch and Swanson’s (2012) notation as:

Ṽt = Ũt(C̃t, Nt) + β(EtṼ
(1−α)
t+1 )

1
(1−α) .

where the (1 − β) pre-multiplying the contemporaneous utility function in the ex-

pression above is omitted for simplicity, given its irrelevance for the computation of the

RRA. It can be easily shown that the two expressions are equivalent once the following

definitions are used:

Ṽ = V
1−σ
θV

α = 1− θV = 1− 1− σ
1− 1

ψ

Ũt(C̃t, Nt) = (atC̃
η
t (1−Nt)

1−η)
1−σ
θV

Derivation of the formula for the RRA

Swanson (2012) shows that household’s labor margin has substantial effects on risk

aversion. The household can absorb asset return shocks either through changes in

consumption, changes in hours worked, or some combination of the two. This ability

to absorb shocks along either or both margins greatly alters the household’s attitudes

toward risk. Following Swanson (2012) and Swanson (2018) (this latter paper extending

the analysis in Swanson (2012) to - among other things - recursive preferences), we

compute two measures of relative risk aversion for our model. The first measure -

RRAc - applies when there is no upper bound for labor and therefore total household

wealth equals the present discounted value of consumption. The other measure - RRAcl

- applies when the upper bound for the household’s time endowment is well-specified,
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meaning that total household wealth equals the present discounted value of leisure plus

consumption.

Swanson (2018, equations 23 and 24) shows that, in presence of flexible labor mar-

gin and generalized recursive preferences, the expressions to compute the coeffi cient of

steady state relative risk aversion read as follows:

RRAcl =
−u11 + λu12

u1
· C + w (1−N)

1 + wλ
+ α

(C + w (1−N))u1
u

RRAc =
−u11 + λu12

u1
· C

1 + wλ
+ α

Cu1
u

where:

w = −u2
u1

λ =
wu11 + u12
u22 + wu12

and where u1 = ∂Ũt
∂Ct

∣∣∣
ss
, u2 = ∂Ũt

∂Nt

∣∣∣
ss
, u11 = ∂2Ũt

∂C2t

∣∣∣
ss
, u12 = ∂2Ũt

∂Ct∂Nt

∣∣∣
ss
, u22 = ∂2Ũt

∂N2
t

∣∣∣
ss
,

with ss standing for steady state, and where α and Ũt (or Ũt(C̃t, Nt)) were defined

earlier. Variables without time subscript indicate steady state values.

It can be easily shown that (see Andreasen et al.’s (2018) Online Appendix):

RRAcl =
(

1 +
w

C
(1−N)

)
RRAc.

Initial computations. Without loss of generality, the derivation below is based
on the following function:15

Ũ(Ct, Nt) =
((Ct − bCt−1)η (1−Nt)1−η)

1−σ
θV

1−σ
θV

=
(Ct − bCt−1)η

1−σ
θV (1−Nt)

(1−η) 1−σ
θV

1−σ
θV

.

We first take the relevant derivatives and then evaluate them at the steady state.

Notice that the stock of external habits (bCt−1) at time t is a given for households.

Hence, we have:

15We omit at from this derivation since its steady state value is 1, which implies that the impact of
the preference shock on the relative risk aversion is zero.
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u1,t = η (Ct − bCt−1)η
(
1−σ
θV

)
−1

(1−Nt)
(1−η)

(
1−σ
θV

)
,

u11,t = η

(
η

(
1− σ
θV

)
− 1

)
(Ct − bCt−1)η

(
1−σ
θV

)
−2

(1−Nt)
(1−η)

(
1−σ
θV

)
,

u12,t = −η
(

(1− η)

(
1− σ
θV

))
(Ct − bCt−1)η

(
1−σ
θV

)
−1

(1−Nt)
(1−η)

(
1−σ
θV

)
−1
,

u2,t = − (1− η) (Ct − bCt−1)η
1−σ
θV (1−Nt)

(1−η) 1−σ
θV
−1
,

u22,t = (1− η)

(
(1− η)

1− σ
θV

− 1

)
(Ct − bCt−1)η

1−σ
θV (1−Nt)

(1−η) 1−σ
θV
−2
,

In steady state, we have:

u1 = η ((1− b)C)
η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
,

u11 = η

(
η

(
1− σ
θV

)
− 1

)
((1− b)C)

η
(
1−σ
θV

)
−2

(1−N)
(1−η)

(
1−σ
θV

)
,

u12 = −η
(

(1− η)

(
1− σ
θV

))
((1− b)C)

η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
−1
,

u2 = − (1− η) ((1− b)C)
η 1−σ
θV (1−N)

(1−η) 1−σ
θV
−1
,

u22 = (1− η)

(
(1− η)

1− σ
θV

− 1

)
((1− b)C)

η 1−σ
θV (1−N)

(1−η) 1−σ
θV
−2
.

Consequently, we can obtain:

w = −u2
u1

= −− (1− η) ((1− b)C)
η 1−σ
θV (1−N)

(1−η) 1−σ
θV
−1

η ((1− b)C)
η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

) =
(1− η) (1−N)−1

η ((1− b)C)−1

=
(1− η)

η

(1− b)C
1−N

and

λ =
wu11 + u12
u22 + wu12

=

(
(1−η)
η

(1−b)C
1−N

)(
η
(
η
(
1−σ
θV

)
− 1
)

((1− b)C)
η
(
1−σ
θV

)
−2

(1−N)
(1−η)

(
1−σ
θV

))
+

−η
(

(1− η)
(
1−σ
θV

))
((1− b)C)

η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
−1

(1− η)
(

(1− η) 1−σ
θV
− 1
)

((1− b)C)
η 1−σ
θV (1−N)

(1−η) 1−σ
θV
−2

+

+
(
(1−η)
η

(1−b)C
1−N

)(
−η
(

(1− η)
(
1−σ
θV

))
((1− b)C)

η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
−1
) .
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Simplifying, we get:

λ =
(1−N)

(1− b)C .

Derivation of the RRAs. We now have everything we need to derive the two
expressions for the relative risk aversion. We put all the previously derived pieces in

the expression:

RRAcl =
−u11 + λu12

u1
· C + w (1−N)

1 + wλ
+ α

(C + w (1−N))u1
u

This implies:

RRAcl =

−η
(
η
(
1−σ
θV

)
− 1
)

((1− b)C)
η
(
1−σ
θV

)
−2

(1−N)
(1−η)

(
1−σ
θV

)
+

+ (1−N)
(1−b)C

(
−η
(

(1− η)
(
1−σ
θV

))
((1− b)C)

η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
−1
)

η ((1− b)C)
η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

)
︸ ︷︷ ︸

PieceA

·

·
C +

(
(1−η)
η

(1−b)C
1−N

)
(1−N)

1 + (1−η)
η

(1−b)C
1−N

(1−N)
(1−b)C︸ ︷︷ ︸

PieceB

+α

(
C +

(
(1−η)
η

(1−b)C
1−N

)
(1−N)

)(
η ((1− b)C)

η
(
1−σ
θV

)
−1

(1−N)
(1−η)

(
1−σ
θV

))
((1−b)C)

η 1−σ
θV (1−N)

(1−η) 1−σ
θV

1−σ
θV︸ ︷︷ ︸

PieceC

.

Simplifying each piece, we get:

PieceA =

(
1− 1− σ

θV

)
1

(1− b)C ,

P ieceB =
C
(

1 + (1−η)
η

(1− b)
)

1 + (1−η)
η

,

P ieceC = η

(
1

(1− b) +
(1− η)

η

)
1− σ
θV

.

So, putting all together, we have:

Rcl =

(
1− 1− σ

θV

)
1

(1− b)C ·
C
(

1 + (1−η)
η

(1− b)
)

1 + (1−η)
η︸ ︷︷ ︸

pieceA·pieceB

+α · η
(

1

(1− b) +
(1− η)

η

)
1− σ
θV︸ ︷︷ ︸

pieceC
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which, once we replace the definition of θV with its expression, becomes:

RRAcl =
1

ψ
·

(
1 + (1−η)

η
(1− b)

)
(1− b)

(
1 + (1−η)

η

) + α

(
η

(1− b) + 1− η
)(

1− 1

ψ

)

Replacing α =

(
1− 1−σ

1− 1
ψ

)
, and simplifying:

RRAcl =
1

ψ
·

(
1 + (1−η)

η
(1− b)

)
(1− b)

(
1 + (1−η)

η

) +

(
σ − 1

ψ

)(
η

(1− b) + 1− η
)
,

which delivers RRAcl = σ when the degree of external habits b = 0.

Finally:

RRAcl =
(

1 +
w

C
(1−N)

)
RRAc

=

(
η

η + (1− η) (1− b)

)
RRAcl

This implies:

RRAc =

(
η

η + (1− η) (1− b)

)
·

 1

ψ
·

(
1 + (1−η)

η
(1− b)

)
(1− b)

(
1 + (1−η)

η

) +

(
σ − 1

ψ

)(
η

(1− b) + 1− η
) .

This is exactly the expression used in the paper to compute the RRA.

F: Minimum distance estimation strategy

The Bayesian minimum distance estimator works as follows. Denote by ψ̂ the vector in

which we stack the (I)VAR estimated (generalized) impulse responses over a 20-quarter

horizon to an uncertainty shock conditional on the great recession (i.e., the responses

displayed in Figure 2, right column).16 When the number of observations n is large

(as in our case, given the long sample of data we use to estimate our IVAR), standard

asymptotic theory suggests that

ψ̂
a∼ N(ψ (ζ0) ,V(ζ0, n)) (1)

16For a paper proposing information criteria to select the responses that produce consistent estimates
of the true but unknown structural parameters and those that are most informative about DSGE model
parameters, see Hall, Inoue, Nason, and Rossi (2012).
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where ζ0 denotes the true vector of structural parameters that we estimate, and

ψ (ζ) denotes the model-implied mapping from a vector of parameters to the analog

impulse responses in ψ̂.

As explained earlier, the IVAR GIRFs ψ̂ for the great recession are computed by it-

erating forward the system starting from the initial condition t−1 = 2008Q3. Similarly,

we compute the DSGE model-related responses for each given set of parameter values

ψ (ζ) by iterating forward the approximated solution of the DSGE model starting from

the stochastic steady state.17 Both DSGE-based and VAR-based impulse responses are

interpreted as percent deviations of variables induced by an uncertainty shock, with the

exception - in our case - of the interest rate response which is measured in percentage

points as implied by the VAR specification.

To compute the posterior density for ζ given ψ̂ using Bayes’rule, we first need to

compute the likelihood of ψ̂ conditional on ζ. Given (1), the approximate likelihood of

ψ̂ as a function of ζ reads as follows:

f(ψ̂|ζ) =

(
1

2π

)N
2

|V(ζ0, n)|−
1
2 ×exp

[
−1

2

(
ψ̂ −ψ (ζ)

)′
V(ζ0, n)−1

(
ψ̂ −ψ (ζ)

)]
(2)

where N denotes the number of elements in ψ̂ and V(ζ0, n) is treated as a fixed

value.18 We use a consistent estimator of V. Because of small sample-related consider-

ations, such estimator features only diagonal elements (see Christiano, Trabandt, and

17Following Basu and Bundick (2017), we set the value of the exogenous processes to zero and
iterate forward until the model converges to its stochastic steady state. Then, we hit the model with
an uncertainty shock of the same size as in the IVAR (i.e., a 4.4 standard deviation shock) and compute
impulse responses as the percent deviation between the stochastic path followed by the endogenous
variables and their stochastic steady state. Given that no future shocks are considered, this way of
computing GIRFs does not line up with Koop, Pesaran and Potter’s (1996) algorithm. We do so to
avoid simulating the model several times and then integrate across all simulations, a procedure which
would be very time consuming, above all when combined with the MCMC algorithm we adopt for our
Bayesian estimation. Basu and Bundick (2017) show that the differences between these two ways of
computing GIRFs are negligible with a framework like theirs. We also verified that our IVAR GIRFs
remained unchanged when future shocks are not taken into account, something which augments the
comparability between IVAR and DSGE GIRFs. Analytical expressions for GIRFs produced with
nonlinear models are available in Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018).
18As pointed out by Christiano, Eichenbaum, and Trabandt (2016) and Bundick and Smith (2019),

there are four reasons why this is only an approximate likelihood. First, standard asymptotic theory
implies that, if the DSGE model is the correct data generating process with the true parameters ζ0,
ψ̂ converges only asymptotically to N(ψ(ζ0),V) as the sample size grows arbitrarily large. Second,
our proxy for V is guaranteed to be correct only as the sample size grows arbitrarily large. Third, ψ
is approximated with a nonlinear model approximated at a third order, i.e., not with the true, global
nonlinear model. Fourth, differently from the linear model case, the IRFs are not a full summary of
nonlinear frameworks.
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Walentin (2011) and Guerron-Quintana, Inoue, and Kilian (2017)).19 We work with a

diagonal V with the variances of the ψ̂i along the main diagonal.20 This choice is widely

adopted in the literature and allows one to put more weight in replicating VAR-based

responses with relatively smaller confidence bands. Treating eq. (2) as the likelihood

function of ψ̂ , it follows that the Bayesian posterior of ζ conditional on ψ̂ and V is:

f(ζ|ψ̂) =
f(ψ̂|ζ)p(ζ)

f(ψ̂)
, (3)

where p(ζ) denotes the priors on ζ and f(ψ̂) is the marginal density of ψ̂. As

in Christiano, Trabandt, and Walentin (2011), the mode of the posterior distribution

of ζ is computed by maximizing the value of the numerator in 3 via the csminwel

algorithm proposed by Chris Sims.21 The posterior densities are estimated via Laplace

approximation.

G: Model calibration

We calibrate some of the parameters of the model as in Basu and Bundick (2018), the

reason being that we use a slightly modified version of their model (to which we add

habits in consumption) for our analysis. Table A2 collects all the calibrated parameters.

We do not estimate these parameters for several reasons. We follow a long tradition

in macroeconomics and calibrate the capital’s share in production α, the household

discount factor β and the steady state depreciation rate δ to values that are standard

in the literature. The first-order utilization parameter δ1 and the consumption weight

in the period utility function η cannot be estimated, because the first is determined

endogenously by a steady state relationship (involving δ and β) and the second is fixed

19Guerron-Quintana, Inoue, and Kilian (2017) study the asymptotic theory for VAR-based impulse
response matching estimators of the structural parameters of linearized DSGE models when the number
of impulse responses exceeds the number of linear VAR model parameters. The number of impulse
responses in our analysis (140) is lower than the number of estimated coeffi cients of the VAR (251,
constants excluded). We are aware of no contributions studying the asymptotic theory for this estimator
when nonlinear frameworks are employed.
20Denoting by Ŵ the bootstrapped variance-covariance matrix of VAR-based impulse responses ψ̂,

i.e., 1
M

∑M
j=1(ψj − ψ̄)(ψj − ψ̄)′ (where ψj denotes the realization of ψ̂ in the jth (out of M = 1, 000)

bootstrap replication and ψ̄ denotes the mean of ψj), V is based on the diagonal of this matrix. Notice
that V contains the same variances used to plot the confidence intervals for the IVAR responses. This
is the same approach used in Altig, Christiano, Eichenbaum, and Lindé (2011).
21The use of a direct inference approach to estimate the DSGE model is justified by the Monte

Carlo analysis reported in Appendix D. There we show that the narrative sign restriction identification
approach we use in our VAR analysis recovers the true impulse responses produced by the DSGE
framework.

A17



in order to imply a Frisch elasticity equal to 2. The steady state inflation rate Π cannot

be estimated by a impulse response functions matching procedure that focuses on out-

of-steady state dynamics, i.e., deviations from the (stochastic) steady state. The firm

leverage parameter ν does not influence impulse responses in the absence of financial

frictions and hence is not identified. As regards the parameters of the stochastic shock

processes, we calibrate the volatility of the second moment preference shock σσa to the

same value as calibrated in Basu and Bundick (2018) to match empirical moments.

The parameters governing the processes of the preference and technological shocks,

i.e. ρa, σa, ρZ and σZ are calibrated by borrowing values from Basu and Bundick

(2018). In spite of our focus on the effects of the uncertainty shocks, we calibrate also

these parameters because these stochastic processes can in principle influence (even on-

impact) the response of the model-consistent VXO to an uncertainty shock. We also

do not estimate the second-order utilization parameter δ2, the elasticity of substitution

between intermediate goods θµ, and the IES ψ to not further increase the computational

burden of the estimation procedure.

H: Role of initial conditions in the nonlinear DSGE model

This Section investigates whether the initial conditions in the nonlinear DSGEmodel we

employ play a role for the dynamics of the system after an uncertainty shock. Andreasen,

Fernández-Villaverde, and Rubio-Ramírez (2018) show that the initial values of the

states are potentially very important for the effects of the macroeconomic shocks they

study. The computation of the GIRFs in our paper follows Basu and Bundick (2017)

and do not take into account the role of initial conditions. Hence, this possible omitted

factor could be behind the evidence of countercyclical risk aversion we find.22 It is

therefore important to provide a check on the relevance of initial conditions in the

model we work with.

Cacciatore and Ravenna (2020) prove that pruning the third-order approxima-

tion completely eliminates state dependence in the propagation of uncertainty shocks.

Hence, to check the relevance of initial conditions we switch to the unpruned third-order

approximation of our model. In particular, a Monte Carlo exercise with artificial data

simulated with the Basu and Bundick (2017) framework is conducted. The exercise is

22As explained in the main text, we compute responses in the model starting from the regime-
specific stochastic steady state implied by the estimated set of parameters. As in Basu and Bundick
(2017,2018), we adopt the pruned third-order approximation proposed in Andreasen, Fernández-
Villaverde, and Rubio-Ramírez (2017).
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conducted similarly to Section D of this Appendix, but with two differences. First, here

the unpruned approximated solution is used to simulate the model. Second, on top of

the linear VAR, also an IVAR model similar to the one adopted in the baseline analysis

is estimated on the simulated data.

Figure A11 compares the linear VAR response and the IVAR response for a (model-

consistent) very deep contraction.23 The identified set of the linear VAR and IVAR

responses lie literally on top of each other. Hence results show that the initial conditions

in the DSGE model do not materially influence the computed GIRFs to an uncertainty

shock, i.e., no endogenous state-dependence is generated in the DSGE model with the

use of the standard workhorse solution methods.24

23We compute the IVAR response for the initial condition corresponding to the deepest contraction
in the simulated sample.
24We were prevented to conduct a similar exercise using a forth order approximation due to large ap-

proximation errors that caused severely distorted GIRFs. In a companion paper, Andreasen, Caggiano,
Castelnuovo, and Pellegrino (2020), we use an approximation around the risky steady state, rather than
around the deterministic steady state, so that to both allow initial conditions to play a role for the
propagation of uncertainty shocks and accurately solve nonlinear DSGE models.
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Par. Description Value
σσa volatility of the uncertainty shock 0.004
ρa persistence of the preference shock 0.98
σa volatility of the preference shock 0.005
ρZ persistence of the technology shock 0.35
σZ volatility of the technology shock 0.019
α capital’s share in production 0.333
β household discount factor 0.994
δ steady state depreciation rate 0.025
δ1 first-order utilization parameter 1/β − 1 + δ
Π steady state inflation rate 1.005
ν firm leverage parameter 0.9
δ2 second-order utilization parameter 0.0003
θµ elasticity of subst. between intermediate goods 6.0
ψ intertemporal elasticity of substitution 0.5

Table A2: DSGE model: Calibrated parameters. Calibration borrowed from
Basu and Bundick (2018).
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Figure A1: IVAR impulse responses: identified sets (linear vs. great reces-
sion). Impulse responses to a 4.4-standard deviation uncertainty shock. The solid
green (red) areas report the identified set of responses produced with the linear (non-
linear) VAR model. The solid (dashed) lines report the median target impulse response
for the linear (nonlinear) VAR. The number of retained draws, out a total of one million
draws, is 2,168 for the IVAR and 2,116 for the linear VAR.
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Figure A2: Test for the difference of responses that focuses on model un-
certainty. The test takes into account the correlation between the responses. 99%
confidence bands in gray.
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Figure A3: Bootstrapped test for the difference of median target responses
and of biggest and smallest GDP peak responses. Grey bands: 68% confidence
bands.
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Figure A4: IVAR impulse responses: Role of higher order terms. Areas in
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Figure A6: Credit spread. Impulse responses: linear vs. great recession.
Impulse responses to a 4.4-standard deviation uncertainty shock. Solid green (dashed
red) lines: Point estimates of the response of our VAR variables in normal times (during
the great recession) conditional on the median target model à la Fry and Pagan (2011).
Gray area (area identified by solid red lines): 68% bootstrapped confidence interval
surrounding the median-target model.
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Figure A7: Credit spread. Bootstrapped test for the difference of median
target responses. 68% confidence bands in gray.
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Figure A8: No oil supply shocks dates. Impulse responses: linear vs. great
recession. Impulse responses to a 4.4-standard deviation uncertainty shock. Solid
green (dashed red) lines: Point estimates of the response of our VAR variables in
normal times (during the great recession) conditional on the median target model à la
Fry and Pagan (2011). Gray area (area identified by solid red lines): 68% bootstrapped
confidence interval surrounding the median-target model.
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Figure A9: No oil supply shocks dates. Bootstrapped test for the difference
of median target responses. 68% confidence bands in gray.
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Figure A10: Monte Carlo simulation: DSGE model vs. VAR responses to an
uncertainty shock. Calibration of the DSGE model with the estimates we obtained
with the facts established by the linear VAR. Size of the simulated sample: 2,500
observations (100 of which are used as burnin). Consistently with our baseline analysis,
uncertainty shocks are identified by exploiting the dates corresponding to the biggest
spikes of the HP-filtered model-implied VXO, as explained in the text.
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Figure A11: Monte Carlo simulation: DSGE model vs. IVAR responses to
an uncertainty shock for a model-implied very deep contraction. Calibration
of the DSGE model with the estimates we obtained with the facts established by the
linear VAR. Size of the simulated sample: 2,500 observations (100 of which are used
as burnin). Uncertainty shocks are identified by exploiting the information coming
from the biggest spikes of the HP-filtered model-implied VXO, as explained in the text.
Green areas and white area delimited by solid red lines: identified set for the linear
VAR and IVAR response, respectively.
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