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Abstract

Rotation programs are widely used in societies. Some examples are job rotations, rotation
schemes in the management of common-pool resources, and rotation procedures in fair divi-
sion problems. We study rotation programs via the implementation of Pareto efficient social
choice rules under complete information. The notion of the rotation program predicts the
outcomes. A rotation program is a myopic stable set whose states are arranged circularly, and
agents can effectively move only between two consecutive states. We provide characterizing
conditions for the implementation in rotation programs and show that, for multi-valued rules,
our notion of rotation monotonicity is necessary and sufficient for implementation. Finally,
we identify two classes of assignment problems that are implementable in rotation programs.
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1 Introduction
An economic department has to choose the department head among its eligible faculty mem-

bers. However, faculty members wish to avoid this role due to its administrative workload. A
natural way to overcome this impasse is to rotate faculty members in a way that everyone is in
charge of the department only for a period of time. This is an example of a rotation program.

In general, a rotation program refers to the procedure that tasks assigned to agents are rotated
from period to period. Rotation programs are widely used. A prominent example is given by
the business practice of job rotation, which consists of periodically switching the employees’ job
assignments. Job rotation has been used in many industries for a wide array of employees, from
factory line workers to executives (Osterman (1994, 2000), Gittleman, Horrigan and Joyce (1998))
and for different reasons. From one side, employees who rotate accumulate more human capital
because they are exposed to a wider range of experiences. From an another side, the employer
itself learns more about its own employees if it can observe how they perform at different jobs
(Arya and Mittendorf, 2004). Furthermore, rotation programs have been observed in common
pool resources management as an alternative to quota and lotteries. In many areas of the world,
people form rotating groups to farming, grazing, gaining access to water and allocating fishing
spots (Ostrom (1990), Berkes (1992), Sneath (1998)). Recently, Ely, Galeotti and Jakub (2021)
show that rotation schemes can be used to prevent the spread of infections. In this view, a rotation
scheme is a mechanism to shape social interactions in order to minimize the risk of contagion.

Further, as illustrated by the “head of the department problem”, rotation programs can help
to achieve fairness in assignment problems. Indeed, it is almost an instinctive feature of humans
to solve conflicts either with a lottery or with a rotation scheme. However, economic literature
on static assignment problems focus mainly on randomization (Hylland and Zeckhauser, 1979;
Hofstee, 1990; Bogomolnaia and Moulin , 2001; Budish, Che, Kojima and Milgrom, 2013) and
very little on rotation programs, despite experimental evidences (Eliaz and Rubinstein, 2014;
Andreoni, Aydin, Barton, Bernheim, and Naecker, 2020) show that lottery does not avoid ex-post
envy. Recently, Yu and Zhang (2020a) provide a market design model for job rotation problems.
They impose that every agent initially occupies a position but he is required to leave it if any
other agent wants his position. The mechanism provided is an adaptation of the Top Trading
Cycle (Shapley and Scarf, 1974), and it is proven to be stable, constrained efficient and weakly
group strategy-proof.

We propose an economic design approach to the study of rotation programs in the same
spirit as Yu and Zhang (2020a), though in the more general setting of implementation theory. In
contrast to Yu and Zhang (2020a), we focus on efficient social choice rules, we do not limit our
analysis to one period, and we do not require any initial endowment for the agents. Moreover,
we allow agents to exchange their positions continuously.1

The first difficulty in adopting an implementation approach to study rotation programs con-
1Although the mechanism of Yu and Zhang (2020a) can be applied repeatedly, they do not consider the properties

of sequences (possibly, cycles) that it may generate
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cerns the choice of the solution concept. Most of the solution concepts employed in literature,
such as the core, the (strong) Nash equilibrium and the stable set (von Neumann and Mor-
genstern, 1944), satisfy the property of internal stability. Roughly speaking, a set of outcomes is
internally stable if it is free of inner contradictions, i.e., for every outcome in the set, no agent or
group can directly move to another outcome of the set and be better off. This property is incom-
patible with our objective to study how to allow rotations of desirable positions among agents.
The requirement of internal stability is relaxed in solution concepts that are usually considered
modifications, extensions, or generalizations of the stable set. One of the most prominent is the
“absorbing set”. As Inarra, Kuipers and Oilazola (2005) pointed out, the notion of absorbing set
has appeared in literature under different names and for different game theoretic settings. Kalai,
Pazner, and Schmeidler (1976) studied the “admissible set” in various bargaining situations and
Shenoy (1979) defined the “elementary dynamic solution” for coalitional games. More recently,
Inarra, Larrea and Molis (2013) studied the absorbing set for the roommate problem, and Jackson
and Watts (2002) the “closed cycle” for network formation.

Finally, the myopic stable set (MSS), defined by Demuynck, Herings, Saulle and Seel (2019a)
for a general class of games, includes previous notions of absorbing sets. The MSS is defined
as the smaller set of states such that: 1) there are no profitable deviations from a state inside
the set to a state outside the set; and 2) for each state outside the set, there exists a sequence of
agents’ deviations that converge to the set. Therefore, the MSS is a valid prediction, though we
can dispense with internal stability. Furthermore, the prediction offered by the MSS is robust in
the following terms: even if agents have reached an agreement on an state outside the set, then
always a sequence of improvements will bring them to a myopically stable state. For this reason,
we consider the MSS a perfect candidate to study our implementation problem.

In Section 3, we adopt the MSS as our solution concept and study implementation problems
in MSS. The key question here is how to design an implementing mechanism so that its outcomes
can be predicted by applying the MSS as the solution concept. Most early implementation studies
focused on noncooperative solution concepts, such as the Nash equilibrium and its refinements.
As demonstrated in the seminal paper by Koray and Yildiz (2018), an alternative to the noncoop-
erative approach is to allow groups of agents to coordinate their behaviors in a mutually benefi-
cial manner. To move away from noncooperative modeling, the details of coalition formation are
left unspecified. Consequently, coalitions—not individuals—become the basic decision-making
units. Here, the role of the solution concept is to explain why, when, and which coalition forms
and what it can achieve. From an implementation viewpoint, the effectivity relationship is the
design variable, playing the role of the mechanism.

Koray and Yildiz (2018) formalize this idea and study its implications. In their framework, the
implementation of an social choice rule is achieved by designing a generalization of the effectivity
relationship, introduced by Sertel (2001), called a rights structure. A rights structure consists of
a state space S, an outcome function h that associates every state with an outcome, and a code
of rights γ. A code of rights specifies, for each pair of states ps, tq, a collection of coalitions γps, tq
that are effective at moving from s to t. The rights structure is more flexible than the effectivity
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function, as it allows the strategic options of coalitions to depend on how the status quo outcome
is reached (i.e., on the current state). A rights structure is finite when the state space S is a
finite set. It is worth emphasizing that though right structures do not model time explicitly, they
allow us to describe all the paths generated by agent interactions, and thus rotation processes
effectively.

We show that indirect monotonicity, a weaker condition than (Maskin) monotonicity, is suf-
ficient for implementation in MSS via a finite rights structure. Since this result is obtained by
constructing a finite rights structure, this characterization result encompasses implementation in
core as well as in generalized stable sets (van Deemen, 1991; Page and Wooders, 2009). Moreover,
for marriage problems (Knuth, 1976) and for a class of exchange economy with property rights
(Balbuzanov and Kotowski, 2019), we show that the set of stable outcomes is implementable in
MSS, and thus exhibits a convergence property, which is particularly important in our design
framework.

However, implementation in MSS cannot guarantees always the order of rotation. In other
words, it cannot exclude the possibility that rotation get stuck in a cycle ruling out some agents
from the process. To solve this drawback, Section 4 introduces the notion of implementation in
rotation programs. Implementation in rotation programs is a particular kind of implementation
in MSS, in which every cycle generated within the MSS needs to be a rotation scheme. We iden-
tify characterizing conditions for the implementation in rotation programs. In particular, if—in
line with Mukherjee, Muto, Ramaekers, and Sen (2019)—the social planner always wants to
implement rotation programs consisting of at least two outcomes — then our notion of rotation
monotonicity is both necessary and sufficient for the implementation in rotation program. Finally,
Section 5 describes two classes of assignment problems that can be implemented in rotation pro-
grams: assignment problems where agents share the same best/worst outcome, and assignment
problems where the planner knows that two agents have the same top choice. All proofs are
relegated in the Appendix.

Related Literature

To our knowledge, we are the first to study rotation programs in an implementation frame-
work. As outlined above, the closest contribution, albeit with some substantial differences, is due
by Yu and Zhang (2020a). Recently, Yu and Zhang (2020b), provide a follow up of their previous
work in which two groups of agents are considered and one of them has restricted rights over its
initial endowment. Such a model includes the housing market model (Shapley and Scarf, 1974)
as a special case, and the proposed mechanism generalizes the top trading cycle algorithm. How-
ever, as in Yu and Zhang (2020a), the stable matching in Yu and Zhang (2020b) is not necessarily
efficient and the rotation process reduces to an one-shot job exchange, whereas in our setting
agents continuously rotate among Pareto efficient allocations.2

Our contribution is also in line with Arya and Mittendorf (2004) which study job rotation
2In this regard, see footnote 1.
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within a principal-agent model in which firm incentives employees to perform tasks. They show
that, when employees productivity is private knowledge, job rotation is a tool of eliciting infor-
mation. Also in this case, the job rotation consist of an one-shot job exchange. Finally, our paper
contributes to the literature on implementation via right structure (Koray and Yildiz, 2018, 2019;
Korpela, Lombardi and Vartiainen, 2019, 2020) and it is broadly related to the literature on as-
signments problems (Shapley and Shubik, 1971; Roth and Sotomayor, 1990; Abdulkadiroglu and
Sonmez, 1998).

2 The Setup
We consider a finite (nonempty) set of agents, denoted by N , and a finite (nonempty) set of

alternatives, denoted by Z. We endow Z with a metric d̂. For every set A, the power set of A is
denoted by A and A0 ” A´ t∅u is the set of all nonempty subsets of A. Each element K of N0

is called a coalition. A preference ordering Ri is a complete and transitive binary relation over Z.
Each agent i(P N) has a preference orderingRi over Z. The asymmetric part Pi ofRi is defined by
xPiy if and only if xRiy and not yRix, while the symmetric part Ii of Ri is defined by xIiy if and
only if xRiy and yRix. A preference profile is thus an n-tuple of preference orderings R ” pRiqiPN .
For any profile R and K P N0, we write xRKy to denote that xRiy holds for all i P K and xPKy

to denote that xPiy holds for all i P K. As usual, Lipx,Rq denotes the lower contour set of x at
R for agent i. The preference domain, denoted by R, consists of the set of admissible preference
profiles satisfying the following property:

R P R ðñ for all x, y P Z : if xINy, then x “ y. (1)

The domain of preferences underlying classical assignment problems, which are our main
focus, satisfies the above property.

The goal of the designer is to implement a social choice rule (SCR) F , defined by
F : R ÝÑ Z0. We refer to x P F pRq as an F -optimal outcome at R. The range of F is the set

F pRq ” tx P Z|x P F pRq for some R P Ru .

The graph of F is the set

GrpF q ” tpx,Rq|x P F pRq, R P Ru

We impose the following assumption on F :

Definition 1 (Efficiency). We say that SCR F is efficient, if for all R P R, and all z P F pRq, there
does not exist any x P Z such that xRNz and xPiz for at least one agent i P N .

To implement F , the designer constructs a rights structure Γ “ ppS, dq, h, γq, where S is the
state space equipped with a metric d, h : S Ñ Z the outcome function, and γ a code of rights, which
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is a (possibly empty) correspondence γ : S ˆ S � N . Subsequently, a code of rights specifies,
for each pair of distinct states ps, tq, the family of coalitions γ ps, tq Ď N that is entitled to move
from state s to t. If γps, tq “ H then no coalition is entitled to move from s to t. A rights structure
Γ is said to be an individual-based rights structure if, for each pair of distinct states ps, tq, γps, tq
contains only unit coalitions if it is nonempty. A rights structure Γ is termed finite if the state
space S is a finite set. The rights structure Γ is an augmented version of the right structure
previously introduced by Koray and Yildiz (2018) which does not includes the metric d.

A social environment (Chwe, 1994) is a pair pΓ, Rq consisting of a right structure Γ together
with a preference profile R.

Next, a model of behavior is needed to predict at what state the agents are going to end up
with. This is often done by selecting an equilibrium concept. A common and unifying way that
resonates across all microeconomics is to use the core defined in terms of strong domination.

Definition 2 (core). For any social environment pΓ, Rq, a state s P S is an core element at R if
h ptqPKh psq does not hold for any t P S and K P γ ps, tq. We write C pΓ,Rq for the set of core
elements at R.

Koray and Yildiz (2018) study implementation problem in core3 via rights structures.4

Definition 3 (Implementation in core). A rights structure Γ implements F in core if F pRq “ h ˝

C pΓ,Rq holds for all R P R. If such a rights structure exists, F is implementable in core by a
rights structure.

3 Towards Implementation In Rotation Programs
3.1 Implementation In Myopic Stable Set

This section studies the implementation problems in MSS via rights structures. In order to
define the MSS, we need the notion of a myopic improvement path.5

Definition 4 (Myopic Improvement Path). Given a social environment pΓ,Rq, a sequence of states
s1, . . . , sm is called a myopic improvement path from state s1 to set T Ď S at R, if for all ε ą 0

there exists a state s P T such that dps, smq ă ε and a collection of coalitions K1, . . . ,Km´1 such
that, for j “ 1, . . . ,m´ 1,

(i) Kj P γpsj , sj`1q

(ii) hpsj`1qPKjhpsjq

3The notion of Γ-equilibrium provided by Koray and Yildiz (2018) is equivalent to the notion of core for social
environment Demuynck, Herings, Saulle and Seel (2019a) employed here.

4Korpela, Lombardi and Vartiainen (2020) provide a full characterization of the class of implementable SCRs.
5If the state space is finite then Definition 4 reduces to the following: A sequence of states s1, . . . , sm is called

a myopic improvement path from state s1 to set T Ď S at R, if sm P T , and there exists a collection of coalitions
K1, . . . ,Km´1 such that, for j “ 1, . . . ,m´ 1,, (i) Kj P γpsj , sj`1q and (ii) hpsj`1qPKjhpsjq.
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The MSS can be defined as follows:6

Definition 5 (Myopic Stable Set). The set msspΓ, Rq Ď S is an MSS at pΓ,Rq if it is closed and
satisfies the following three conditions:

1. Deterrence of external deviations: For all s P msspΓ, Rq, and all t P SzmsspΓ, Rq, there is no
coalition K P γps, tq, such that h ptqPKh psq.

2. Asymptotic external stability: For all t P SzmsspΓ, Rq, there exists a myopic improvement
path from t to msspΓ, Rq.

3. Minimality: There is no set M 1 Ă msspΓ, Rq that satisfies the two conditions above.

Finally, let MSS(Γ , R)=ts P S | s P msspΓ, Rqu be the union of all MSSs at pΓ, Rq.
We are now ready for our notion of implementation in MSS.

Definition 6 (Implementation in MSS). A rights structure Γ implements F in MSS if F pRq “
h ˝MSS pΓ,Rq holds for all R P R. If such a rights structure exists, F is implementable in MSS
by a rights structure.

We will be using the following sufficient condition in our characterization result. We show be-
low that when there are three candidates and three voters, the majority solution is implementable
in MSS but it violates indirect monotonicity (see Example 1 below).

Definition 7 (Indirect Monotonicity). An SCR F satisfies indirect monotonicity provided that for all
R,R1 P R, and all z P Z, if z P F pRq and z R F pR1q with Lipz,Rq Ď Lipz,R

1q for all i P N , then
there exist a sequence of outcomes tz1, . . . , zhu Ď F pRq with z “ z1, z ‰ zh and a sequence of
agents i1, . . . , ih´1 such that:

(i) zk`1P 1ikzk for all k P t1, . . . , h´ 1u

(ii) Lipzh, Rq Ę Lipzh, R
1q for some i P N

Suppose that z isF -optimal atR. Further, suppose that preferences change intoR1, but in such
a way that for no agent z has fallen strictly with respect to any other outcome in his preference
ranking. Finally, suppose that z is not F -optimal at R1. Then, indirect monotonicity says that there
exist a agent i and a pair of outcomes pz˚, yq such that y improves with respect to z˚ for agent i
as preferences change from R to R1 (i.e., there is a preference reversal), where z˚ is F -optimal at
R and z is connected with z˚ via a ”myopic improvement path” at R1 involving only F -optimal
outcomes at R.

The latter requirement differentiates indirect monotonicity from Condition α of Abreu and Sen
(1990), according to which no outcome of the sequence has to be F -optimal. Indirect monotonicity
is implied by (Maskin) monotonicity, and they are equivalent when F is single valued. Mono-
tonicity says that if an outcome z is F -optimal at the profile R and this z does not strictly fall in

6When the set of states is finite, Condition 2 reduces to the following one: Iterated External stability: For all t P
SzM , there exists a finite myopic improvement path from t to M .
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preference for anyone when the profile changes to R1, then z must remain a F -optimal outcome
at R1.

The following result characterizes a class of implementable SCRs in MSS by a finite rights
structure7.

Theorem 1. Any efficient F satisfying indirect monotonicity is implementable in MSS by a finite rights
structure.

To prove Theorem 1, we construct a rights structure Γ “ pS, h, γq as follows. Let F be a given
SCR. The state space S is defined as the union of Z and the graph of F , that is, S “ Z YGrpF q.
The outcome function maps each px,Rq and each x into x. The code of rights entitles every agent
to move from px,Rq to py,Rq, from x to y, and from y to px,Rq, but it entitles agent i to move
from px,Rq to y if i prefers x to y at R, that is, xRiy. Thus, the code of rights does not entitle
anyone to be effective at moving from px,Rq to pz,R1qwith R ‰ R1. These two states can only be
connected indirectly. Indeed, indirect monotonicity, together with Pareto efficiency and the fact
that everyone is entitled to move between any two states of the type pz,R1q and py,R1q, guarantees
the existence of a myopic improvement path at R when the outcome corresponding to pz,R1q is
not F -optimal at R. This myopic improvement path rules out the possibility that pz,R1q is part
of the myopic stable set at R.

3.2 Convergence Property

As Jackson (1992) and Moore (1992) point out, canonical mechanisms for implementing so-
cially desirable outcomes have unnatural futures: they are highly complex and difficult to explain
in natural terms. In particular, when agents are boundedly rational, such a mechanisms may
lead to the convergence to an undesirable outcome. Our result shows that even unsophisticated
agents using very simple adjustment rules can reach the set of desirable outcomes, that is, our
mechanism is robust to some kind of bounded rationality. Indeed, Theorem 1 demonstrates that,
starting from an arbitrary state, the implementing rights structure guarantees the convergence to
a myopic stable state in a finite number of transitions among states. The reason is that implemen-
tation problems are solved by devising a finite rights structure, and this assures that from any
state outside the set it is possible to reach the MSS in a finite sequence of myopic improvements.

This feature is very important in many applications. For example, let us consider the classi-
cal marriage market. Suppose that current state constitutes a stable matching and suppose that
preferences of women change in a way to make the existing matching unstable. In this situation,
it is natural to start with the existing matching and then to find a path to a stable matching under
new preferences.

Korpela, Lombardi and Vartiainen (2020) provide a full characterization of the class of SCRs
that are implementable in core by a rights structure. Roughly speaking, this class is represented

7When Z is not a finite set, by using the rights structure designed in the proof of Theorem 1, it is possible to show
that it implements F in MSS when F is closed valued and upper hemi-continuous, the set of alternativesZ is compact
and the domain R is also compact.
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by the class of monotonic and unanimous SCRs. One of the drawbacks of their result is that the
constructed rights structure does not guarantee that a non-equilibrium state is connected to an
equilibrium state via a finite sequence of coalitional deviations. This is a serious restriction of
their result. It is worth mentioning that, under some restrictions8, Koray and Yildiz (2018) show
that every unanimous SCR that is implementable in core by a rights structure is implementable
via a rights structure that connects each non-equilibrium state to each equilibrium state via a
path of at most two deviations. Our Theorem 1 addresses the drawback for all efficient and
monotonic SCRs without relying on Koray and Yildiz (2018) restrictions. Indeed, since every
efficient F is unanimous and since every monotonic F is indirect monotonic, we establish the
following convergence result for efficient and monotonic SCRs.

Corollary 1. Every efficient and monotonic F : R ÝÑ Z0 is implementable in MSS via a finite rights
structure.

This result can be thought of as the counterpart of recurrent implementation in better-response
dynamics studied by Cabrales and Serrano (2011), in which agents myopically adjust their ac-
tions in the direction of better-responses. These authors show that a variant of monotonicity,
when combined with ”no-worst-alternative condition”, is a key condition for implementation in
recurrent strategies. Corollary 1 shows that for assignment problems of indivisible goods, mono-
tonicity, together with Pareto efficiency, is sufficient for a similar type of implementability. To be
concrete, in the remaining subsections we describe two economic model where our convergence
property has an appeal.

3.2.1 Convergence in Exchange Economy

Let us consider the class of exchange economies studied by Balbuzanov and Kotowski (2019)
and consider the notion of direct exclusion core. We show, by means of an example, that free
exchange of goods do not necessary converge to the direct exclusion core. However, the direct
exclusion core is implementable in MSS via a finite rights structure. This implies that irrespective
of the initial allocation of objects, it is possible to converge to a direct exclusion core allocation in
a finite sequence of coalitional moves.

An economy is a quadruplet pN,H,P, ωq where N “ t1, ..., nu is a finite non-empty set of
agents, H “ th1, ..., hmu is a finite set of indivisible objects, called houses, that can be allocated
among the agents, P “ pPiqiPN is a profile of linear orderings, where each linear ordering is
defined over H Y th0u, and the endowment system ω : 2N ÝÑ 2H is a function that specifies the
houses owned by each coalition.

For each coalitionK P N0, we write ω pKq “ Ť

TPK0
ω pT q. Let us assume that the endowment

system ω satisfies the following four properties: (A1) Agency: ω pHq “ H, (A2) Monotonicity:
K Ď K 1 ùñ ω pKq Ď ω pK 1q, (A3) Exhaustivity: ωpNq “ H , and (A4) Non-contestability: For
each h P H , there exists Kh P N0 such that h P ω pKq ðñ Kh Ď K.

8Koray and Yildiz (2018) impose agents’ preferences over outcomes are linear orders and the preference domain
is full
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Property A1 restricts ownership to agents or groups. Property A2 requires that a coalition
has in its endowment anything that belongs to any sub-coalition. Property A3 states that the
grand coalition N jointly owns everything. In property A4, coalition Kh is called the minimal
controlling coalition of house h. It guarantees that each house has a set of one or more “co-
owners” without opposing and mutually exclusive claims. As Balbuzanov and Kotowski (2019,
Lemma 1) show, these properties are needed to assure that the direct exclusion core is nonempty.

We assume that each agent may live in at most one house and each house h P H may accom-
modate at most one agent. A house may be vacant and an agent can be homeless. We can model
this latter outcome by the agent’s assignment to an outside option h0 R H , which has unlimited
capacity.

An allocation µ : N ÝÑ HYth0u is an assignment of agents to houses such that #µ´1 phq ď 1

for all h P H . We write µpKq to denote ŤiPK µ piq for any K P N0.
Let pN,H,R, ωq be an economy. Every linear orderingRi can be extended to an ordering over

the collection M of allocations in the following way:

µRiµ
1 ðñ either µ piqPiµ

1 piq or µ piq “ µ1 piq ,

for all µ, µ1 P M. With little abuse of notation, we denote both by Ri. Let R denote the class of
admissible preference profiles of extended preferences.

Definition 8. Given an economy pN,H,R, ωq, a coalition K P N0 can directly exclusion block the
allocation µ at R with allocation σ if
(a) σpiqPiµ piq for all i P K and
(b) µpjqPjσpjq ùñ µpjq P ωpKq for all j P NzK.

To speak, a coalition can directly exclusion block an assignment whenever each member
strictly gains from an alternative and anyone harmed by the reallocation is excluded from a house
belonging to the coalition. The direct exclusion core is the set of allocations that cannot be directly
exclusion blocked by any nonempty coalition.

Definition 9 (Direct Exclusion core). Given an economy pN,H,R, ωq, its direct exclusion core, de-
noted by CO pR,ωq, is defined by

CO pR,ωq “ tµ PM|no coalition can directly exclusion block µ at Ru .

Thus, no coalition can gainfully destabilize a direct exclusion core allocation by invoking their
collective exclusion rights. Balbuzanov and Kotowski (2019, Lemma 1) show that the direct ex-
clusion core is never empty and all its allocations are Pareto efficient.

Let us show that the direct exclusion core does not satisfy any external stability requirement.
To this end, let us represent an allocation µ by a permutation matrix with columns indexed by
elements of N and rows indexed by elements of H Y th0u, where h0 is the last row. If for some
h P H Y th0u and some i P N , entry µhi “ 1, then good h has been assigned to agent i.

9



Let us consider an economy with three agents and three houses.9 Each house i P H is owned
by agent i and agents’ preferences are given in the table below. It can be checked that the direct

R

1 2 3
2 3 1
3 1 2
1 2 3
h0 h0 h0

µ “

»

—

—

–

0 0 1
1 0 0
0 1 0
0 0 0

fi

ffi

ffi

fl

exclusion core at R consist of the allocation µ.
Let us consider the following allocations:

σ1 “

»

—

—

—

—

–

0 1 0

1 0 0

0 0 1

0 0 0

fi

ffi

ffi

ffi

ffi

fl

, σ2 “

»

—

—

—

—

–

1 0 0

0 0 1

0 1 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

and σ3 “

»

—

—

—

—

–

0 0 1

0 1 0

1 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

.

Although the direct exclusion core is not empty, the process of ‘free’ exchange of houses may
not lead to µ because such a process may cycle. Indeed, agents may myopically cycle around σ1,
σ2 and σ3.

To see it, note that for each agent i, his endowment ω piq “ i corresponds to his third choice–
his last choice is to become homeless. Therefore, given this initial situation, coalition t1, 2u can
trade so that they can achieve the allocation σ1. At σ1, agent 1 obtains his first best choice. Thus,
coalition t2, 3u is the only coalition that can achieve a strict improvement. The only allocation that
t2, 3u can move to is allocation σ2, where agent 2 obtains is first best choice. At σ2, only coalition
t1, 3u can achieve a strict improvement by moving to the only attainable allocation σ3, where
agent 3 obtains is first best choice. At σ3, only coalition t1, 2u can achieve a strict improvement by
moving to the only attainable allocation σ1. Therefore, free exchange may lock agents in a cycle
of exchanges.

A natural question that arises from the preceding example is whether it is possible to achieve
the direct exclusion core by means of a different exchange process. The answer is provided by
Corollary 2, which shows that the direct exclusion core is implementable in MSS via a finite
rights structure. To formalize our answer, fix any endowment system ω satisfying the above four
properties. Let us define FCO

ω by FCO
ω pRq “ CO pR,ωq for all R P R.

Corollary 2. Fix any endowment system ω satisfying properties A1-A4. FCO
ω is implementable in MSS

via a finite rights structure.
9We borrow this example from Demuynck, Herings, saulle and Seel (2019b, pp.12-13).
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3.2.2 Convergence In Matching

As a second application, we consider a two-sided, one-to-one matching model, namely the
“marriage problem”. A marriage problem is a market without transfers where the sides of the
market are, for example, workers and firms (job matching), medical students and hospitals
(matching of students to internships), students and advisors (matching of students to thesis
advisors). The two sided of the markets are simply referred as “men” and “women”, hence the
name “marriage problem”. An output of the model is termed a matching, which pairs each
woman with at most one man, and each man with at most one woman. Roughly speaking, a
matching is stable when there is no blocking pair, that is, no pair of agents are better off with
each other than with their assigned partners. A formal description of this matching model will
be presented in Section 6.1. There are two prominent models describing the marriage problem:
the Gale-Shapley model (Gale and Shapley, 1962) and the Knut model (Knuth, 1976). The for-
mer studies stability for marriage problems allowing the possibly for agents to be single. The
latter is a pure matching model in which no agents is allowed to be single (and thus the number
of men and women is assumed to be the same). Roth and Vande Vate (1990) show that, the set of
stable matching in the Gale-Shapley model exhibits a convergence property, that is, for any non
stable matching there exist a myopic improvement path to a stable matching. On the contrary,
for the Knut model, no general convergence result is provided. Moreover Tamura (1993) shows
that, under usual matching rules, when there are at least four women, there exists preferences
such that agents cycle among non stable matchings. Our next result fills the gap. Indeed, since a
stable matching in the marriage problem is monotonic and efficient, we establish, as a corollary
to Theorem 1, that the set of stable matching in the Knut model is implementable in MSS and
thus there exists a mechanism such that a converge property in the Knut model is restored.

Corollary 3. The set of stable matching in the Knut model is implementable in MSS via a finite right
structure.

Note that, under usual matching rules, Demuynck, Herings, Saulle and Seel (2019a) show
that the MSS is a superset of the set of stable matchings. From this point of view, Corollary 3
further enlighten the relation between the MSS and the set of stable matchings. Moreover, it sug-
gests that the implementation in right structure could represent a tool to refine the MSS whenever
its prediction under canonical rules is too loose. Since this conjecture overcomes the purposes of
the present work and we leave it as an avenue for future research.

3.3 Connections To Other Implementability Notions

This section generalizes the implementation in MSS to include the implementation in absorb-
ing set and in generalized stable set (van Deemen, 1991; Page and Wooders, 2009). First, we
introduce the definition of such a solutions together with their implementability notions.

11



Definition 10 (Absorbing Set). Let us assume that S is finite. The setApΓ, Rq Ď S is an absorbing
set at pΓ, Rq if it satisfies the following two conditions:

(a) For all s, t P ApΓ, Rq, there exists a finite myopic improvement path from t to s.

(b) For all t P SzApΓ, Rq and s P ApΓ, R), there does not exist any finite myopic improvement
path from s to t.

Let A pΓ,Rq be the union of all absorbing sets at pΓ, Rq. The following establishes the notion
of implementation in absorbing set.

Definition 11 (Implementation in Absorbing Sets). A rights structure Γ implements F in absorbing
set if F pRq “ h ˝ A pΓ,Rq for all R P R. If such a rights structure exists, F is implementable in
absorbing sets by a rights structure.

Definition 12 (Generalized Stable Set). Let us assume that S is finite. The set V pΓ, Rq Ď S is a
generalized stable set at pΓ, Rq if it satisfies the following two conditions:

1. Iterated Internal Stability: For all s, t P V pΓ, Rq, there is no finite myopic improvement paths
from t to s.

2. Iterated External Stability: For all t P SzvpΓ, Rq there exists finite myopic improvement path
from t to V

Let V pΓ,Rq be the union of all generalized stable sets at pΓ, Rq. As usual, we establishes the
notion of implementation in generalized stable set.

Definition 13 (Implementation in Generalized Stable Set). A rights structure Γ implements F in
generalized stable set if F pRq “ h ˝ V pΓ,Rq for all R P R. If such a rights structure exists, F is
implementable in generalized stable set by a rights structure.

Inarra, Kuipers and Oilazola (2005) and Nicolas (2009) studied the relation between absorb-
ing set and generalized stable set. By next proposition, we provides a further insight about the
relation between the two solution concepts. In particular, we prove that whenever the state space
is finite then the union of all generalized stable sets equals the union of all absorbing sets which
equals the unique myopic stable set.

Theorem 2. Let Γ be a finite rights structure. Then, for all R P R, msspΓ, Rq “ ApΓ, Rq “ VpΓ, Rq.

As a direct consequence of both Theorem 1 and Theorem 2, we have the following corollary.

Corollary 4. Any efficient F satisfying indirect monotonicity is implementable in absorbing sets by a
finite right structure, and in generalized stable sets by a finite right structure

12



3.4 Indirect Monotonicity and Implementation in MSS

A natural question is whether the indirect monotonicity is also a necessary condition for the
implementation in MSS. In the following example, we show that indirect monotonicity is not nec-
essary for implementation in MSS.

Example 1. LetN “ t1, 2, 3u, Z “ tx, y, zu, and R “ tR,R1u. Preferences are defined in the table
below.

R R1

1 2 3 1 2 3
z x y z z y
y z x y y z
x y z x x x

x y

z

{K}

{K}
{K}

Figure 1: Preferences and implementing rights structure. #K ě 2

Let us assume that F is the majority rule, which selects outcomes that are (weakly) majority
preferred to any other outcome. Formally, this solution can be defined as follows. For each profile
R,

F pRq “ tx P Z|@y P Zz txu : # ti P N |xPiyu ě # ti P N |yPixuu (2)

It can be checked that F pRq “ tx, y, zu and F pR1q “ tzu.
F is not monotonic because y is F -optimal atR, it does not remain F -optimal atR1, but y does

not strictly fall in preference for anyone when the profile is changed from R to R1. F does not
satisfy indirect monotonicity either. The reason is that there are only two feasible sequences at R1
from y that satisfies part (i) of the conclusion of the condition: they are yP 13zP 11y and yP 13zP

1
2y.

However, part (ii) of the conclusion of the condition is never satisfied because both z and y do
not strictly fall in preference for anyone when the profile changes from R to R1.

A rights structure that implements F in MSS is depicted in Figure 2 where the set of states
is S “ Z, the outcome function is the identity map, and where γ is such that for all x, y P Z,
K P γpx, yq if and only if K ě 2. The idea behind this rights structure is that only coalitions of
size larger than one can have the power to move from one state to another. It can be checked that
this rights structure implements F in MSS.
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4 Rotation Programs
As eloquently suggested by previous section title, implementation in MSS is not enough to

implement in rotation programs and it is only a preliminary step. To speak, implementation in
MSS gives the planner the ability to design cycles among socially optimal outcome. However,
the planner does not have full control over them. Thus, it can occur that a cycle in a preference
profile is a sub-cycle in an another preference profile and it can rule out some outcomes from the
rotation process. The following example illustrates the point.

Example 2. Suppose thatN “ t1, 2, 3u, Z “ tx, y, zu, and R “ tR,R1u. Preference are defined in
the table below.

R R1

1 2 3 1 2 3
x z y x x y
y x z y y x
z y x z z z

x y

z

{3}

{1,2}

{K}
{K}

Figure 2: Preferences and implementing rights structure. #K ě 2

Let F be such that F pRq “ tx, y, zu and F pR1q “ tx, yu. This SCR satisfies indirect monotonicity
because F pR1q Ď F pRq and F pRqzF pR1q “ tzu while L3pz,Rq Ę L3pz,R

1q. Note that at R1 only
agent 3 want to move from x to y and only agents 1 and 2 want to move from y to x. Therefore, to
produce a rotation among tx, yu at R1 it is necessary to allocate rights accordingly, that is giving
to agent 3 the right to move from x to y and to at least either to 1 or 2 the right to move from y to
x. However, such a right structure generate at R a sub-cycle in which the outcome z is ruled out
and thus the rotation among states tx, y, zu cannot be guaranteed.

We solve this drawback by expanding the notion of implementation in MSS to the notion of
implementation in rotation program.

4.1 Implementation In Rotation Programs

We start by defining a rotation program as follows.

Definition 14 (Rotation Program). A rotation program for pΓ, Rq is an ordered subset of states S̄ “
ts1, ..., smu Ď S such that for all si, si`1 P S̄:

(i) For all s P S̄z tsiu, h psiq ‰ h psq.
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(ii) For all s P Sz tsi, si`1u and all K P N0, if K P γ psi, sq, then not h psqPKh psiq.

(iii) There exists K P N0 such that K P γ psi, si`1q and h psiqPKh psi`1q.

Condition (i) states that in a rotation program there are no two states providing the same
outcome; conditions (ii) and (iii) together require that the only possible transition occurs among
adjacent states. Our notion of implementation in rotation programs can be stated as follows.
Definition 15 (Implementation in Rotation Programs). A rights structure Γ implements F in rota-
tion programs if the following requirements are satisfied:

(i) Γ implements F in MSS.

(ii) For all R P R,MSS pΓ, Rq is partitioned in rotation programs tS1, ..., Smu such that h ˝Si “
F pRq for all i “ 1, ...,m.

If such a rights structure exists, we say that F is implementable in rotation programs.
Roughly speaking, the above notion of implementation refines our notion of implementation

in MSS, in the sense all myopic stable states must be arranged circularly. Thus, and irrespective
of agents’ preferences, the core of an implementing rights structure is always empty when F pRq
has more than one outcome.

4.2 Characterization Results

In what follows we introduce the notion of rotation monotonicity which turns out to be central
to the theory we develop here.
Definition 16 (Rotation Monotonicity). F : R ÝÑ Z0 satisfies rotation monotonicity provided that
for all R P R, elements of F pRq can be ordered as x p1, Rq , ..., x pm,Rq for some integer m ě 1

such that for allR1 P R, ifF pRq ‰ F pR1q and either #F pR1q ą 1 or r#F pR1q “ 1 and F pR1q R F pRqs,
then for each x pi, Rq P F pRq, there exist a sequence of agents i1, ..., ih, states txpi, Rq, xpi `
1, Rq, ..., xpi` h,Rqu Ď F pRqwith 1 ď h ď m and an outcome z P Z such that

• x pi` `` 1, RqP 1i``1
x pi` `, Rq @` P t0, ..., h´ 1u

• x pi` h,RqRihz and zP 1ihx pi` h,Rq

When preferences change from R to R1 and F pRq ‰ F pR1q, rotation monotonicity requires for
every z that is F -optimal at R, there is an agent i and a pair pz˚, yq such that y improves with
respect to z˚ for agent i as preferences change, where z˚ is F -optimal at R and z is connected
with z˚ via a ”myopic improvement path” at R1 that not only involves just F -optimal outcomes
at R but also obeys the circular arrangement of the elements of F pRq.

The above property implies indirect monotonicity when #F pRq ‰ 1 for allR P R. With respect
to indirect monotonicity, rotation monotonicity requires that all F -optimal outcomes at R must be
arranged circularly. The next result shows that only SCRs satisfying rotation monotonicity are
implementable in rotation programs.
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Theorem 3 (Necessity). If F is implementable in rotation programs, then it satisfies rotation monotonic-
ity.

Recall that the SCR in Example 2 is not implementable in rotation programs. It is illustrative
to study the SCR of the example in the light of Theorem 3.

Example 2 (Continued). The social choice ruleF in Example 2 does not satisfy rotation monotonic-
ity. To see this, notice that there are two cyclic orderings of F pRq ´ x, y, z and x, z, y. Both violate
rotation monotonicity. Ordering x, y, z violates rotation monotonicity because Lipy,Rq Ď Lipy,R

1q

and z P Lipy,R
1q for all i P N , and x, z, y violates rotation monotonicity because Lipx,Rq Ď

Lipx,R
1q and z P Lipx,R

1q for all i P N .

Observe, that rotation monotonicity has a bite only when either #F pR1q ą 1 or [#F pR1q “ 1

but F pR1q R F pRq] and it is vacuously satisfied otherwise. It follows that rotation monotonicity
alone is not a sufficient condition for implementation in rotation programs. However, we show
that it is sufficient together with another auxiliary condition termed Property M, which can be
defined as follows.

Definition 17 (Property M). F : R ÝÑ Z0 satisfies Property M provided that for all R P R,
elements of F pRq can be ordered as x p1, Rq , ..., x pm,Rq for some integer m ě 1 such that for all
R1 P R, if F pRq ‰ F pR1q and F pR1q “ tx pk,Rqu for some 1 ď k ď m, then

• either the conclusion of rotation monotonicity holds for all x pj, Rq P F pRq z tx pk,Rqu

• or for each x pj, Rq P F pRq z tx pk,Rqu for which the conclusion of rotation monotonicity does
not hold, there exists a sequence of agents i1, ..., i` such that

x pk,RqP 1i`x pk ´ 1, RqP 1i`´1
¨ ¨ ¨ P 1i2x pj ` 1, RqP 1i1x pj, Rq

and

Li px pk,Rq , Rq Y tx pk ` 1, Rqu Ď Li

`

x pk,Rq , R1
˘

@i P N

Theorem 4 (Sufficiency). If F is efficient and it satisfies rotation monotonicity and Property M with
respect to the same ordered set of outcomes in F pRq, for all R P R, then it is implementable in rotation
programs by a finite rights structure.

The proof of Theorem 4 relies on a rights structure, which is slightly different from the rights
structure devised for the proof of Theorem 1. The only difference concerns one feature of the
code of rights. Specifically, whereas for the proof Theorem 1 the devised code of rights entitles
every agent to move from a state px,Rq to a state py,Rq, this construction cannot be used here
where we need to construct rotation programs. Since elements of F pRq are arranged in a specific
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circular order dictated by rotation monotonicity and Property M, we need to obey this order when
we allocate rights to agents. Thus, the code of rights entitles every agent to move only between two
consecutive states of the circular arrangement, that is, between px pi, Rq , Rq and px pi` 1, Rq , Rq.

Let us consider two profiles R and R1 and let R be the true preferences of agents. We can
distinguish two case. The first case is that F pRq “ F pR1q. In this case, either agents keep moving
along the circular arrangement of F pRq because of Pareto efficiency and they do not have any
incentive to leave it—if agent iwants to leave the circle, he can only move to a state corresponding
to an inferior outcome— or at least a agent i experiences a preference reversal around an F -
optimal outcome atR1 when preferences change fromR1 toR. In the latter case, Pareto efficiency,
combined with the fact that everyone is entitled to move between any two consecutive states of the
type px pk,R1q , R1q and px pk ` 1, R1q , R1q, guarantees that there is a myopic improvement path
at R away from each state of type x pi, R1q. This assures that no state of this type is an element of
the MSS at R.

The second case is that F pRq ‰ F pR1q. Then, there is an x pi, R1q that is F -optimal at R1 but
it is not at R. In this case, rotation monotonicity and Property M, together with Pareto efficiency
and the fact that everyone is entitled to move between any two consecutive states of the type
px pk,R1q , R1q and px pk ` 1, R1q , R1q, guarantee the existence of a myopic improvement path at
R, which rules out the possibility that x pi, R1q is part of the myopic stable set at R.

The following Example 3 illustrates a SCR implementable in rotation programs but violating
Property M. Thus the auxiliary condition Property M is not necessary for the implementation in
rotation program.

Example 3. Let us consider a modified version of Example 1 with agents N “ t1, 2, 3u, states
Z “ tx, y, zu, and preferences R “ tR,R1, R2u defined in the table below.

R R1 R2

1 2 3 1 2 3 1 2 3
z x y z z y y x y
y z x y y x z z x
x y z x x z x y z

x y

z

{K}

{K}
{K}

Figure 3: Preferences and implementing rights structure. #K ě 2

We assume that F is the majority rule, which selects outcomes that are (weakly) majority
preferred to any other outcome. Formally, for each profileR, define F as in (2). It can be checked
that F pRq “ tx, y, zu, F pR1q “ tzu and F pR2q “ tyu.

A rights structure that implements F in rotation programs is depicted in Figure 3, where the
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set of states is S “ Z, the outcome function is the identity map, and where γ is such that for
all x, y P Z, K P γpx, yq if and only if K ě 2. It can be easily checked that this rights structure
implements F in a rotation program where the set of states can only be ordered as x p1, Rq “ x,
x p2, Rq “ y and x p3, Rq “ z. It can also be checked that F satisfies rotation monotonicity.10

Let us show that F violates Property M. Assume, to the contrary, that F satisfied it. Then, the
set of states must necessarily be ordered as x p1, Rq “ x, x p2, Rq “ y and x p3, Rq “ z. When
the profile moves from R to R1, we have that the conclusion of rotation monotonicity is satisfied
because zP 12xP 13zP 12y and xP2z. However, when the profile moves from R to R2, the conclusion
of rotation monotonicity is not satisfied because agents when outcome x is considered, agents keep
moving along the cycles xP 22 zP 22 yP 21 x and xP 22 zP 22 yP 23 x because no agent who moves along the
cycles experiences a preference reversal–note that, by construction, yP1x and yP 21 x, zP2y and
zP 22 y, xP2z and xP 22 z, and yP3x and yP 23 x. This implies that when the profile moves from R to
R2, Property M implies that L2 py,Rq Y tzu Ď L2 py,R

1q, which is a contradiction. Thus, F does
not satisfy Property M.

We conclude this section invoking the possibility that, at any preference profile, there is more
than one socially optimal outcome. As Mukherjee, Muto, Ramaekers, and Sen (2019) pointed
out, this possibility is certainly plausible. Indeed, the outcomes of an implementable social choice
correspondence at a profile may be preferred by the designer to all outcomes of implementable
social choice functions at that profile. Under this circumstance, since Property M never applies,
then rotation monotonicity fully characterizes implementation in rotation program. The following
corollary to Theorem 3 establishes the point.

Corollary 5. Suppose #F pRq ą 1 for all R P R. Then F is implementable in rotation programs if and
only if F satisfies rotation monotonicity.

5 Assignment Problems
A basic yet widely applicable problem in economics is to allocate indivisible objects to agents.

This problem is referred to as the assignment problem. In this setting, there is a set of objects,
which we term as ”jobs”, and the goal is to allocate them among the agents in an optimal manner
without allowing transfers of money. The assignment problem is a fundamental setting that is
not an economic environment. Since the model applies to many resource allocation settings in
which the objects can be public houses, school seats, course enrollments, car park spaces, chores,
joint assets of a divorcing couple, or time slots in schedules, we now apply Corollary 5 to this
fundamental setting.

10To see it, observe that when the profile moves fromR to eitherR1 orR2, rotation monotonicity is vacuously satisfied.
When the profile moves fromR1 to eitherR orR2, rotation monotonicity is satisfied because [zP 12x and xP2z] and [zP 12x
and xP 22 z]. Finally, when the profile moves from R2 to either R or R1, rotation monotonicity is satisfied because [yP 21 z
and zP1y] and [yP 21 z and zP 11y].
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A job rotation problem pN, J, P q is a triplet where N “ t1, ..., nu is a finite set of agents with
n ě 2, J “ tj1, ..., jnu is a finite set of jobs, P “ pPiqiPN is a profile of linear orderings such that
every Pi Ď J ˆ J . Let pN, J, P q be a job rotation problem. Every agent i’s preferences over J at
Pi can be extended to an ordering over the set of allocations J̄ “ tj P Jn|jk ‰ jl for all k, l P Nu
in the following natural way:

jRij
1 ô either jiPij

1
i or ji “ j1i, for all j, j1 P J̄ .

Let R denote the set of all (extended) preference profiles.
The follow example shows that no every efficient F on R is implementable in rotation pro-

grams.

Example 4. Let F be the efficient SCR defined over R. Suppose that there are three agents. Let
the profiles P, P 1, P 2 be defined as follows:

P

1 2 3
j1 j1 j2

j3 j2 j3

j2 j3 j1

,

P 1

1 2 3
j1 j1 j3

j3 j2 j2

j2 j3 j1

and

P 2

1 2 3
j1 j1 j2

j3 j3 j3

j2 j2 j1

.

It can easily be checked thatF pRq “ tpj3, j1, j2q , pj1, j2, j3q , pj1, j3, j2qu,F pR1q “ tpj3, j1, j2q , pj1, j2, j3qu
and F pR2q “ tpj3, j1, j2q , pj1, j3, j2qu. F is not implementable in rotation programs because it vi-
olates rotation monotonicity. To see it, assume, to the contrary, that F satisfies rotation monotonicity.
Then, the elements of F pRq can be ordered as x p1, Rq , x p2, Rq , x p3, Rq.

Let us consider R2. Select i P N such that x pi, Rq “ pj3, j1, j2q. We show that x pi` 1, Rq “

pj1, j3, j2q. Since x pi, Rq has not fallen strictly in anyone’s preference ordering because R2 is a
monotonic transformation of R at pj3, j1, j2q “ x pi, Rq–Li ppj3, j1, j2q , Rq Ď Li ppj3, j1, j2q , R

1q

for each agent i, it follows that we can only move to the next element of the ordered set, that
is, to x pi` 1, Rq. Since the top-ranked job for agent 2 at P 2 is j1 and since, moreover, the top-
ranked job for agent 3 at P 2 is j2, it follows that only agent 1 can move to x pi` 1, Rq atR2, which
implies that x pi` 1, Rqmust coincide with pj1, j2, j3q, that is, we have that x pi` 1, RqP 21 x pi, Rq

and x pi` 1, Rq “ pj1, j3, j2q.11

Let us now consider R1. Let us consider the allocation x pi` 1, Rq “ pj1, j2, j3q. Since R1 is a
monotonic transformation ofR at x pi` 1, Rq, it follows that we can only move to the next element
of the ordered set, that is, to x pi` 2, Rq. Note that the top-ranked job for agent 1 atR1 is j1. Also,

11It cannot be that x pi` 1, Rq “ pj1, j3, j2q because this would lead to the contradiction that x pi` 2, Rq “
pj3, j1, j2q. The reason is that there cannot be any preference reversal around pj1, j2, j3q because R2 is a monotonic
transformation of R at pj1, j3, j2q. Thus, we can only move to next element of the ordered set. Since the top-ranked
job for agent 1 at P 2 is j1 and since, moreover, the top-ranked job for agent 3 at P 2 is j2, the allocation x pi` 2, Rq
must coincide with pj3, j1, j2q because pj3, j1, j2qP 22 pj1, j3, j2q.
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note that the top-ranked job for agent 3 at R1 is j3. This implies that only agent 2 can move to
x pi` 2, Rq, and so x pi` 2, Rq must coincide with pj3, j1, j2q “ x pi, Rq, which contradicts the
assumption that the elements of F pRq can be ordered as x p1, Rq , x p2, Rq , x p3, Rq. Thus, F does
not satisfy rotation monotonicity.

Given this, we focus on two classes of job rotation problem that satisfy rotation monotonicity
and thus can be implemented in rotation programs.

5.1 A Job Rotation Problem With Restricted Domain

There are situations in which there is a common best/worst job among the available ones.
For instance, suppose that the head of an economics department needs to allocate one microeco-
nomics course to each of its microeconomics teachers. Courses can be ranked according to their
sizes. The best possible assignment for everyone is to be assigned to the PhD course with the
lowest number of students, whereas the common worst possible outcome for every teacher is to
be assigned to the largest possible class at the undergraduate level.

In what follows, we consider situations in which there is a common best job, which is denoted
by j˚1 . Since situations in which there is a common worst job can be treated symmetrically, we
omit their analysis here. The set of jobs J is given by tj˚1 , j2, ..., jnu. Let R̄ be preference domain
such that R̄ “ tR P R|for all i P N , arg maxJ Ri “ tj

˚
1 uu. With abuse of notation, we also use R̄

to denote the set of all (extended) preference profiles.
The next result show that the efficient solution F defined over R̄ is implementable in rotation

programs.
Theorem 5. F : R̄Ñ J̄0 is implementable in rotation programs.

The intuition behind this theorem is that for eachR, elements of F pRq can be arranged circu-
larly as x p1, Rq , ..., x pm,Rq , x p1, Rq such that no two consecutive allocations of the arrangement
allocate j˚1 to the same agent. Thus, the ordered set required by rotation monotonicity can be set as
x p1, Rq , ..., x pm,Rq. Take any R1 such that F pRq ‰ F pR1q. Since F is monotonic, it follows that
there exists an x pi, Rq P F pRq for which it holds that

x pi, RqR`z and zP 1`x pi, Rq

for some agent ` P N and an allocation z P J̄ . Since, by the way we arranged the elements of
F pRq, it holds that for all k ‰ i, x pk ` 1, RqP 1jx pk,Rq for some agent j, it is clear that F satisfies
rotation monotonicity.

5.2 A Job Rotation Problem With Partially Informed Planner

As another application we consider a scenario in which the designer knows that two agents
have the same top choice. Specifically, for agent i’s linear ordering Ri Ď J ˆ J , let τ pRiq denote
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the top-ranked job of agent i atRi. We assume that designer knows that both agent 1 and agent 2
have a common top-ranked job, although he does not necessarily know which job this is, and that
the domain of admissible profiles of linear orderings is given by R̂ “ tR P R|τ pR1q “ τ pR2qu.
With abuse of notation, we also use R̂ to denote the set of all (extended) preference profiles over
J̄ .

We are interested in implementing a subsolution φ : R̂ ÝÑ J̄ 0 of the efficient solution. We
construct φ at R by following three sequential steps:

Step 1: Assign τ pR1q either to agent 1 or to agent 2.

Step 2: Assign the remaining jobs Jz tτ pR1qu to Nz t1, 2u in a Pareto efficient way.

Step 3: Assign the remaining job to agent 2 if agent 1 has received his top-ranked job, otherwise,
assign it to agent 1.

The set φ pRq can be thought of as the set of outcomes generated by an underlying random se-
rial dictatorship mechanism (Abdulkadiroglu and Sonmez, 1998), in which the only permutations
that are admissible are those in which the first agent and the last agent of the ordering are re-
spectively either agent 1 and agent 2 or agent 2 and agent 1. Observe that #φ pRq “ 2m, wherem
is the number of such allocations at R where all jobs except τ pR1q are assigned to agents Nz1, 2
in efficient way (agent 2 getting the leftover). It follows that Property M is always satisfied by φ
and Corollary 4 applies. Thus it suffices to prove that rotation monotonicity is satisfied.

Fix any R P R̂ and any x P φ pRq. Let x̂ be the allocation obtained from x in which the job
assigned to agent 1 under x is assigned to agent 2 under x̂, the job assigned to agent 2 under x
is assigned to agent 1 under x̂, whereas all other assignments are unchanged. That is, x̂1 “ x2,
x̂2 “ x1, and x̂i “ xi for every agent i ‰ 1, 2. Observe that x̂ P φ pRq if and only if x P φ pRq.

The next result show that the efficient solution φ is implementable in rotation programs. This
result is obtained by requiring that the ordered set

φ pRq “ tx p1, Rq , x p2, Rq , ..., x p2n´ 1, Rq , x p2m,Rqu

satisfies the following properties for all i P t1, ..., 2mu: (1) If i is odd, then x1 pi, Rq “ τ pR1q. (2)
If i is even, then x2 pi, Rq “ τ pR2q. (3) If x pi, Rq “ x and i is odd, then x pi` 1, Rq “ x̂. φ pRq is
implementable in rotation programs because we can devise a rights structure that allows agent 1
(agent 2) to be effective in moving from the outcome x pi, Rq to x pi` 1, Rq provided that i is even
(odd). The reason is that agent 1 (agent 2) has incentive to move from x pi, Rq to his top-ranked
outcome x pi` 1, Rqwhen i is odd (even).

To see that rotation monotonicity is satisfied, fix any R1 such that φ pRq ‰ φ pR1q. This implies
that at least one allocation x pi, Rq P φ pRq is Pareto dominated at R1, that is, there exists an
allocation z such that zR1jx pi, Rq for each agent j P N and zP 1jx pi, Rq for some agent j P N .

We can proceed according to whether τ pR1q ‰ τ pR11q.
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• Suppose that τ pR1q ‰ τ pR11q. This implies that τ pR1q “ τ pR2q has fallen strictly in agent
j “ 1, 2’s ranking when the profile moves fromR toR1. This preference reversal both agent
1 and agent 2 guarantees that rotation monotonicity is satisfied for every x pi, Rq P φ pRq.

• Suppose that τ pR1q “ τ pR11q. We have already observed that at R, it holds that

x pi` 1, RqP2x pi, Rq

if i is odd, and that

x pi` 1, RqP1x pi, Rq

if i is even. In other words, there is the following cycle among outcomes in φ pRq:

x p1, RqP1x p2m,RqP2x p2n´ 1, Rq ¨ ¨ ¨ x p3, RqP1x p2, RqP2x p1, Rq

Since τ pRjq “ τ
´

R1j

¯

for j “ 1, 2, it follows that the above cycle also exists at R1. Since
φ pRq ‰ φ pR1q, we already know that there is at least one allocation x pi, Rq P φ pRq that
is Pareto dominated at R1. Since x pi, Rq is efficient at R, it follows that x pi, Rq P φ pRq has
strictly fallen in the preference ranking of at least one agent j ‰ 1, 2 when the profile moves
from R to R1. It follows that rotation monotonicity is satisfied.

We have thus proved the following result.

Theorem 6. φ : R̂Ñ J̄0 is implementable in rotation programs.

6 Discussion
6.1 Ex-post Envy In Stable Matchings

We argued in Section 5 that there are interesting SCRs that satisfy rotation monotonicity though
it is true that some do not. Here, we discuss the possibility for our theory to achieve fairness in re-
source allocation problems. From this perspective, drawing a lottery is the most common way to
solve such a problems: If there are two different flavors of ice cream in the freezer, and both chil-
dren want the same, parents will suggest drawing a lot; If there are several tasks to be allocated
among adults, some more laborious than others, the allocation will be decided by drawing a lot;
When a person dies, and leaves tangible goods behind, heirs will often use a lottery to distribute
them. However, anyone who has been part of these situations knows that there will be a lot of
discontent ex-post: children crying, adults cursing, and heirs never again speaking to each other.
Nevertheless, the literature on mechanism design has not been able to approach the problem of
fairness in any other way than by drawing a lot (Hofstee, 1990; Bogomolnaia and Moulin , 2001;
Budish, Che, Kojima and Milgrom, 2013). This is so despite the fact that experimental evidence
suggest drawing a lot is often not even considered fair (Eliaz and Rubinstein (2014), Andreoni,
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Aydin, Barton, Bernheim, and Naecker (2020)). Given these findings, it would be natural to
ask if rotation programs can be useful in restoring fairness in mechanisms. The answer is yes.
However, there will be limits. To be concrete, let us consider the Gale-Shapley matching model
(Gale and Shapley, 1962). Given a notion of stability for marriage problems, a (deterministic)
algorithm results in stable matchings. In particular, the Gale and Shapley’s algorithm can be
formulated as an algorithm in which first all agents of one side of the market move and then all
agents of the other side (Roth and Vande Vate (1990)). Since one side of the market has a “last
mover advantage” that guarantees their best possible stable matching, the algorithm of Gale and
Shapley is neither procedurally nor end-state fair. Indeed, the algorithm induces a large amount
of ex-post envy, since the best possible matching for one side of the market is the worst possible
matching for agents on the other side of the market.12

To at least recover ex-ante fairness, Klaus and Klijn (2006) consider two probabilistic matching
algorithms that assign to each marriage market a probability distribution over stable matchings
(employment by lotto and the random order mechanism), and they identify two important prop-
erties that help to differentiate them. However, these algorithms can still induce a large amount
of ex-post envy.

The following example illustrates how our notion of implementation in rotation programs
represents an interesting device to restore ex-post fairness in matching environments.

Example 5. A marriage problem is a quadruplet pM,W,P,Mq where M is a finite non-empty set
of men, with m as a typical element, W is a finite non-empty set of women, with w as a typi-
cal element, P “ pPiqiPMYW is a profile of linear orderings such that (i) every man m P M ’s
preference ordering is a linear order Pm over the set W Y tmu and (ii) every woman w P W ’s
preference ordering is a linear order Pw over M Y twu.13, and M is a collection of all matchings,
with µ as a typical element. µ : M YW Ñ M YW is a bijective function matching every agent
i PM YW either with a partner of the opposite sex or with herself. If an agent i is matched with
herself, we say that this i is single under µ. Let pM,W,P,Mq be a marriage problem. Every man
m’s preference ordering Pm over W Y tmu can be extended to an ordering over the collection M
in the following way:

µRmµ
1 ô either µ pmqPmµ

1 pmq or µ pmq “ µ1 pmq , for every µ, µ1 PM.

Likewise, this can be done for every woman w P W . A matching µ is individually rational at R if
no agent i P M YW prefers strictly being single to being matched with the partner assigned by
the matching µ; that is, for every agent i, either µ piqPii or µ piq “ i. Furthermore, a matching µ
is blocked at R if there are two agents m and w of the opposite sex who would each prefer strictly
to be matched with the other rather than with the partner assigned by the matching µ; that is,

12This opposition of interests can be observed not only in comparing the optimal stable matchings but also in com-
paring any two stable matchings (Knuth (1976)).

13A linear ordering P overX is a complete, transitive and anti-symmetric binary relation overX . A binary relation
P over X is anti-symmetric provided that for all x, y P X , if xPy and yPx, then x “ y.
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there is a pair pm,wq such that

wPmµ pmq and mPwµ pwq .

A matching µ is stable at R if it is individually rational and unblocked at R. A matching µ is
man-optimal stable at R if it is the best stable matching from the perspective of all the men; that is,
m is stable at R and for every man m P M , µRmµ

1 for every other stable matching µ1 at R. The
man-optimal stable matching at R is denoted by µRM . The woman-optimal stable matching at R
is the best stable matching from the perspective of all the women and it is denoted by µRW .

Suppose that the objective is to rotate partners between the man-optimal stable matching and
the woman-optimal stable matching for each profileR, that is, F pRq “

 

µRM , µ
R
W

(

. Suppose there
are three menM “ tm1,m2,m3u and three womenW “ tw1, w2, w3u. Suppose that R “ tR,R1u

and that agents’ preferences at R are as follows:

Men’s preferences Women’s preferences
m1 : w2 w3 w1 m1 w1 : m1 m3 m2 w1

m2 : w3 w1 w2 m2 w2 : m2 m1 m3 w2

m3 : w1 w2 w3 m3 w3 : m3 m2 m1 w3

where the ranking w2w3w1 for m1 indicates that his first choice is to be matched with w2, his
second choice is to be matched with w3, his third choice is to be matched with w1 and his last
choice is to be single. Suppose that agents’ preferences at R1 are:

Men’s preferences Women’s preferences
m1 : w2 w3 w1 m1 w1 : m2 m3 m1 w1

m2 : w3 w1 w2 m2 w2 : m3 m1 m2 w2

m3 : w1 w2 w3 m3 w3 : m1 m2 m3 w3

Note that Rm “ R1m for all m P M . The man-optimal stable matching and the woman-optimal
stable matching at R are:

µRM “

˜

w2 w3 w1

m1 m2 m3

¸

and µRW “

˜

w1 w2 w3

m1 m2 m3

¸

,

whereas at R1 they are

µR
1

M “

˜

w2 w3 w1

m1 m2 m3

¸

and µR
1

W “

˜

w3 w1 w2

m1 m2 m3

¸

,

where µRM “ µR
1

M has m1 married to w2, m2 married to w3 and m3 married to w1. It follows
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that F pRq “
 

µRM , µ
R
W

(

and F pR1q “
!

µR
1

M , µ
R1

W

)

, so that F pRq ‰ F pR1q, and #F pR1q ą 1. In
what follows we show that F satisfies rotation monotonicity. Fix R P R and let us consider the
order of states xp1, Rq “ xpµRW , Rq, xpµ

R
M , Rq “ xp2, Rq. Then for every w P W it holds that

xpµRM , RqP
1
wxpµ

R
W , Rq and xpµRW , RqRwxpµ

R
M , Rq, thus rotation monotonicity is satisfied w.r.t. R.

Finally, fix R1 P R and consider the order of states xp1, R1q “ xpµR
1

W , R
1q, xpµR

1

M , R
1q “ xp2, R1q.

For every w P W it holds that xpµR1M , R
1qPwxpµ

R1

W , R
1q and xpµR

1

W , R
1qR1wxpµ

R1

M , R
1q, thus rotation

monotonicity is also satisfied w.r.t. R1.

However, this situation is unattainable in general because rotation monotonicity is not always
satisfied for marriage problems. Example 6 in the Appendix illustrates the point. We believe that
the identification and the characterization of a class of resource allocation problems that can be
implemented in (a form of) rotation programs is a fruitful area for future research.

6.2 Concluding Remarks

This paper studies rotation programs in the realm of implementation theory. We describe a
rotation program as a particular kind of Myopic Stable Set (Demuynck, Herings, Saulle and Seel,
2019a) in which states are arranged circularly. The paper identifies conditions for implementation
in Myopic Stable Set of Pareto efficient SCRs by a right structure (Koray and Yildiz, 2019), a device
which allocates powers within the society. Implementation in Myopic Stable Set is robust in the
following sense: at any preference profile, every non stable allocation converges to a myopically
stable allocation via a sequence of agent deviations. Moreover, implementation in Myopic Stable
Set encompasses implementation in absorbing set and in generalized stable set. A weaker notion
than (Maskin) monotonicity, namely indirect monotonicity, is sufficient for the implementation in
Myopic Stable Set although it is not necessary. However, a notion of rotation monotonicity is both
necessary and sufficient for the implementation in rotation programs when the SCR never selects
a singleton. Finally, two classes of assignment problems are shown to be solved by a rotation
program: assignment problems where agents share the same top (worst) choice; assignment
problems where the planners knows that two agents have the same top choice. We hope that the
tools and mechanisms described here may herald still further applications to come.
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Appendix
Proof of Theorem 1. The state space S consists of S “ GrpF q Y Z. Since Z finite, it follows that
S is finite as well. The outcome function h is defined such that hpz,Rq “ z for all pz,Rq P S and
hpzq “ z for all z P Z.

The code of rights γ is given by the following five rules:

RULE 1: tiu P γppz,Rq, px,Rqq for all R P R, all z, x P F pRq, and all i P N ,

RULE 2: tiu P γppz,Rq, xq if x P Lipz,Rq,

RULE 3: tiu P γpx, pz,Rqq for all x, pz,Rq P S, and all i P N ,

RULE 4: tiu P γpx, yq for all x, y P S, and all i P N , and

RULE 5: γps, s1q “ H for any other s, s1 P S.

Let us show that the rights structure Γ “ pS, h, γq defined above implements F in MSS if F is
efficient and indirect monotonic. To this end, suppose that F is efficient and indirect monotonic.
The following lemmata will be useful in proving our result.

To proceed with our lemmata, we need the following additional definitions. For each R,R1 P
R:

MpRq “ tpz,Rq | z P F pRqu Ď S

UpRq “ t z P Z | Z Ď Lipz,Rq for all i P N
(

;

Q
`

R,R1
˘

“

#

pz1, R1q PM pR1q there does not exist any myopic improvement
path from pz1, R1q to M pRq Y U pRq at R

+

;

QpRq ”
ď

R1PR
QpR,R1q.

Since S is finite, the property of asymptotic external stability of Definition 5 is equivalent to
the property of iterated external stability, which is defined in a footnote of Section 3. Fix any
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profile R. The objective of the following lemmata is to show that

MSSpΓ,Rq “MpRq Y UpRq YQpRq.

F pRq “ h ˝ pMpRq Y UpRq YQpRqq.

Lemma 1. There is a finite myopic improvement path toMpRqYUpRq atR from every state s P ZzUpRq.

Proof of Lemma 1. Take any s P ZzUpRq. If UpRq ‰ H, then there exists a one step myopic
improvement path from s to UpRq, by Rule 4. Otherwise, suppose that UpRq “ H. We divide
the rest of the proof in two parts according to whether s R F pRq or not.

Case 1: s R F pRq.
Suppose that sRihps

1q for all i P N and all s1 P MpRq. Since s1 P MpRq and F satisfies
efficiency, it holds that sIihps1q for all i P N . Since R P R, it follows that s “ hps1q, and so
s P F pRq, which is a contradiction.
Therefore, it must be the case that there exists an s1 P MpRq such that hps1qPis for some
i P N . Hence, by Rule 3, there exists a one-step improvement path from s to MpRq at R.

Case 2: s P F pRq.
Suppose that there exists an agent i P N such that hps1qPis for some s1 P MpRq. By Rule 3,
there exists a one step myopic improvement path from s toMpRq atR. Otherwise, suppose
that sRihps

1q for all s1 PMpRq and for all i P N . Efficiency of F implies that hps1qINs for all
s1 P MpRq, and so hps1q “ s because R P R. However, since UpRq “ H, there exists s2 P Z
and an agent i P N such that s2Pis. Note that agent i has the power to move from s to s1
by Rule 4 and the incentive to do so since s2Pis. Since F satisfies efficiency and s P F pRq,
there must exist another agent j P Nztiu such that sPjs

2. Since s P F pRq, by assumption,
it follows that ps,Rq P MpRq. By Rule 3, agent j can move from s2 to ps,Rq. Hence, we
have established a two-step myopic improvement path at R from s to ps,Rq PMpRq—that
is, i P γps, s2q and s2Pis and j P γps2, ps,Rqq and hps,RqPjs

2. �

Lemma 2. For anyR1 P R, the setQpR,R1q satisfies deterrence of external deviations andh pQpR,R1qq “
thpsq P Z|s P QpR,R1qu Ď F pRq.

Proof of Lemma 2. Suppose that QpR,R1q ‰ H for some R1 P R. Otherwise, there is nothing to
be proved. Let us first prove that h pQpR,R1qq Ď F pRq. By definition, QpR,R1q Ď MpR1q. Take
any pz1, R1q P QpR,R1q. Assume, to the contrary, that hpz1, R1q “ z1 R F pRq. Suppose that there
exists an agent i P N such that yPiz

1 for some y P Lipz
1, R1q. Then, by Rule 2, agent i P γppz1, R1q, yq

since y P Lipz
1, R1q. An immediate contradiction is obtained if y P UpRq because there is a one

step myopic improvement from QpR,R1q to UpRq. Suppose y P ZzUpRq. By Lemma 1, there is a
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finite myopic improvement path from y to MpRq YUpRq . Therefore, there exists a finite myopic
improvement path from pz1, R1q to MpRq Y UpRq, which contradicts the definition of QpR,R1q.
Thus, it has to be that Lipz

1, R1q Ď Lipz
1, Rq for all i P N .

Let us proceed according to whether tzu “ F pR1q or not. Suppose that tzu “ F pR1q. Since
F satisfies indirect monotonicity and Lipz

1, R1q Ď Lipz
1, Rq for all i P N , it must be the case that

z P F pRq, which is a contradiction. Suppose that tzu ‰ F pR1q. Since z1 P F pR1qzF pRq and since
Lipz

1, R1q Ď Lipz
1, Rq for all i P N , indirect monotonicity implies that there exist a sequence of

outcomes tz1 . . . , zhu Ď F pR1qwith z1 “ z1 and z ‰ zh a sequence of agents i1, . . . , ih´1 such that
(i) zk`1Pikzk for all k P t1, . . . , h´ 1u and (ii) Lipzh, R

1q Ę Lipzh, Rq for some i P N .
By Rule 1, part (i) of indirect monotonicity implies that there exists a finite myopic improve-

ment path from pz1, R1q to pzh, R1q P MpR1q at R. Part (ii) of indirect monotonicity implies that
there exists a state y P Lipzh, R

1q such that yPizh. By Rule 2, tiu P γppzh, R1q, yq. An immediate
contradiction is obtained whenever y P UpRq because there is a finite myopic improvement path
from pz1, R1q to UpRq at R. Suppose that y P ZzUpRq. Then, by Lemma 1, there exists a finite
myopic improvement path from y to MpRq Y UpRq at R. Therefore, there exists a finite myopic
improvement path from pz1, R1q to MpRq Y UpRq at R, which contradicts our initial supposition
that pz1, R1q P QpR,R1q. We conclude that hpQpR,R1qq Ď F pRq.

To complete the proof of Lemma 2, let us show that QpR,R1q Ď MpR1q satisfies deterrence
of external deviations at R. The only way to get out of this set is to use either Rule 1 or Rule
2. Therefore, from any state of QpR,R1q, agents can only deviate to MpR1qzQpR,R1q or Z. Note
that if MpR1qzQpR,R1q ‰ H, then there exists a myopic improvement path to MpRq Y UpRq at
R, by the definition of QpR,R1q. Also, note that from any state in ZzUpRq, there exists a finite
myopic improvement path to MpRq Y UpRq at R, by Lemma 1. Hence, if an agent could benefit
by deviating from a state s P QpR,R1q to a state outside of QpR,R1q at R, there would exist a
myopic improvement path from s to MpRq Y UpRq at R, which would contradict the definition
of QpR,R1q. �

Lemma 3. If V is a nonempty subset of S satisfying both deterrence of external deviations and iterated
external stability at pΓ, Rq, then MpRq Ď V .

Proof of Lemma 3. Let V be a nonempty subset of S satisfying both deterrence of external de-
viations and iterated external stability at pΓ, Rq. We show that MpRq Ď V . We proceed in two
steps.

Step 1: MpRq X V ‰ H.
For the sake of contradiction, let MpRq X V “ H. Then, by iterated external stability of
V , there exists a sequence of states s1, . . . , sm with s1 P MpRq and a collection of coali-
tions K1, . . . ,Km´1 such that, for j “ 1, . . . ,m ´ 1, Kj P γpsj , sj`1q and hpsj`1qPKjhpsjq.
Moreover, sm P V . By definition of γ, by the fact that s1 PMpRq and that hpsj`1qPKjhpsjq,
we have that only Rule 1 applies, and so it has to be that ts1, ..., smu Ď MpRq. Therefore,
sm PMpRq X V , which is a contradiction.
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Step 2: MpRq Ď V .
Take any s P MpRq. Assume, to the contrary, that s R V . Since, by Step 1, MpRq X V ‰

H, take any s1 P MpRq X V . Since s, s1 P MpRq, it must be the case that hpsq ‰ hps1q.
Suppose that for some i P N , hpsqPihps

1q. By Rule 1, agent i can move from s1 to s, which
contradicts the property of deterrence of external deviations of V . Therefore, it has to be
that hps1qRNhpsq. Since R P R and hpsq ‰ hps1q, it follows that hps1qPihpsq for some i P N .
Since F is efficient, it follows that hpsq R F pRq, and so s R MpRq, which is a contradiction.
Since the choice of s1 is arbitrary and since, moreover, s PMpRq, it follows thatMpRqXV “
H, which is a contradiction. Thus, it has to be that MpRq Ď V .

�

Lemma 4. The set MpRq Y UpRq Y QpRq satisfies both deterrence of external deviations and iterated
external stability at pΓ, Rq. Moreover, F pRq “ h ˝ pMpRq Y UpRq YQpRqq.

Proof of Lemma 4. By definition of Γ, the set MpRq satisfies deterrence of external deviations.
By Lemma 2, the set QpRq satisfies deterrence of external deviations. By definition, the set UpRq
satisfies deterrence of external deviations. Deterrence of external deviations is therefore satisfied
by MpRq Y UpRq YQpRq.

By Lemma 1, there is a finite myopic improvement path from ZzUpRq to MpRq Y UpRq at
R. For any R1 P R, by the definition of QpR,R1q, there is a myopic improvement path from
MpR1qzQpR,R1q to MpRq YUpRq at R. This implies that for any state outside of MpRq YUpRq Y
QpRq there is a myopic improvement path toMpRqYUpRq atR, and so iterated external stability
is satisfied by MpRq Y UpRq YQpRq. �

Lemma 5. If V is a nonempty subset of S satisfying both deterrence of external deviations and iterated
external stability at pΓ, Rq, then MpRq Y UpRq YQpRq Ď V .

Proof of Lemma 5. By Lemma 3, we already know thatM pRq Ď V . By iterated external stability
of V , it has to be that UpRq Ď V—the reason is that no myopic improvement path can begin
from a unanimously best outcome. We are left to show that QpRq Ď V . To this end, take any
R1 P R. SinceQpR,R1q satisfies deterrence of external deviations at pΓ, Rq by Lemma 2, it follows
that QpR,R1q Ď V , otherwise, iterated external stability of V is violated by the fact that QpR,R1q
satisfies deterrence of external deviations. Since R1 is arbitrary, we conclude that QpRq Ď V .
Thus, MpRq Y UpRq YQpRq Ď V . �

Lemma 6. MpRq Y UpRq YQpRq “MSSpΓ, Rq

Proof of Lemma 6. Lemma 4 implies that the setMpRqYUpRqYQpRq satisfies both deterrence of
external deviations and iterated external stability at pΓ, Rq. Lemma 5 implies that the setMpRqY
UpRqYQpRq is the smallest nonempty set satisfying these two properties. Therefore, the unique
MSS of pΓ, Rq consists of MpRq Y UpRq YQpRq. �
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Lemma 7. F pRq “ h ˝ pMpRq Y UpRq YQpRqq.

Proof of Lemma 7. Let us show that F pRq “ h˝MpRqYUpRqYQpRq. Clearly, F pRq Ď h˝MpRq,
and so F pRq Ď h ˝MpRqYUpRqYQpRq. For the converse, Lemma 2 implies that h ˝QpR,R1q Ď
F pRq for all R1 P R. Since F is efficient, it follows that UpRq Ď F pRq. Moreover, by definition of
MpRq, it follows that h ˝MpRq Ď F pRq. Therefore, F pRq “ h ˝MpRq Y UpRq YQpRq. �

Proof of Corollary 1. Omitted.

Proof of Corollary 2. Fix any endowment system ω satisfying properties A1-A4. FCO
ω is Pareto

efficient because the direct exclusion core is efficient. In light of Corollary 1, we need only to
show that FCO

ω is monotonic. To this end, take any µ P FCO
ω pRq for some R P R. Take any

R1 P R such that Li pµ,Rq Ď Li pµ,R
1q for all i. Let us show that µ P FCO

ω pR1q “ CO pR1, ωq.
Since µ P CO pR,ωq, it follows that no coalition can directly exclusion block µ at R. That is, for
all K P N0 and for all σ P M, µ piqRiσ piq for some i P K or [µ pjqPjσ pjq for some j P NzK
and µ pjq R ω pKq]. If µ piqRiσ piq for some i P K, it follows from the fact that R1 is a monotonic
transformation of R at µ that µ piqR1iσ piq for some i P K. If µ pjqPjσ pjq for some j P NzK and
µ pjq R ω pKq, it follows from the the fact that R1 is a monotonic transformation of R at µ and the
fact that Rj is a linear ordering that µ pjqP 1jσ pjq for some j P NzK and µ pjq R ω pKq. We have
that no coalition can directly exclusion block µ at R1. Thus, FCO

ω is monotonic. �

Proof of Corollary 3. Omitted.

Proof of Theorem 2. Fix any Γ and any profileR. First, we show thatmsspΓ, Rq “ ApΓ, Rq. To do
this, we prove that ApΓ, Rq satisfies deterrence of external deviations, iterated external stability
and minimality. Deterrence of external deviations is implied by property pbq of the definition of
absorbing sets. To prove iterated external stability, we exploit the topology of an induced graph:
Take any s R ApΓ, Rq. Given such an s, let us define the set Hps,Rq by

Hps,Rq “ tt P S|there is a finite myopic improving path from s to t at Ru Y tsu

Note that Hps,Rq is nonempty since s P Hps,Rq. Let us represent the set Hps,Rq by a finite
directed graph D, that is, (i) Hps,Rq is the set of vertices of D, and (ii) D has a directed arc
from t to v if and only if there exists a coalitionK P γpt, vq such that vPKt. A subgraphD1 ofD is
called strongly connected component if each vertex inD1 is reachable from any other vertex inD1.
By contracting each strongly connected component of D to a single vertex, we obtain a directed
acyclic graph D, which is called the condensation of D. It is well known that a condensation is
finite and acyclic.14 As usual, the number of outgoing directed arcs of a vertex is called the out-
degree of the vertex. If a vertex does not have any outgoing directed arcs, we say that the vertex
has out-degree zero. By Theorem 3.8 in Harary et al. (1966) we have thatD has at least one super
vertex of out-degree zero, which we name as V 0.

14See Theorem 3.6 in Harary et al. (1966)
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Recall that each super vertex of D represents a strongly connected component. Since V 0 is
a strongly connected component of D, it has the property that there are no outgoing arcs from
any vertex in V 0 to any other vertex outside V 0. It is straightforward to see that such a V 0 is
an absorbing set and, by construction of D, there is a finite myopic improvement path from s to
a vertex in V 0 at R. Since the choice of s R Ap, Rq is arbitrary, it follows that iterated external
stability for ApΓ, Rq is satisfied.

To prove minimality first we show that ApΓ, Rq Ď msspΓ, Rq. Suppose, toward a contradic-
tion, that there exits s P ApΓ, Rq with s R msspΓ, Rq. Then, by iterated external stability of MSS,
there exists a finite myopic improvement path from ts “ s1, ..., sm “ s1u with s1 P msspΓ, Rq. By
property (a) of the absorbing set, it has to be that s1 P ApΓ, Rq. Moreover, since s, s1 P ApΓ, Rq,
property (a) of the absorbing set also implies that there exists a finite myopic improvement path
from s1 to s, that is, ts1 “ s11, ..., s

1
` “ su. Let s1k P ts1 “ s11, ..., s

1
` “ su be a state with the property

that s1k P msspΓ, Rq and s1k`1 R msspΓ, Rq. By definition of finite improvement path, there is an
agent ik such that tiku P γps1k`1, s1kq and s1k`1 ąik s

1
k. Thus, deterrence of external deviations is

violated formsspΓ, Rq. Therefore, it has to be thatApΓ, Rq Ď msspΓq. Since the choice ofApΓ, Rq
is arbitrary, it follows that ApΓ, Rq Ď msspΓq.

Finally, minimality of ApΓ, Rq follows by minimality of msspΓq and by the proved fact that
ApΓ, Rq Ď msspΓq. In the reaming part of the proof we show that the equality ApΓ, Rq “ VpΓ, Rq
holds. First, we show that ApΓ, Rq Ď VpΓ, Rq. This part of the proof relies on the following state-
ment that has been proved by Nicolas (2009)15:

Let V pΓ, Rq Ď S and ApΓ, Rq “
Ťm

i“1AipΓ, Rq for some m P N. V pΓ, Rq is a generalized stable
set if and only if, for all adsorbing set AipΓ, Rq Ď ApΓ, Rq, it holds that

(a) |V pΓ, Rq XAipΓ, Rq| “ 1 @AipΓ, Rq Ď ApΓ, Rq

(b) V pΓ, Rq Ď ApΓ, Rq

This result implies that each V pΓ, Rq consists of an element of each absorbing set AipΓ, Rq.
This observation suggests a further characterization of the set V pΓ, Rq. Take an element v “
ts1, ..., smu of the Cartesian product of each absorbing set at R, that is, v P A1pΓ, Rq ˆ ... ˆ

AmpΓ, Rq. Then, define V Ď S as the union of the elements of v, that is, V “ ts P S|s P vu.
Note that, by construction, property paq and pbq are satisfied for V , then V is a generalized stable
set at R. Since the choice of v is arbitrary, each set constructed in this way is a generalized stable
set.

Therefore, we can write VpΓ, Rq as the union of the element of the Cartesian product of each
absorbing set at R. Formally,

VpΓ, Rq “

#

s P S|s P ts1, ..., smu P
m
ą

i“1

AipΓ, Rq

+

15This result of Nicolas (2009) is a corrigendum of Inarra, Kuipers and Oilazola (2005)
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Now, since the finite union of any sets must be a subset of the union of the elements of their
Cartesian product, we can write:

ts P S|s P AipΓ, Rq, i P t1, ...,muu Ď

#

s P S|s P ts1, ..., smu P
m
ą

i“1

AipΓ, Rq

+

The left hand side is the union of all absorbing sets at R, namely ApΓ, Rq. The right hand side
is the union of the elements of the Cartesian product of the absorbing sets at R, namely VpΓ, Rq.
It follows that ApΓ, Rq Ď VpΓ, Rq.

It remains to show that VpΓ, Rq Ď ApΓ, Rq. Since we already proved the equalitymsspΓ, Rq “
ApΓ, Rq, it suffices to prove that VpΓ, Rq Ď msspΓ, Rq since equality will follow by the minimality
of the MSS. Suppose, toward a contradiction, that there is an s P V pΓ, Rq such that s R msspΓ, Rq.
Then, by iterated external stability of MSS, there is finite myopic improvement path ts “ s1, ..., s`u

with s` P msspΓ, Rq. Note that, it has to be that s` R V pΓ, Rq otherwise iterated internal stability
is violated for V pΓ, Rq. Then, by iterated external stability of V pΓ, Rq , there is a finite myopic
improvement path ts`, ..., sm “ tu with t P V pΓ, Rq. But this means that there is a finite myopic
improvement path ts “ s1, ..., s`, ..., sm “ tu. If s ‰ t, then the fact that s, t P V pΓ, Rq contradicts
iterated internal stability of V pΓ, Rq. If s “ t, then note that t R msspΓ, Rq and s` P msspΓ, Rq.
Let sk P ts`, ..., sm “ tu be a state with the property that sk P msspΓ, Rq and sk`1 R msspΓ, Rq. By
definition of finite improvement path, there is an agent ik such that tiku P γpsk`1, skq and sk`1 ąik

sk. Thus, deterrence of external deviations is violated for msspΓ, Rq, which is a contradiction. �

Proof of Corollary 4. Omitted.

Proof of Theorem 3. Suppose that Γ implements F in rotation program. Fix any R. Then, the
set MSS pΓ, Rq is partitioned in rotation programs tS1, ..., Smu such that h ˝ Si “ F pRq for all
i “ 1, ..., J . Fix any rotation program Sj “ ts1, ..., smu for some m P N. Let x pi, Rq “ si “ h psiq

for all si P Sj . Thus, F pRq is an ordered set of #Sj “ m ě 1 outcomes. Fix any R1 such that
F pR1q ‰ F pRq. Suppose that either #F pR1q ą 1 or [#F pR1q “ 1 and F pR1q R F pRq]. Fix any
si P Sj . We proceed according to whether si PMSS pΓ, R1q or not.

Case 1: si PMSS pΓ, R1q

By the implementability of F , hpsiq P F pRq X F pR1q. Since by the assumption that F pR1q R
F pRqwhenever #F pR1q “ 1, it must be that #F pR1q ą 1. Since Γ implementsF in rotation
program, the set MSS pΓ, R1q is partitioned in rotation programs

 

S̄1, ..., S̄m
(

such that
h ˝ S̄i “ F pR1q for all i “ 1, ...,m. Then, there exists a unique j such that si P S̄j . Without
loss of generality, let si “ s1 P S̄j .

Step 1:. Since S̄j is a rotation program and since #F pR1q ą 1, it follows that there exist
s2 P S̄jz ts1u and a coalition K1 such that K1 P γ ps1, s2q and h ps2qP

1
K1
h ps1q. Suppose
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that there exists i1 P K1 such that h ps1qRi1h ps2q. Then, there exists h ps2q P Z such that
h ps2qP

1
i1
h ps1q and h ps1qRi1h ps2q, where h ps1q “ h psiq “ x pi, Rq. Otherwise, suppose

that h ps2qPK1h ps1q. Since Sj is a rotation program, it follows that s2 “ si`1 P Sj and
h psi`1q “ x pi` 1, Rq.

The above Step 1 can be applied to s2 “ si`1 P S̄j to derive a state s3 P S̄jz ts2u and a
coalition K2 such that K2 P γ ps2, s3q and h ps3qP 1K2

h ps2qwhere h ps2q “ x pi` 1, Rq.
Suppose that s3 “ s1. Since S̄j is a rotation program, it follows that S̄j “ ts1, s2u. Since
F pR1q ‰ F pRq, it follows that s3 “ s1 ‰ si`2 P Sj . It follows that there exists i2 P K2 such
thath ps1qP 1i2h ps2q andh ps2qRi2h ps1q. Thus, zP 1i2x pi` 1, RqP 1i1x pi, Rq andx pi` 1, RqRi2z

where z “ h ps1q “ x pi, Rq P Z.
Suppose that s3 ‰ s1. Then, s3 P S̄jz ts1, s2u. Suppose that there exists i2 P K2 such that
h ps2qRi2h ps3q. Thus, there exists h ps3q “ z P Z such that

h ps3qP
1
i2h ps2qP

1
i1h ps1q

and

h ps2qRi2h ps3q ,

where h ps1q “ h psiq “ x pi, Rq and h ps2q “ h psi`1q “ x pi` 1, Rq. Otherwise, suppose
that h ps3qPK2h ps2q. Since Sj is a rotation program, it follows that s3 “ si`2 P Sj and
h psi`2q “ x pi` 2, Rq. And, so on.
Since S̄j ‰ Sj , after a finite number 1 ď h ď m of iterations, s1, s2, ..., sh`1 states and
i1, i2, .., ih agents can be derived such that s1, ..., sh P S̄j X Sj , with h ps`q “ h psi``´1q “

x pi` `´ 1, Rq for all ` “ 1, ..., h, sh`1 P S̄j , h psh`1q “ z P Z and for all ` P t1, ..., hu,

h ps``1qP
1
i`
h ps`q and h pshqRihh psh`1q .

Case 2: si RMSS pΓ, R1q

By iterated external stability ofMSS pΓ, R1q, there exists a finite myopic improvement path
from si to t P MSS pΓ, R1q; that is, there are coalitions tK1, ...,Kq´1u and states tsi “
t1, t2, ..., tq “ tu such that for all p “ 1, ..., q ´ 1,

Kp P γ ptp, tp`1q
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and

h ptp`1qP
1
Kp
h ptpq .

Since Γ implements F in rotation program, the set MSS pΓ, R1q is partitioned in rotation
programs

 

S̄1, ..., S̄m
(

such that h ˝ S̄i “ F pR1q for all i “ 1, ...,m. Then, there exists a
unique j such that tq P S̄j .

Step 1: Suppose that t2 ‰ si`1. Since Sj is a rotation program and si “ t1 P Sj , it follows
that there exists i1 P K1 such that h pt1qRi1h pt2qwhere h pt1q “ h psiq “ x pi, Rq. Therefore,
h pt2qP

1
i1
h pt1q and h pt1qRi1h pt2q, as we sought. Otherwise, suppose that t2 “ si`1 P Sj . If

there exists i1 P K1 such that h pt1qRi1h pt2q, then again h pt2qP 1i1h pt1q and h pt1qRi1h pt2q.
Otherwise, suppose that t2 “ si`1 P Sj , h pt2q “ x pi` 1, Rq and h pt2qPK1h pt1q.

The reasoning used in the above Step 1 can be applied to t3 to conclude that either there
exists i2 P K2 such that h pt2qRi2h pt3q for some i2 P K2 or h pt3qPK2h pt2q and t3 “ si`2 P

Sj .
In the former case, we have that

h pt3qP
1
i2h pt2qP

1
i1h pt1q and h pt2qRi2h pt3q ,

where h pt1q “ x pi, Rq and h pt2q “ x pi` 1, Rq. In the latter case, we have that h pt3q “
x pi` 2, Rq and h pt3qPK2h pt2q.
Since the myopic improvement path from si to t PMSS pΓ, R1q is finite, after a finite number
1 ď r ď q ´ 1 of iterations, we have that h ptp`1qP 1iph ptpq for all p “ 1, ..., r, and either
[h ptrqRirh ptr`1q for some ir P Kr] or [r “ q ´ 1, h ptp`1qPKph ptpq and tp “ si`p´1 P Sj

for all p “ 1, ..., r, and tq P Sj X S̄j]. In the former case, we have that for all p “ 1, ..., r,

h ptp`1qP
1
iph ptpq and h ptrqRirh ptr`1q ,

where h ptpq “ h psi`p´1q “ x pi` p´ 1q for all p “ 1, ..., r. In the latter case, since tq P S̄j ,
it follows that tq P MSS pΓ, R1q. Case 1 above can be applied to the outcome h ptqq “
h psi`q´1q “ x pi` q ´ 1q P F pRq to complete the proof.

Proof of Theorem 4. The implementing rights structure is a variant of the rights structure con-
structed in the proof of Theorem 1. What changes is only the definition of Rule 1. The state space
is S “ Gr pF q Y Z. The outcome function is h px,Rq “ x for all px,Rq P Gr pF q and h pxq “ x for
all x P Z. The code of rights γ is defined as follows. For all i P N , all R P R and all s, t P S:
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RULE 1: If s “ px pk,Rq , Rq and t “ px pk ` 1, Rq , Rq for some 1 ď k ď m, then

tiu P γ ppx pk,Rq , Rq , px pk ` 1, Rq , Rqq ,

where the outcomes x pk,Rq are those specified by properties 1 and 2.

RULE 2: If s “ pz,Rq, t “ x and x P Li pz,Rq, then tiu P γ ppz,Rq , xq.

RULE 3: If s “ x and t “ pz,Rq, then tiu P γ px, pz,Rqq.

RULE 4: If s “ z and t “ x, then tiu P γ ps, tq.

RULE 5: Otherwise, γ ps, tq “ H.

Rule 1 allows agent i to be effective only between two consecutive socially optimal outcomes
at R, that is, between px pk,Rq , Rq and px pk ` 1, Rq , Rq for all 1 ď k ď m.

Fix anyR. Let us show that Γ implements F in rotation programs. We first show that F pRq “
h ˝MSSpΓ, Rq and then we show that Γ partitions MSS pΓ, Rq in rotation programs such that
for each rotation program S, it holds that F pRq “ h ˝ S.

To show that F pRq “ h˝MSS pΓ, Rq and thatMSS pΓ, Rq “M pRqYU pRqYQ pRq, we need
to show that Lemmata 1-7 still hold under the new rights structure Γ. It can be checked that the
only proofs that need to be amended are the proofs of Lemma 2 and Lemma 3.

As far as the proof of Lemma 3 is concerned, the arguments provided to prove Step 2 of
Lemma 3 no longer hold. However, the statement of this step is still true under the new Γ. To
show this, take any s “ pxpi, Rq, Rq PMpRqXV , which exists by Step 1 of the proof of Lemma 3.
We show that MpRq Ď V . Assume, to the contrary, there exists s1 “ pxpi1, Rq, Rq P MpRq such
that s1 R V .

To complete the proof of Lemma 3, let us first show that MpRq is a rotation program. Since
F is efficient and since R satisfies the restriction in (1), it follows that for all 1 ď k ď m and
all px pk,Rq , Rq , px pk ` 1, Rq , Rq P M pRq, there exists j P N such that x pk ` 1, RqPjx pk,Rq.
By definition of Rule 1, it follows that for each 1 ď k ď m, there exists j P N such that tju P
γ ppx pk,Rq , Rq , px pk ` 1, Rq , Rqq and x pk ` 1, RqPjx pk,Rq. Moreover, by definition of γ, it fol-
lows thatM pRq is a rotation program because for each px pk,Rq , Rq, there do not exist anyK P N0

and any s P S, with s ‰ px pk,Rq , Rq and s ‰ px pk ` 1, Rq , Rq, such that K P γ ppx pk,Rq , Rq , sq

and h psqPKx pk,Rq.
Let us now complete the proof of Lemma 3. Since for each 1 ď k ď m there exists j P N

such that tju P γppx pk,Rq , Rq , px pk ` 1, Rq , Rqq and x pk ` 1, RqPjx pk,Rq, it follows that there
exist s0, s1, ..., sp´1,sp, with s0 “ s and sp “ s1, and i0, ..., ip´1 such that ih P γ psh, sh`1q and
h psh`1qPihh pshq for all h “ 0, ..., p´1, where sh PM pRq for all h “ 0, 1, ..., p. Since s0 PMpRqX
V and sp PM pRq zV , there exists the smallest index h˚ P t0, ..., p´ 1u such that sh˚ PMpRq X V
and sh˚`1 P M pRq zV . Since ih˚ P γ psh˚ , sh˚`1q and h psh˚`1qPih˚h psh˚q, this contradicts our
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initial supposition that V satisfies the property of deterrence of external deviations. Thus, we
have that M pRq Ď V , and so Lemma 3 holds as well.

As far as the proof of Lemma 2 is concerned, it needs to be amended as follows. Fix any
R1 P R. The proof of Lemma 2 holds if #F pRq ‰ 1 or if #F pRq “ 1 and F pRq R F pR1q. The
reason is that in these cases rotation monotonicity implies indirect monotonicity. To complete the
proof of Lemma 2, let us suppose that #F pRq “ 1 and F pRq P F pR1q.

Suppose that F pRq “ tau ‰ F pR1q “ tz p1, R1q , ..., z pm,R1qu. Without loss of generality, let
a “ z p1, R1q.

Suppose that Property M implies that for each z pi, R1q P F pR1q z tz p1, R1qu, there exist x P Z
and i1, ..., ih, with 1 ď h ď m, such that:

z
`

i` `` 1, R1
˘

P``1z
`

i` `, R1
˘

for all ` P t0, ..., h´ 1u

and

z
`

i` h,R1
˘

Phx and xR1hz
`

i` h,R1
˘

.

By definition of γ, we have that for each z pi, R1q P F pR1q z tz p1, R1qu, there exists a finite my-
opic improvement path from pz pi, R1q , R1q to x. Suppose that U pRq ‰ H. Since F is efficient
and since, moreover, R satisfies the restriction in (1), it follows that U pRq “ tz p1, R1qu. Since
by Rule 2 there exists a finite myopic improvement path from x to z p1, R1q, it follows that there
exists a finite myopic improvement path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y U pRq.
Suppose that U pRq “ H. Since Lemma 1 implies that there exists a finite myopic improve-
ment path from x to M pRq Y U pRq, we conclude that there exists a finite myopic improve-
ment path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y U pRq. It follows from the definition
of Q pR,R1q Ď M pR1q that Q pR,R1q “ H if there exists a finite myopic improvement path from
pz p1, R1q , R1q to M pRq Y U pRq, otherwise, Q pR,R1q “ tpz p1, R1q , R1qu. In either case, we have
that h ˝ Q pR,R1q Ď F pRq and that Q pR,R1q satisfies the property of deterrence of external de-
viations. Note that Q pR,R1q “ tpz p1, R1q , R1qu satisfies this property for the following two rea-
sons: 1) Since every agent i is effective in move the state from pz p1, R1q , R1q to pz p2, R1q , R1q, it
cannot be that z p2, R1qPiz p1, R

1q for some i, otherwise, since we have already shown that there
exists a finite myopic improvement path from pz p1, R1q , R1q to M pRq Y U pRq, it follows that
Q pR,R1q “ H, which is a contradiction; and 2) it cannot be that xPiz p1, R

1q for some i and
some x P Li pz p1, R

1q , R1q, otherwise, since Rule 2 implies that tiu P γ ppz p1, R1q , R1q , xq and
xPiz p1, R

1q and since, moreover, Lemma 1 implies that there exists a finite myopic improvement
path from x to M pRq Y U pRq, since we have already shown that there exists a finite myopic im-
provement path from pz p1, R1q , R1q to M pRq Y U pRq, it follows that Q pR,R1q “ H, which is a
contradiction.

Suppose that the above arguments do not hold for some z pi, R1q P F pR1q z tz p1, R1qu. Clearly,
for each z pi, R1q P F pR1q z tz p1, R1qu such that the above arguments hold, we have that there
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exists a finite myopic improvement path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y U pRq.
Property M implies that Li pz p1, R

1q , R1q Y tz p2, R1qu Ď Li pz p1, R
1q , Rq for all i P N . For each

z pi, R1q P F pR1q z tz p1, R1qu for which the above arguments do not hold, Property M implies that
there exists a sequence of agents i1, ..., i` such that

z
`

1, R1
˘

Pi`z
`

m,R1
˘

Pi`´1
¨ ¨ ¨ Pi2z

`

i` 1, R1
˘

Pi1z
`

i, R1
˘

(3)

Since every agent i can be effective in moving the state from pz p1, R1q , R1q to pz p2, R1q , R1q, it
follows that no agent has an incentive to do so because z p2, R1q P Li pz p1, R

1q , Rq for all i P N .
Since, by Rule 1, each agent i P ti1, ..., i`u is effective in moving between two consecutive states in
M pR1q, it follows from (3) that there exists a finite myopic improvement path from pz pi, R1q , R1q

to pz p1, R1q , R1q. We conclude that for each z pi, R1q P F pRq z tz p1, R1qu, there exists a finite my-
opic improvement path from pz pi, R1q , R1q to either M pRq Y U pRq or to tpz p1, R1q , R1qu.

It follows thatQ pR,R1q Ď tpz p1, R1q , R1qu. Again,Q pR,R1q “ H if there exists a finite myopic
improvement path from pz p1, R1q , R1q to M pRq YU pRq, otherwise, Q pR,R1q “ tpz p1, R1q , R1qu.
In either case, we have that h ˝ Q pR,R1q Ď F pRq and that Q pR,R1q satisfies the property of
deterrence of external deviations.

Since the choice of R1 P R is arbitrary, it follows that Lemma 2 holds.
Since Properties 1-2 implies that Lemmata 1-7 hold, it follows that F pRq “ h ˝MSS pΓ, Rq and
that MSS pΓ, Rq “M pRq Y U pRq YQ pRq.

To show that Γ partitionsMSS pΓ, Rq in rotation programs, we proceed according to whether
#F pRq “ 1 or not. We have already shown above that MpRq is a rotation program.

Case 1: #F pRq ‰ 1.
The set U pRq “ H. To see it, suppose that there exists x P U pRq. Since F is efficient and
since, moreover, R satisfies the restriction in (1), it follows that F pRq “ txu, which is a
contradiction. Thus, MSS pΓ, Rq “ M pRq Y Q pRq. We have already shown above that
M pRq is a rotation program. Moreover, by its definition, it follows that F pRq “ h ˝M pRq.
Fix any R1 P R such that F pR1q ‰ F pRq. We show that Q pR,R1q “ H. Fix any z pi, R1q P
F pR1q. Rotation monotonicity implies that there exist x P Z and a sequence of agents i1, ..., ih,
with 1 ď h ď m, such that:

z
`

i` `` 1, R1
˘

Pi``1
z
`

i` `, R1
˘

for all ` P t0, ..., h´ 1u

and

z
`

i` h,R1
˘

R1ihx and xPihz
`

i` h,R1
˘

.

Since, by Rule 1, for each ` P t0, ..., h´ 1u, ti``1u P γpz pi` `, R1q , zpi```1, R1qq and since,
moreover, by Rule 2, tihu P γ pz pi` h,R1q , xq, it follows that there exists a finite myopic
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improvement path from pz pi, R1q , R1q to x. Since U pRq “ H, Lemma 1 implies that there
exists a finite myopic improvement path from x to M pRq. Therefore, we have established
that there exists a finite myopic improvement path from pz pi, R1q , R1q to M pRq, and so
pz pi, R1q , R1q R Q pR,R1q. Since the choice of z pi, R1q P F pR1q is arbitrary, we have that
Q pR,R1q “ H.
Fix any R1 P R such that F pR1q “ F pRq. Nothing has to be proved if Q pR,R1q “ H.
Suppose that Q pR,R1q ‰ H. We show that Q pR,R1q “ M pR1q and that Q pR,R1q is a
rotation program. Since F is efficient and since R satisfies the restriction in (1), it fol-
lows that for all px pk,R1q , R1q , px pk ` 1, R1q , R1q P M pR1q, there exists j P N such that
x pk ` 1, R1qPjx pk,R

1q. By definition of Rule 1, it follows that for each 1 ď k ď m, there ex-
ists j P N such that tju P γ ppx pk,R1q , R1q , px pk ` 1, R1q , R1qq and x pk ` 1, R1qPjx pk,R

1q.
If there exists a finite myopic improvement path from some px pi, R1q , R1q PM pR1q zQ pR,R1q

toM pRqYU pRq, it follows that for each state inM pR1q there exists a finite myopic improve-
ment path to M pRq Y U pRq. This implies that Q pR,R1q “ H, which is a contradiction.
Thus, Q pR,R1q “M pR1q.
Since Lemma 2 implies that Q pR,R1q satisfies the property of deterrence of external devi-
ations, it follows that Q pR,R1q is a rotation program.
Since the choice of R1 P R, with F pR1q “ F pRq, is arbitrary, it follows that MSS pΓ, Rq is
the union of partitioned rotation programs because for all R1, R2 P R such that F pR1q “
F pR2q “ F pRq, it holds that h ˝M pR1q “ h ˝M pR2q and M pR1q XM pR2q “ H. Thus, F
is rotationally programmatically implementable.

Case 2: #F pRq “ 1.
Recall thatMSS pΓ, Rq “M pRqYU pRqYQ pRq. LetF pRq “ tz p1, Rqu. Note thatM pRq “

pz p1, Rq , Rq. Also, note that if U pRq ‰ H, it follows from the efficiency of F and the
restriction of R in (1) that U pRq “ tz p1, Rqu. Note that M pRq and U pRq are rotation
programs such that M pRq X U pRq “ H. To proof is complete if we show that for all
R1 P R, either Q pR,R1q “ H or Q pR,R1q “ tpz p1, Rq , R1qu. To this end, fix any R1 P R.
Suppose thatF pRq “ tz p1, Rqu ‰ F pR1q. Let us proceed according whetherF pRq P F pR1q
or not.
Suppose that F pRq R F pR1q. Fix any z pi, R1q P F pR1q. By the same arguments pro-
vided in Case 1 above, it follows that there exists a finite myopic improvement path from
pz pi, R1q , R1q to x. If U pRq ‰ H, then there exists a finite myopic improvement path from
pz pi, R1q , R1q to z p1, Rq P U pRq. Otherwise, if U pRq “ H, Lemma 1 implies that there
exists a finite myopic improvement path from x to M pRq. Therefore, there exists a finite
myopic improvement path from pz pi, R1q , R1q to M pRq Y U pRq, and so pz pi, R1q , R1q R
Q pR,R1q. Since the choice of z pi, R1q P F pR1q is arbitrary, we have that Q pR,R1q “ H.
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Suppose that F pRq P F pR1q “ tz p1, R1q , ..., z pm,R1qu. Without loss of generality, suppose
that z p1, Rq “ z p1, R1q. By arguing as we have done above in the completion of the proof of
Lemma 2, we have that either Q pR,R1q “ H or Q pR,R1q “ tpz p1, R1q , R1qu, as we sought.
�

Proof of Corollary 5. Omitted.

Proof of Theorem 5. In light of Theorem 3, it suffices to show that F satisfies properties 1 and 2.
Since #F pRq ą 1 for all R P R̄, it follows that Property M is vacuously satisfied. Therefore, let us
show that F satisfies rotation monotonicity as well. To this end, we need to introduce additional
notation.

For all R P R̄ and all i P N , let Ni pRq denote the set of Pareto efficient allocations at R that
assign j˚1 to agent i, with ni pRq representing the number of elements inNi pRq. Since J is a finite
set, it follows that Ni pRq is a finite set. For all R P R̄ and all i P N , let τ2 pi, Rq denote the second
top-ranked job of agent i atRi. For all x P J̄ and allR P R̄, let x̄ pRq be a permutation of x such that
(i) the agent who obtains j˚1 at x, let us say agent i, obtains his second top-ranked job τ2 pi, Rq at
x̄ pRq; (ii) the agent who obtains agent i’s second top-ranked job at x obtains j˚1 at x̄ pRq; whereas
(iii) all other agents obtain the same job both at x and at x̄ pRq. Formally, x̄i pRq “ τ2 pi, Rq if
xi “ j˚1 , x̄j pRq “ j˚1 if xj “ τ2 pi, Rq, and xh “ x̄h pRq for all h P Nz ti, ju.

The proof that F satisfies rotation monotonicity relies on the following lemmata.

Lemma 8. For all R P R̄ and all i P N ,

ÿ

jPNztiu

nj pRq ě ni pRq . (4)

Proof. The statement follows if we show that for all R P R̄ and all i P N , there exists an injective
function gRi fromNi pRq to Ť

jPNztiuNj pRq, that is, if we show that for for allR P R̄ and all i P N ,
every two distinct elements of Ni pRq have distinct images in Ť

jPNztiuNj pRq under gRi . Let us
define gRi : Ni pRq ÝÑ

Ť

jPNztiuNj pRq by gRi pxq “ x̄ pRq. Take any two distinct x, y P Ni pRq.
Then, gRi pxq “ x̄ pRq and gRi pyq “ ȳ pRq. Suppose that xj “ yj “ τ2 pi, Rq for some j P Nz tiu.
Since x ‰ y, it follows that xh ‰ yh for some h P Nz ti, ju. It follows that x̄ pRq ‰ ȳ pRq. Suppose
that xj “ τ2 pi, Rq and yh “ τ2 pi, Rq for some h, j P Nz tiu such that h ‰ j. It follows that
x̄ pRq ‰ ȳ pRq. Thus, gRi is an injective function.

Lemma 9. For allR P R̄, elements ofF pRq can be ordered asx p1, Rq , ..., x pm,Rq, withm “
ř

iPN ni pRq ą

1, such that for all k “ 1, ...,m (mod m), if xi pk,Rq “ j˚1 for some i P N , then xi pk ` 1, Rq ‰ j˚1 .

Proof. Fix any R P R̄. Without loss of generality, let us assume that

n1 pRq ě n2 pRq ě ... ě nn´1 pRq ě nn pRq .
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Let us apply the following procedure to arrange allocations of F pRq in a way that the state-
ment holds:

Step 0: If n1 pRq ´ n2 pRq “ 0, then go to Step 1. If n1 pRq ´ n2 pRq “ k0 ą 0, then take any A Ď
N1 pRq such that #A “ k0. By Lemma 8, there exists 3 ď h ď n such that řn

i“h ni pRq ě k0

and řn
i“h`1 ni pRq ă k0. Then, select any B Ď Nh pRq such that řn

i“h`1 ni pRq `#B “ k0.
List elements of the set A and elements of the set B Y

`

Yn
i“h`1Ni pRq

˘

in a way that no
element of A stands next to another element of set A. Start the list with an element of
A Ď N1 pRq. By construction, no two consecutive allocations of the list allocate j˚1 to the
same agent.

Step 1 Then, n1 pRq ´ k0 ´ n2 pRq “ 0, with k0 ´ 0 if n1 pRq “ n2 pRq, and that

n1 pRq ´ k0 “ n2 pRq ě ... ě nh pRq ´#B,

where B “ ∅ and h “ n if n1 pRq “ n2 pRq. Let nh pRq ´#B “ k1. Construct a sequence
txiu

h
i“1 of elements in Ťh

i“1Ni pRq z pAYBq (of length equal to h) such that xi P Ni pRq for
all i “ 1, ..., h. Thus, the sequence is constructed in a way that that no element of Ni pRq

stands next to another element of Ni pRq, and the last element of the sequence belongs to
Nh pRq. Since there are k1 sequences of this type, list these sequences one after the other.
By construction, no two consecutive allocations of this arrangement allocate j˚1 to the same
agent. Join this linear arrangement to the right end of the arrangement of Step 0. If nh pRq´
#B “ n1 pRq ´ k0, then the derived linear arrangement can be transformed into a circular
arrangement by joining its ends. Otherwise, move to Step 2. For each i “ 1, ..., h ´ 1, let
A1i denote the set of elements of Ni pRq used to construct the sequences. Thus, for each
i “ 1, ..., h ´ 1, #A1i “ k1 and Ni pRq zA1i is the set of allocations that still needs to be
arranged.

Step 2 Then,

n1 pRq ´ k0 ´ k1 “ n2 pRq ´ k1 ě ... ě nh´1 pRq ´ k1.

Let nh´1 pRq ´ k1 “ k2. Construct a sequence txiuh´1i“1 of elements in

h
ď

i“1

Ni pRq z

˜

AYB Y

˜

h´1
ď

i“1

A1i

¸¸

(of length equal to h´ 1) such that xi P Ni pRq for all i “ 1, ..., h´ 1. Thus, the sequence is
constructed in a way that that no element ofNi pRq stands next to another element ofNi pRq,
and the last element of the sequence belongs to Nh´1 pRq. Since there are k2 sequences of
this type, list these sequences one after the other. By construction, no two consecutive
allocations of this arrangement allocate j˚1 to the same agent. Join this linear arrangement
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to the right end of the arrangement of Step 1. If nh´1 pRq ´ k1 ´ k2 “ n1 pRq ´ k0 ´ k1 ´ k2,
then the derived linear arrangement can be transformed into a circular arrangement by
joining its ends. Otherwise, move to Step 4. For each i “ 1, ..., h ´ 2, Let A2i denote the
set of elements of Ni pRq used to construct the sequences. Thus, for each i “ 1, ..., h ´ 2,
#A2i “ k2 and Ni pRq z pA1i YA2iq is the set of allocations that still needs to be arranged.

...

Step ` Then,

n1 pRq ´
`´1
ÿ

i“0

ki “ n2 pRq ´
`´1
ÿ

i“1

ki ě ... ě nh´p`´1q pRq ´
`´1
ÿ

i“1

ki.

Let nh´p`´1q pRq ´
ř`´1

i“1 ki “ k`. Construct a sequence txiuh´p`´1qi“1 of elements in
Ťh´p`´1q

i“1 Ni pRq z
´

AYB Y
´

Ťh´p`´1q
i“1

Ť`´1
j“1Aji

¯¯

(of length equal to h´p`´ 1q) such that
xi P Ni pRq for all i “ 1, ..., h´ p`´ 1q. Thus, the sequence is constructed in a way that that
no element of Ni pRq stands next to another element of Ni pRq, and the last element of the
sequence belongs toNh´1 pRq. Since there are k` sequences of this type, list these sequences
one after the other. By construction, no two consecutive allocations of this arrangement al-
locate j˚1 to the same agent. Join this linear arrangement to the right end of the arrangement
of Step `´ 1. If nh´p`´1q pRq ´

ř`´1
i“1 ki “ n1 pRq ´

ř`´1
i“0 ki, then the derived linear arrange-

ment can be transformed into a circular arrangement by joining its ends. Otherwise, move
to Step ` ` 1. For each i “ 1, ..., h ´ `, Let A`i denote the set of elements of Ni pRq used to
construct the sequences. Thus, for each i “ 1, ..., h´ `, #A`i “ k` and Ni pRq z

´

Ť`
j“1Aji

¯

is the set of allocations that still needs to be arranged.
...

Since the set of allocations is finite, the above procedure is finite and it produces a circular
arrangement of elements of F pRq such that no two consecutive allocations allocate j˚1 to the same
agent.

For each R P R̄, Lemma 9 implies that elements of F pRq can be ordered as

x p1, Rq , ..., x pm,Rq ,

withm “
ř

iPN ni pRq ą 1, such that for all k “ 1, ...,m (modm), if xi pk,Rq “ j˚1 for some i P N ,
then xi pk ` 1, Rq ‰ j˚1 .

Fix anyR1 P R̄ such that F pRq ‰ F pR1q. We need to consider only the case that #F pR1q ą 1.
Suppose that for all x pi, Rq P F pRq, there do not exist any agent ` and any allocation z P J̄

such that zP 1`x pi, Rq and x pi, RqR`z. This implies that for all x pi, Rq P F pRq, L` px pi, Rq , Rq Ď

45



L` px pi, Rq , R
1q for all ` P N . Since F is (Maskin) monotonic, it follows that F pRq “ F pR1q,

which is a contradiction. Thus, for some x pi, Rq P F pRq, there exist an agent ` and an allocation
z P J̄ such that zP 1`x pi, Rq and x pi, RqR`z. Fix any of such x pi, Rq P F pRq. Since by construc-
tion of the set tx p1, Rq , ..., x pm,Rqu we have that for all k “ 1, ...m, with k ‰ i, it holds that
x pk ` 1, RqP 1jx pk,Rq for some j, it follows that x pi, Rq can be reached via a myopic improve-
ment path at R1 by any outcome in x pk,Rq P tx p1, Rq , ..., x pm,Rqu z tx pi, Rqu. Thus, F satisfies
rotation monotonicity.

Proof of Theorem 6. Omitted.

Example 6. Let us consider a marriage problem pM,W,P,Mq as defined in Section 6.1. Suppose
that R “ tR,R1u and that agents’ preferences at R are as follows:

Men’s preferences Women’s preferences
m1 : w2 w3 w1 m1 w1 : m1 m2 m3 w1

m2 : w3 w1 w2 m2 w2 : m2 m3 m1 w2

m3 : w1 w2 w3 m3 w3 : m3 m1 m2 w3

where the ranking w2w3w1 for m1 indicates that his first choice is to be matched with w2, his
second choice is to be matched with w3, his third choice is to be matched with w1 and his last
choice is to be single. Suppose that agents’ preferences at R1 are:

Men’s preferences Women’s preferences
m1 : w2 w3 w1 m1 w1 : m2 m3 m1 w1

m2 : w3 w1 w2 m2 w2 : m3 m1 m2 w2

m3 : w1 w2 w3 m3 w3 : m1 m2 m3 w3

Note that Rm “ R1m for all m P M . The man-optimal stable matching and the woman-optimal

stable matching at R are:

µRM “

˜

w2 w3 w1

m1 m2 m3

¸

and µRW “

˜

w1 w2 w3

m1 m2 m3

¸

,

whereas at R1 they are

µR
1

M “

˜

w2 w3 w1

m1 m2 m3

¸

and µR
1

W “

˜

w3 w1 w2

m1 m2 m3

¸

,

where µRM “ µR
1

M has m1 married to w2, m2 married to w3 and m3 married to w1. It follows
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that F pRq “
 

µRM , µ
R
W

(

and F pR1q “
!

µR
1

M , µ
R1

W

)

, so that F pRq ‰ F pR1q, and #F pR1q ą 1.
Let us assume, toward a contradiction, that F satisfies rotation monotonicity. Let us consider the
matching µRM P F pRq. Note that at µRM , each woman is married with her third choice, that is,
Lw

`

µRM , R
˘

“
 

µ PM| µ pwq “ µRM pwq or µ pwq “ w
(

. Also, note that for allw PW , it holds that
µRM pwqP

1
wµ

R
W pwq.

Two cases are possible. The first case is that there existµ PM and i1 such thatµ pi1qP 1i1µRM pi1q
and µRM pi1qRi1µ pi1q. Since µRM “ µR

1

M and since

Lw

`

µRM , R
˘

“
 

µ PM| µ pwq “ µRM pwq or µ pwq “ w
(

for all w P W , it follows that i1 P W and µ pi1q “ i1, which contradicts the fact that µRM pwqP 1ww
for allw PW . The second case is that there exists i1 such that µRW pi1qP 1i1µRM pi1q. Since µRM “ µR

1

M ,
it follows that i1 P W and µRW pi1qP

1
i1
µRM pi1q, which contradicts the fact that µRM pwqP 1wµRW pwq

for all w PW .
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