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I. Introduction

In recent years, data protection policies requiring firms to obtain users’ informed consent
for the collection and use of their data have emerged in various jurisdictions. Notable
examples are the EU General Data Protection Regulation (GDPR), the California Con-
sumer Privacy Act (CCPA), and the Brazilian General Data Protection Law (LGPD).1

Stronger obligations are also imposed in the European Union to large “gatekeeping firms”
by the EU Digital Markets Act (DMA), which prohibits tracking end-users outside of the
actual online service for targeted advertising in the absence of explicit user consent.

A concern raised by many scholars and practitioners is that restrictions to data collec-
tion and usage may hamper data-driven investments in quality-enhancing innovation. For
example, restricting data collection for ad targeting purposes can lower advertising effec-
tiveness and, consequently, ad revenues [Goldfarb and Tucker, 2011, Johnson et al., 2020,
Rafieian and Yoganarasimhan, 2021, Goldberg et al., 2022]. If the firm’s operations are
primarily ad-financed, this reduction in revenues may dampen its incentives to invest and
innovate [Castro, 2010, Athey, 2014, Kircher and Foerderer, 2022].2

In this paper, we study the potential trade-off between privacy and quality-enhancing
innovation. To this end, we consider a setup that resembles closely the business model
of many dominant tech firms (particularly social media platforms) in which users “pay
with [their] data and [their] attention.”3 In our model, a monopolist offers a free service to
users and derives revenues by disclosing user data to third parties (e.g., for targeting ads).
Prior to interacting with the users, the monopolist sets its privacy policy (a disclosure
level)4 and decides how much to invest in innovation (e.g., quality of the sharing tools,
new features). The firm’s innovation and disclosure levels are observed by users, who then
decide whether to use the service (e.g., whether to create a social media account) and how
much information to provide when using it (e.g., how much to reveal about themselves
on their social media page; how many posts to write and photos to share). Users de-
rive higher gross utility when the firm’s innovation is higher (e.g., when a social media
platform provides more features and better sharing tools) and when they provide more

1A stream of recent studies has studied the intended and unintended effects of privacy regulations,
providing an evaluation of the EU GDPR (see e.g., Johnson [2022]).

2For example, Kircher and Foerderer [2022] show that when Google banned targeted advertising
in Android children’s games in 2019, advertisement-dependent firms reacted by reducing the release of
feature updates. They explain the reduction in the incentives to provide updates (and fix bugs) as a
consequence of reduced revenues from advertising and the lack of an alternative monetization channel.

3The quote was taken from Facebook co-founder Chris Hughes’ opinion piece in the New
York Times which appeared on May 9, 2019: https://www.nytimes.com/2019/05/09/opinion/sunday/
chris-hughes-facebook-zuckerberg.html

4For the sake of exposition, the disclosure level is defined in our model as the share of third parties
to which the monopolist discloses personal information. However, as discussed later, it can also be
interpreted as an inverse measure of other (self-imposed) restrictions on the disclosure of data (e.g.,
regarding the type or share of data disclosed).
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information. Further, they perceive innovation and information as complements (e.g., the
better a platform’s sharing tools, the more information users share). Although the mo-
nopolist’s service is free, users may incur idiosyncratic privacy costs, which could be due
to their intrinsic preference for privacy or potential adverse market outcomes (e.g., price
discrimination and unwanted ads) that they may face as a result of the firm’s disclosure of
their personal information. We capture heterogeneity in privacy consciousness by consid-
ering that users belong to two groups. The first group of users are privacy-unconcerned
and do not incur any privacy costs.5 The second group of users are privacy-concerned
and incur (heterogeneous) privacy costs.

We analyze the desirability for users of a privacy regulation that takes the form of a
(binding) cap on data disclosure. The cap could correspond to a set of restrictions on
the purposes for which data may be disclosed or the types of third parties with whom
data may be shared.6 Besides directly reducing users’ privacy costs, a disclosure cap also
generates a change in the firm’s innovation incentives. Thus, the desirability for users of
the cap depends (partly) on its impact on the firm’s innovation incentives.

A cap on disclosure affects the monopolist’s incentives to invest in innovation by altering
its disclosure revenues, and therefore its gains from innovation. The monopolist invests
in innovation to attract more users (extensive margin effect) and/or to induce current
users to share more on the platform (intensive margin effect); both of which increase
the stock of information it can monetize. A cap on disclosure reduces the firm’s gain
from monetizing an additional unit of information. Consequently, for a given number of
users, the cap lowers the firm’s incentives to induce users to share more data by investing
in innovation. However, a cap on disclosure has another effect that goes in the opposite
direction. It boosts privacy-concerned users’ demand for the firm’s service, which increases
its marginal benefit from investing in innovation. This effect is stronger the larger the
share of privacy-concerned users in the population and dominates the negative effect of
the privacy cap on innovation when the share of privacy-concerned users is sufficiently
large. Thus, the overall effect of a privacy cap on innovation depends on the size of the
share of privacy-concerned users in the market.

In a market with a small share of privacy-concerned users, a disclosure cap will lead
to lower innovation. As a result, the regulator faces a trade-off between privacy and
innovation. Because of this trade-off, the cap is desirable for users only if the number
of privacy-concerned users is not ’too’ small as in this case the positive effect of privacy

5These users may also represent that by revealed preferences do not consider privacy violations as a
cost, although they tend to state otherwise.

6U.S. regulations such as the Gramm-Leach-Bliley Act and the Fair Credit Reporting Act forbid the
sharing of consumer information with non-affiliated third parties. Many countries (e.g., EU countries)
also impose restrictions on international transfers of data, allowing for them only if the foreign-based
entity has an adequate level of data protection.
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regulation (i.e., the decrease in privacy costs) more than compensates for the reduced
innovation level. However, if the share of privacy-concerned users is sufficiently large,
the extensive margin becomes more salient to the firm, and the cap increases the firm’s
incentives to invest in innovation. In this case, there is no privacy-innovation trade-off
and consumer surplus is unambiguously higher under the cap.

We extend the model along several dimensions and show that our main results carry out in
a wide range of circumstances. First, we consider heterogeneous third parties that induce
different privacy costs (reflecting differences in how data are used by them). Second, we
introduce network effects, whose presence is relevant in the context of social media firms.
Third, we consider the case in which disclosure of personal information also delivers direct
benefits to users.

Our findings provide insights into the factors that a regulator should consider when de-
ciding whether to set restrictions on a dominant firm’s data disclosure policy. If a large
share of users are (essentially) privacy-unconcerned,7 restrictions on data disclosure are
likely to stifle innovation. In this case, the regulator needs to account for the negative
effect of the cap on innovation when assessing its desirability for users. On the contrary,
if a large share of users is privacy-concerned, the regulator can be more confident about
the desirability of the cap for users as it may lead to more, rather than less, innovation.

The rest of the paper is structured as follows. Section II discusses the related litera-
ture. Section III presents the model setup. Section IV examines the users’ participation
and information provision decisions. Section V analyzes the impact of a disclosure cap
on innovation and consumer surplus. Section VI presents the extensions. Section VII
concludes. All omitted proofs can be found in Appendix A.

II. Related literature

There is a growing pool of literature on the economics of privacy. Our paper lies in the
intersection of several issues that researchers have studied: users’ information disclosure
decisions (e.g., Abrardi et al. [2021], Abrardi and Cambini [2022]), firms’ information
exploitation/sharing decisions (e.g., Casadesus-Masanell and Hervas-Drane [2015], Di-
makopoulos and Sudaric [2018]), and the effects of privacy regulation/taxation on welfare
(e.g., Bloch and Demange [2018], Bourreau et al. [2018])

In most of the existing research on consumer privacy, users’ decision to share personal
data with the firm or otherwise allow the firm to collect their data is modeled as a binary

7Users may however respond to changes in innovation and/or privacy levels by changing the amount
of information they provide to the firm.
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choice, that is, users either decide to share or not to share their personal data. In contrast,
we consider a scenario where users decide how much to share with the firm, trading off
higher privacy for higher utility from the firm’s service. Our modeling approach is closest
to that of Casadesus-Masanell and Hervas-Drane [2015].8 Unlike Casadesus-Masanell and
Hervas-Drane [2015], we endogenize the firm’s innovation choice. This allows us to derive
the impact of a disclosure cap on investment in innovation.

Several papers have studied the trade-off users face when deciding whether/how much
personal information to disclose to the firm (or to allow the firm to collect). On the
one hand, sharing more information with the firm enables users to obtain higher utility
from the firm’s product or service, via better product matching or recommendation (e.g.,
Bloch and Demange [2018], Hidir and Vellodi [2021], Ichihashi [2020]) or a greater level of
product or service personalization (e.g., Bourreau et al. [2018], Casadesus-Masanell and
Hervas-Drane [2015]). On the other hand, users incur privacy costs such as higher prices
(e.g., in Hidir and Vellodi [2021], Ichihashi [2020]) or higher disutility from the firm’s
exploitation of their information (e.g., Bloch and Demange [2018]) when they disclose
more information to the firm. We build a model that features a similar trade-off: users
experience higher utility when they disclose more information to the firm, but they also
face higher privacy costs because of their preference for privacy.

Our analysis throws light on the potential privacy-innovation trade-off and identifies con-
ditions under which a disclosure cap raises the amount of data-driven innovation, implying
that the privacy-innovation trade-off may not exist. Our findings echo those of Anderson
[2007] for which an advertising cap may either decrease or increase the quality of free-to-
air television. However, his findings are driven entirely by the impact of the advertising
cap on the extensive margin effect of quality investment, as he considers only the (binary)
participation decision of users. Our results depend also on how innovation affects the
amount of information provided by users (i.e., the intensive margin effect).

Conti and Reverberi [2021] investigate how a privacy regulation that imposes an opt-in
policy affects a firm’s quality in a model featuring price discrimination. The main trade-off
users face when deciding whether to share information is that sharing information leads to
better consumption experience but allows the firm to offer them personalized prices based
on their willingness to pay. Unlike us, they focus on the differences between an opt-in
and opt-out privacy regime and find that an opt-out regime may deliver a higher quality
level than an opt-in regime if there are strong complementarities between information and
quality. We differ from their paper in that we focus on the impact of a different regulatory
tool (a cap on information disclosure). Moreover, whereas they find that an increase in

8In both models, users decide how much information to share with the firm, but not all information
shared by users is disclosed by the firm. In our setting, we consider different revenue models: the firm
derives revenues solely from disclosure, whereas it can also charge a positive price in Casadesus-Masanell
and Hervas-Drane [2015].
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product quality is a necessary condition to raise consumer surplus, in our setting consumer
surplus might increase with privacy regulation even if innovation decreases.9

The implications drawn from our analysis also complement the findings in the empiri-
cal literature that examines the interplay between privacy regulations and data-driven
innovation. Goldfarb and Tucker [2012] analyze several empirical studies—in the health-
care (see Miller and Tucker [2009, 2011b,a]) and the online advertising (see Goldfarb and
Tucker [2011]) sectors—and find that privacy regulations may raise the costs and/or lower
the benefits associated with data-driven innovation, hence weakening firms’ investment
incentives. Our work shows, in addition, that a privacy regulation can affect the level of
innovation even when data is not a direct input for innovation.

More generally, our paper also relates to the literature on the welfare effects of regulating
monopolist’s decisions [Sheshinski, 1976, Besanko et al., 1987]. Sheshinski [1976] studies
how price regulation alters a monopolist’s decision to invest in quality. He shows that,
provided that the regulated price is binding for the firm, price regulation has a negative
effect on quality and a positive effect on quantity sold in the market. Unlike Sheshinski,
our framework features an implicit price that is heterogeneous across users because users
have a heterogeneous privacy cost. We show that privacy regulation induces the firm to
lower its quality-enhancing innovation (as in Sheshinki’s paper) if the share of privacy-
concerned users is sufficiently low. However, we also show that regulation spurs quality-
enhancing innovation if the share of privacy-concerned consumers is large enough.

Besanko et al. [1987] study the case in which a monopolist offers a menu of prices and qual-
ities to consumers that are heterogeneous in their willingness to pay for quality. Because
of asymmetric information, the monopolist distorts quality to segment the market, even
by excluding some consumers from the market. Price regulation reduces the incentive to
segment the market and has asymmetric effects on the quality offered to consumers, with
some facing a lower quality and others facing a higher quality. As a result, the effect of
price regulation is heterogeneous across consumers. Whereas our paper and Besanko et
al. show that regulation has ambiguous effects on quality, the main mechanisms are dif-
ferent. In our setting, the monopolist does not engage in second-degree price and quality
discrimination. As a result, regulation of the (implicit) price does not alter the incentives
of the firm to segment the market. Instead, it generates a demand-boosting effect that
may dominate or be dominated by the more standard per-user revenue effect.

9Also our analysis is more appropriate for understanding the effects of privacy regulation in the
social media market where there is a zero-price for users and therefore there is no potential for price
discrimination.
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III. Model setup

Consider a firm that offers a service to a unit mass of users at a price of zero. The
firm derives revenues from disclosing its customers’ personal information to (a subset
of) homogeneous third parties (e.g., advertisers or third-party apps) that are uniformly
distributed over the interval [0, 1]. The firm can choose the level of quality-enhancing
innovation q ≥ 0, and a disclosure level d ∈ [0, 1], which defines the extent to which
personal information is shared with third parties. More precisely, information is disclosed
to the third parties located in the interval [0, d] and not disclosed to those in (d, 1].10

Users. Users (or, interchangeably, consumers) face a trade-off when deciding the amount
of personal information they share with the firm, which we denote as x ∈ [0, 1].11 When
users share more information with the firm, they obtain higher utility from its service
but also suffer higher privacy-related utility losses arising from the firm’s disclosure of
consumer data to third parties. These utility losses reflect the users’ preference for privacy,
which may arise because they value privacy intrinsically (e.g., as a right) or because they
may face potential adverse market-mediated outcomes (e.g., price discrimination).12

The benefits that a consumer derives from using the firm’s service comprise two compo-
nents. The first component is the utility that the consumer obtains from using the service
regardless of whether she shares information about herself. This data-independent ben-
efit component depends on v, the baseline utility level or “intrinsic value” of the firm’s
services—one can think of this as the utility generated by the firm’s minimal viable
product—and the firm’s level of (quality-enhancing) innovation q. We capture the data-
independent benefit of innovation using a linear function βq, with β > 0. The second
component of the benefits a consumer obtains from using the firm’s service depends on
the amount of data the consumer shares. Sharing data increases the consumer’s utility

10Note that our analysis is equivalent to the case in which the firm discloses a share d ∈ [0, 1] of the
personal information provided by each consumer to all third parties, instead of assuming that it discloses
all the personal information provided by users to a subset [0, d] of third parties. More generally, a lower
disclosure level can be interpreted either as more (self-imposed) restrictions on the type/share of data
that can be disclosed to third parties and/or more restrictions on the set of third parties that the data
can be shared with.

11The interpretation of the consumer’s input, x, as the amount of information that a consumer provides
to the firm is appropriate when considering a matching website, where each user decides on the preferences
she reveals, or in the context of services involving user-generated content, where each user decides on
the amount of content to share (e.g., on a social media platform). This interpretation may, however, be
less suited to other forms of Internet services, such as email and search. In these contexts, users do not
directly supply information to the firm; instead, information is generated as a result of their use of the
firm’s service. The relevant consumer choice variable (and hence the appropriate interpretation of x) is
therefore usage intensity, rather than information provision level. Correspondingly, α, which formerly
captured the marginal cost of providing information, can be interpreted more generally as the marginal
opportunity cost of using the firm’s service.

12Data disclosure can also generate positive effects for users (e.g., better-targeted ads or a more
customized news feed). We consider this case in an extension.
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from using the firm’s service regardless of whether the firm innovates, though the benefit
of data sharing diminishes with the amount of data shared; specifically, we capture this
benefit by x − x2

2 . Sharing data generates additional benefit γxq to consumers when the
firm invests in quality-enhancing innovation, where γ captures the interaction between
innovation and information from the users’ perspective. We assume that γ is positive so
that innovation and information are complements from the users’ perspective.13

When using the firm’s service, a consumer also faces some costs. First, a consumer of
type θ who provides an amount of personal information x incurs individual privacy cost
θdx.14,15 The consumer’s type θ captures their preference for privacy, with a higher θ

indicating a stronger privacy preference. We assume that a share λ of consumers are
privacy-concerned and have θ that is uniformly distributed in the interval [θ, θ], where
θ > 0, and the remaining 1 − λ share of consumers are privacy-unconcerned and have
θ = 0. Second, a consumer who joins the service incurs a cost αx for sharing an amount
x of personal information (e.g., the effort it takes to fill up different fields on a user profile
page or to edit and upload photos), which is homogeneous across users. Third, a consumer
also faces a fixed opportunity cost of using the service, which we denote as K > 0.16

Thus, the net utility of a consumer type θ is

U(x, θ, q, d) = v + x − x2

2 + γxq + βq − θdx − αx − K.

Value of personal information. We suppose that all the third parties interested
in users’ personal information have the same willingness to pay r > 0 for a unit of
information. In addition, we assume that the firm is a monopolist in the market for
(its customers’) personal information. This simplifying assumption implies that the firm
always sets the unit price for access to its customers’ personal information to r, hence
fully extracting third parties’ surplus.17

13Assuming γ > 0 is particularly relevant in the context of social media platforms. For example, in
2020 Instagram improved the quality of its services by introducing Instagram Stories, in an attempt to
boost the sharing of original personal content. This move suggests that users view the quality of the
social media platform and the amount of information they share as complements.

14Note also that one can interpret d as the disclosure level above a certain acceptance threshold
(assumed to be the same for all users) as in Casadesus-Masanell and Hervas-Drane [2015]. This is justified
by the fact that the firm will always choose a disclosure level that is (weakly) above that threshold.

15Note that the linearity of the privacy cost θdx with respect to d rests on the implicit assumption
that sharing personal data with any third party induces the same privacy cost for a given consumer.

16If K = 0, all users would find it (weakly) optimal to use the service (i.e., there would be no extensive
margin effect). This would make our model less rich and limit the insights we can draw from it.

17Note that our results hold qualitatively also if we relax the assumption that the firm extracts all
third parties’ surplus. To see why, suppose that third parties are able to capture a positive share of that
surplus and assume that the unit price of personal information is ϕr, where ϕ ∈ (0, 1]. The firm’s profit
function in this variant of our model can be derived from the one in our baseline setting by replacing r
with ϕr. This implies in particular that the effect of a disclosure cap on a firm’s choice of innovation is
(qualitatively) the same as in the baseline model.
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Firm’s profit. Denote by x (θ) the amount of information provided by a consumer of
type θ ∈

[
θ, θ̄

]
.18 The firm’s profit is the sum of the revenues collected by third parties

net of the (fixed) cost C(q) of achieving a level of quality-enhancing innovation q:

Π(q, d) = rdX(q, d) − C(q),

where X(q, d) ≡ (1 − λ)x(0) + λ
θ−θ

∫ θ
θ x(θ)dθ is the total amount of information disclosed

by users that join the service.

For tractability, we assume that the cost function for quality-enhancing innovation is
quadratic: C(q) = q2/2.

Timing. We consider the following two-stage game:

1. The firm chooses its quality-enhancing innovation level q and its level of information
disclosure d.

2. Users observe the levels of innovation and disclosure. They decide then whether to
patronize the firm and, if they do, how much personal information to provide.

The equilibrium concept is Subgame Perfect Nash Equilibrium.

Finally, we denote

q ≡ λr((1 − α)γ + β) + min{0, γr(θ(1 − λ) − θ)}
θ − θ − γ2λr

,

and
q ≡ λr((1 − α)γ + β) + max{0, γr(θ(1 − λ) − θ)}

θ − θ − γ2λr
,

and make the following assumptions in the remainder of the paper:

Assumption 1. θ − θ > γ2r.

Assumption 2. α > γq.

Assumption 3. v > K − βq − 1
2(1 + γq − α)2.

Assumption 4. v < K − βq.

18The amount of information x (θ) can be equal to zero either because the consumer of type θ decides
not to use the service, or because she uses the service but decides not to provide personal information.
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Assumption 1 ensures that the profit function of the firm is concave in q. Assumption 2
will guarantee that no user finds it optimal to share all their personal information, even
if they are privacy-unconcerned.19 Assumption 3 will ensure that all privacy-unconcerned
users find it optimal to join the service. Finally, Assumption 4 will guarantee that no user
finds it optimal to join the service and provide no personal information.

IV. Analysis

In this section, we derive the users’ optimal choices and the firm’s optimal level of (quality-
ennhacing) innovation. We solve the model by backward induction starting with the user’s
problem.

i. User’s choice

Conditional on patronizing the firm, a user chooses her level of information provided so
as to maximize her utility U(x, θ, q, d). Denoting

x̃(θ, q, d) ≡ arg maxx∈[0,1]U(x, θ, q, d),

it is straightforward to show that:

x̃(θ, q, d) =


1, if γq − θd − α ≥ 0

1 + γq − θd − α, if − 1 < γq − θd − α < 0

0, if γq − θd − α ≤ −1

We will focus hereafter on (the most interesting) case in which x̃(θ, q, d) ∈ (0, 1) for
all users who join the service. The effect of a marginal increase in quality-enhancing
innovation on the amount of information provided by a user is

(1) ∂x̃(θ, q, d)
∂q

= γ > 0, ∀θ ≥ 0.

An increase in the level of innovation raises a user’s marginal gross utility from providing
information; hence, she finds it optimal to provide more information. Note that this effect
applies to both types of users and shows that γ captures the extent of complementarity
between information disclosure and the level of innovation. Moreover, for all privacy-
concerned users, we observe that x̃(θ, q, d) decreases in d and θ.

19The parameter α allows us to have an intensive margin for both types of users.
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The following lemma summarizes this discussion.

Lemma 1. Assume γq − θd − α ∈ (−1, 0) for any θ. Conditional on using the service,
the amount of information disclosed by any user is increasing in the level of innovation.
Moreover, the amount of information that a privacy-concerned consumer provides to the
firm is decreasing in the disclosure level and the idiosyncratic privacy cost parameter.

Denoting Ũ(θ, q, d) ≡ U(x̃(θ, q, d), θ, q, d), we get that
(2)

Ũ(θ, q, d) = v+βq−K+


1
2 + γq − dθ − α, if γq − θd − α ≥ 0
1
2 + γq − dθ − α + 1

2 [γq − dθ − α]2, if − 1 < γq − θd − α < 0

0, if γq − θd − α ≤ −1

.

A consumer of type θ chooses to patronize the firm if and only if Ũ(θ, q, d) ≥ 0. Focusing
on the case in which there is only partial disclosure (second line) by the users that joined
the firm, and denoting

θ̃(q, d) ≡
(1 + γq − α) −

√
2(K − βq − v)

d
,

we get the following result.

Lemma 2. Assume γq − θd − α ∈ (−1, 0) for any θ. Then, a user with θ ≤ θ̃(q, d) joins
the firm and a user with θ > θ̃(q, d) does not join the firm. Moreover, θ̃(q, d) is increasing
in q and decreasing in d.

ii. Firm’s optimal level of innovation

We now determine the privately optimal level of innovation for any given information
disclosure. The profit of the firm, given the participation and information provision of
the users, is

Π̃(q, d) = rd
{

(1 − λ)x̃(0, q, d) + λ

θ − θ

∫ θ̃(q,d)

θ
x̃(θ, q, d)dθ

}
− C(q).

Denoting DP (q, d) ≡ θ̃(q,d)−θ

θ−θ
the mass of privacy-concerned users joining the service, the

firm’s net marginal benefit from innovation is
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∂Π̃(q, d)
∂q

=(1 − λ)rd
∂x̃(0, q, d)

∂q
+ λrd

∂x̃(θ, q, d)
∂q

DP (q, d) + λrd
∂DP (q, d)

∂q
x̃(θ̃(q, d), q, d) − C ′(q)

= rdγ
{

(1 − λ) + λDP (q, d)
}

︸ ︷︷ ︸
intensive margin effect of innovation

+ λrd
∂DP (q, d)

∂q
x̃(θ̃(q, d), q, d)︸ ︷︷ ︸

extensive margin effect of innovation

−C ′(q).

(3)

The above expression shows that the firm accounts for both the intensive and extensive
margin effects of quality-enhancing innovation. The intensive margin effect captures how
a change in the level of innovation impacts the firms’ revenues because of the higher
amount of information provided by a fixed user base. This effect is positive because of the
complementarity between the level of innovation and the level of information provision (by
Lemma 1). Note that this effect is generated by the response of both privacy-concerned
and privacy-unconcerned users to a change in quality. The extensive margin effect captures
how the change in the demand of privacy-concerned users resulting from a change in the
level of innovation impacts the firm’s profit. This effect is positive as the firm’s demand
is increasing in the level of innovation (Lemma 2).20

Using (3) and denoting qM(d) the firm’s optimal level of innovation for given information
disclosure d, we obtain21

(4) qM(d) = r(γd(θ(1 − λ) − θ) + λ(γ(1 − α) + β))
θ − θ − γ2λr

.

V. Privacy regulation

In this section, we study the impact of a privacy regulation taking the form of a disclosure
cap on quality-enhancing innovation and its desirability for consumers.

i. Impact of privacy regulation on innovation

We first examine the effect of a binding disclosure cap on the firm’s incentive to innovate.22

From (4), it is clear that qM(d) is increasing (resp. decreasing) in d if θ(1−λ)−θ > (<)0.
This leads to the following proposition.

20Note that there is no extensive margin effect for the privacy-unconcerned users.
21Note that this expression satisfies the condition γq − θd − α ∈ (−1, 0) appearing in Lemmas 1 and

2 under Assumptions 2-4.
22We say that a disclosure cap is binding if it is strictly lower than the (unregulated) profit-maximizing

level of disclosure, which implies that it leads to a strictly lower disclosure level than the one the firm
would choose absent regulation.
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Proposition 1. Let λq ≡ 1 − θ/θ. The introduction of any binding cap on information
disclosure has a negative (resp. positive) effect on the level of innovation if λ < λq (resp.
λ > λq).

To explain the result presented in the above proposition, it is useful to examine the
effect of a marginal decrease in d on the firm’s marginal benefit from quality-enhancing
innovation:23

− ∂2Π̃
∂q∂d

= −rγ
{

(1 − λ)︸ ︷︷ ︸
mass of privacy unconcerned users

+ λDP (q, d)︸ ︷︷ ︸
mass of privacy-concerned users

}
︸ ︷︷ ︸

per-unit return effect (-)

−λrdγ
∂DP (q, d)

∂d︸ ︷︷ ︸
demand-boosting effect (+)

.

(5)

A reduction in d has two opposite effects. First, there is a negative per-unit return effect
because the disclosure cap reduces the revenues of the firm for each given user (regardless
of whether she is privacy-concerned or privacy-unconcerned). Second, there is a positive
demand-boosting effect because a lower disclosure level leads to an expansion of the user
base as more privacy-concerned consumers join the service. This implies that the increase
in the total amount of information induced by (more) innovation is larger. Note that the
magnitude of the demand-boosting effect is increasing in the share of privacy-concerned
users λ, whereas the magnitude of the per-unit return effect is decreasing in λ (because
DP (q, d) < 1 for any q and d). This implies that an increase in the share of privacy-
concerned users makes it more likely that the positive demand-boosting effect dominates
the per-unit return effect. Moreover, rewriting (5) as follows

(6) − ∂2Π̃
∂q∂d

= −rγ
{

(1 − λ) − λ
θ

θ − θ

}
,

shows that the net effect is negative at λ = 0 and positive at λ = 1.24 This, combined
with the monotonicity of the R.H.S. of (6) with respect to λ, implies that a disclosure
cap has a negative (resp. positive) effect on quality-enhancing innovation if the share of

23Note that

−∂qM (d)
∂d

=
∂2Π̃
∂q∂d

∂2Π̃
∂q2

,

which implies that the sign of − ∂qM (d)
∂d and ∂2Π̃

∂q∂d are the same. Moreover, note that the effect of a decrease
in d on the extensive margin effect of innovation is zero. This is because x̃(θ̃(q, d), q, d) does not depend
on d, and ∂θ̃(q,d)

∂q + d ∂2θ̃(q,d)
∂q∂d = 0

24Note that ∂θ̃(q,d)
∂d = − θ̃(q,d)

d , which implies that DP (q, d) + d ∂DP (q,d)
∂d can be rewritten as

θ̃(q, d) − θ

θ − θ
− d

θ̃(q, d)
d(θ − θ)

= − θ

θ − θ
,

which is then used to obtain (6).
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privacy-concerned users is small (resp. large) enough.

ii. Desirability of privacy regulation for consumers

We now discuss the desirability for users of a (binding) disclosure cap in light of the
strategic effect that it generates on the level of innovation. Consumer surplus is given by

CS(q, d) ≡ (1 − λ)Ũ(0, q, d) + λ

θ − θ

∫ θ̃(q,d)

θ
Ũ(θ, q, d)dθ.

A (marginal) decrease in disclosure level has the following two effects on consumer surplus:

−∂CS(qM(d), d)
∂q

∂qM

∂d︸ ︷︷ ︸
innovation-mediated effect (-/+)

−∂CS(qM(d), d)
∂d︸ ︷︷ ︸

direct effect (+)

.

The first term captures the effect that a decrease in disclosure has on consumer surplus
via the induced change in the level of innovation. Proposition 1 implies that this term
can be either positive or negative. The second term captures the positive direct effect
that a decrease in disclosure has on consumer surplus through the induced decrease in
privacy costs. If λ > λq, a decrease in disclosure leads to more innovation. In this case,
both effects are positive and privacy regulation is always desirable for users. If λ < λq,
however, the two effects have opposite signs and the net effect depends on their relative
magnitude. Note that at λ = 0 the direct effect is zero and, therefore, the net effect is
negative. By continuity, this is also the case in the neighborhood of λ = 0. Moreover,
at λ = λq, the innovation-mediated effect is zero and, therefore, the net effect is positive.
This implies that this effect is positive in the neighborhood of λ = λq (by continuity).
Formally, denoting dM the profit-maximizing disclosure level, let us define

λ− ≡ sup
{

λ′ > 0 | − ∂CS(qM(dM), dM)
∂q

∂qM

∂d
− ∂CS(qM(dM), dM)

∂d
< 0 ∀ λ ∈ [0, λ′]

}
.

λ+ ≡ inf
{

λ′ > 0 | − ∂CS(qM(dM), dM)
∂q

∂qM

∂d
− ∂CS(qM(dM), dM)

∂d
> 0 ∀ λ ∈ [λ′, λq]

}
,

The following proposition provides conditions under which a regulatory cap inducing a
disclosure level that is marginally lower than the profit-maximizing level dM is desirable,
or not, for users.

Proposition 2. A cap leading to a disclosure level that is marginally lower than the
profit-maximizing level is desirable (resp., not desirable) for users if λ ∈ (λ+, 1] (resp.
λ ∈ [0, λ−))).
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The above proposition shows that if the share of privacy concerned users is sufficiently
small, then a cap inducing a marginal decrease in the firm’s disclosure level (from the un-
regulated profit-maximizing level) is detrimental to consumers. In this case, the negative
impact of the cap on innovation outweighs its direct positive impact (stemming from lower
privacy costs). In contrast, if the share of privacy-concerned users is sufficiently large then
a cap leading to a disclosure level that is marginally lower than the profit-maximizing level
is desirable for users. In this scenario, it is either the case that the disclosure cap has a
negative innovation-mediated effect on users that is dominated by its positive direct effect
(i.e. when λ ∈ (λ+, λq)) or that both effects are positive (i.e. when λ ∈ (λq, 1]).

Let λCS denote the share λ such that a reduction in d has a net zero effect on consumer
surplus. Through simulations, we show that there are cases for which λ+ = λ−(≡ λCS)
and therefore a disclosure cap leading to a disclosure level marginally lower than the
profit-maximizing level is (not) desirable for consumers if λ > (<)λCS. Figure 1 presents
a graphical representation of the effect of such a cap on innovation and consumer surplus
for the following values: β = 0.3, α = 0.5, θ = 2, θ = 1, v = 1, r = 0.3, K = 1.1. We focus
on the parameter range λ ∈ [0, 0.5] as in this interval the effect of privacy regulation on
innovation is negative and, therefore, there is a trade-off between privacy and innovation.
We consider two cases: strong complementarity between information and innovation by
assuming γ = 0.8 (panel (a)); weak complementarity between information and innovation
by assuming γ = 0.3 (panel (b)).

The red dotted line identifies the cut-off value λCS at which the impact of the regu-
lation on consumer surplus is neutral and shows that, for the parameter range con-
sidered, the effect of the regulation on consumer surplus— denoted in the y-axis by
CS ′(dM) ≡ −∂CS(qM (dM ),dM )

∂q
∂qM

∂d
− ∂CS(qM (dM ),dM )

∂d
— is monotonically increasing in λ, which

implies that λ− = λ+ = λCS. On the right of the red dotted line, the regulation is de-
sirable for users even though it reduces the level of innovation. On the left side of the
dotted line, the negative effect of the regulation on innovation is large enough to make it
undesirable for users.

The two panels only differ in the degree of users’ complementarity between innovation
and information disclosure. Panel (b) shows that when users perceive innovation and
information as strong complements, the cut-off value λCS is greater than in the case in
which users perceive innovation and information as weak complements. In other words,
the comparison of the two panels suggests that the area in which the disclosure cap harms
users is larger when innovation and information are stronger complements.
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(a) Strong complementarity (γ = 0.8)

(b) Weak complementarity (γ = 0.3)

Figure 1: Effect of privacy regulation on consumer surplus

VI. Extensions

In this section, we present three extensions. First, we consider the case in which third
parties are heterogeneous. Second, we discuss how our analysis would change if we in-
troduce network externalities in the model. Finally, we assume that disclosure generates
positive effects on users (and not only privacy costs).

i. Heterogeneous third parties

In this extension, we analyze the scenario where third parties are heterogeneous in the
privacy costs that they induce for consumers.25 This heterogeneity could reflect, for
instance, differences in data use practices of these third parties. Consider, for example, the

25See Bergemann and Bonatti [2015] and Bergemann et al. [2018] for models in which a monopolist
sells personal information to third parties that are heterogeneous along other dimensions.
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case of third-party advertisers. Some advertisers may choose to target their advertisements
using data at a more aggregated level than others (e.g., based on demographic groups
instead of individual characteristics), thereby resulting in lower privacy costs.

Let us assume that disclosing a unit of personal information to a third party of type
s ∈ [0, 1] induces a privacy cost 2θs for the consumer of type θ (instead of a privacy cost
θ in the baseline model). The total privacy cost incurred by a consumer of type θ when
an amount x of her personal information is disclosed to third parties located in [0, d] is

then given by
d∫
0

2θsxds = θd2x. Correspondingly, the consumer’s utility function is

U(x, θ, q, d) = v + x − x2

2 + γxq + βq − θd2x − αx − K.

As in the baseline model, we restrict our attention to the case in which there is partial
disclosure by the users that joined the firm. Denote

θ̂(q, d) ≡
(1 + γq − α) −

√
2(K − βq − v)

d2 = θ̃(q, d)
d

the critical value such that a user with θ ≤ θ̂(q, d) joins the firm and a user with θ > θ̂(q, d)
do not join the firm.

Note that the equivalent of (6) in this case is given by26

(7) − ∂2Π̃
∂q∂d

= −rγ
{

(1 − λ) − λ
θ̂(q, d) + θ

θ − θ

}
.

One can immediately verify that the effect of the disclosure cap on the innovation level is
negative at λ = 0, whereas it is positive at λ = 1.

This confirms the insight that for a sufficiently small (resp. large) share of privacy-
concerned users, the effect of a disclosure cap on innovation is negative (resp. positive).

ii. Network externalities

Social media platforms represent an example of firms collecting users’ data and investing
in innovative features that raise users’ incentives to share data. A key aspect of social
media platforms is the presence of direct network effects, which have not been considered

26Note that ∂θ̂(q,d)
∂d = − 2θ̂(q,d)

d , which implies that DP (q, d) + d ∂DP (q,d)
∂d can be rewritten as

θ̂(q, d) − θ

θ − θ
− d

2θ̂(q, d)
d(θ − θ)

= − θ̂(q, d) + θ

θ − θ
,

which is then used to obtain (7).
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in our baseline model. Assume now that the utility of each user increases with the amount
of information provided by the other users. To incorporate these network externalities, we
augment the consumer’s utility in the baseline model by σX, where X ≡ λ

∫ θe

θ x (θ) dθ +
(1−λ)x(0) is the amount of personal information provided by all (other) users,27 θe is the
expected marginal privacy-concerned user joining the service, and σ ≥ 0 is a parameter
that captures the intensity of the externalities.

Let us restrict our attention to the case in which users never disclose all information
conditional on joining the service. Then, the optimal level of information provision is
given by

x̃(θ, q, d, σ) = 1 − α − dθ + λσ(θe − θ − 1) + γq + σ,

which is increasing in the value of the network benefit σ. In a fulfilled expectations
equilibrium, there exists (as in the baseline model) a threshold θ̃ (q, d, σ) such that only
users with type θ < θ̃ (q, d, σ) use the service. Specifically, assuming that σ < d, this
threshold is given by

θ̃(q, d, σ) =
1 − α − σ(θλ + λ − 1) + γq −

√
2(K − βq − v)

d − λσ
.

We restrict our attention to the case in which not all privacy-concerned users find it
optimal to join the service, i.e., σ < d. The presence of network externalities alters the
participation decision of privacy-concerned users. Specifically, more privacy-concerned
users would join the service the larger the network benefit, i.e., ∂θ̃(q,d,σ)

∂σ
> 0. This intuitive

result follows from the fact that users’ utility function is increasing in σ and X.

The effect of a marginal decrease in the disclosure level on the marginal benefit of investing
in quality-enhancing innovation can again be split into two terms capturing the per-unit
return effect and the one capturing the demand-boosting effect. The sign of these effects
is the same as in the baseline (see (5)).

Note that the equivalent of (6) in this case is given by28

(8) − ∂2Π̃
∂q∂d

= −rγ
{

(1 − λ) − λ
θ(d − λσ) + λσθ̃(q, d, σ)

(d − λσ)(θ − θ)

}
.

It is immediate that at λ = 0 the effect of the disclosure cap on the level of innovation

27Because a consumer is of zero measure in our setting, the total amount of personal information
provided by all users and the total amount of information provided by all users but one coincide.

28Note that ∂θ̃(q,d,σ)
∂d = − θ̃(q,d,σ)

d−λσ , which implies that DP (q, d, σ) + d ∂DP (q,d,σ)
∂d can be rewritten as

θ̃(q, d, σ) − θ

θ − θ
− d

θ̃(q, d, σ)
(d − λσ)(θ − θ)

= −θ(d − λσ) + λσθ̃(q, d, σ)
(d − λσ)(θ − θ)

,

which is then used to obtain (8).
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is negative, whereas it is positive at λ = 1. Therefore, the insight that a disclosure cap
has a positive (resp. negative) effect on innovation if the share of privacy-sensitive users
is large (resp. small) enough continues to hold when accounting for the presence of direct
network externalities.

iii. Positive effect of disclosure on users

Our baseline model abstracts away from any positive effect of disclosure to third parties
on users. Assume now that disclosure brings about benefits to users which we capture
through an additional term µdx in the consumer utility function where µ ≥ 0.29 Thus,
the net cost of disclosure for consumer of type θ is (θ − µ) dx.

Note that the equivalent of (6) in this case is given by30

(9) − ∂2Π̃
∂q∂d

= −rγ
{

(1 − λ) − λ
θ − µ

θ − θ

}
.

The value of expression (9) at λ = 0 is always positive. This implies that the finding that
a disclosure cap has a negative effect on innovation if the share of privacy-concerned users
is sufficiently small still holds in this setting. However, the value of expression (9) at λ = 1
can be either positive or negative depending on the size of the benefit µ. Specifically, it
is positive (resp. negative) if µ is lower (resp. higher) than θ. This means that the result
that a disclosure cap has a positive effect on innovation if the share of privacy-concerned
users is sufficiently large carries out to this setting if the benefit from disclosure µ is
sufficiently small, but does not otherwise.

VII. Conclusion

In this paper, we study how a privacy regulation taking the form of a cap on data disclosure
affects a monopolist’s incentives to invest in quality-enhancing innovation and consumer
surplus. Our analysis has implications for the regulation of dominant firms’ disclosure
policy, which attracted policymakers’ attention in recent years.

29We assume for the sake of exposition that µ is the same for all users.
30Recall that ∂θ̃(q,d)

∂d = − θ̃(q,d)
d , which implies that DP (q, d) + d ∂DP (q,d,σ)

∂d can be rewritten as

θ̃(q, d) − θ + µ

θ − θ
− d

θ̃(q, d)
d(θ − θ)

= −θ − µ

θ − θ

which is then used to obtain (9).
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We find that the impact of a reduction in disclosure level on the firm’s optimal choice
of innovation depends on the share of privacy-concerned users. Specifically, it shows
that the trade-off between innovation and privacy is likely to exist if there is a large
share of consumers that are (essentially) privacy-unconcerned. In this case, innovation is
likely to decrease with the introduction of stricter privacy regulation and the desirability
of regulation for users depends on whether gains from a cap on information disclosure
more than compensate for the losses from a lower level of innovation. However, if the
share of privacy-concerned consumers is large enough, the trade-off between privacy and
innovation may not exist. Therefore, in this case, regulators should be more confident
about the desirability of privacy regulation for consumers.

In addition to a disclosure cap, another policy that can be explored using our framework is
the taxation of disclosure revenues. The taxation of digital monopoly platforms has been
studied, for instance, by Bloch and Demange [2018] and Bourreau et al. [2018]. However,
to the best of our knowledge, no paper has considered the impact of taxation on the firm’s
incentives to invest in innovation. A (unit) tax on the monopolist’s disclosure revenues
would translate to a reduction in the value of information in our model. Because this
policy affects both the innovation and disclosure levels of the firm, the impact of a tax is
a priori unclear.
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A. Appendix

i. Proof of Lemma 1

The first part of the proof is omitted as it follows from the discussion in the main text.
The second part of the proof follows from the fact that

∂x̃(θ, q, d)
∂d

= −θ < 0,

∂x̃(θ, q, d)
∂θ

= −d < 0.

whenever x̃(θ, q, d) ∈ (0, 1).

ii. Proof of Lemma 2

Omitted as it follows from the discussion in the main text.
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iii. Determination of qM(d)

Rearranging and simplifying (3), we obtain the following

∂Π(q, d)
∂q

=
dλr

γ
(

1−α−
√

2(K−βq−v)+γq

d
− θ

)
+

√
2(K−βq−v)

(
γ+ β√

2(K−βq−v)

)
d


θ − θ

+ γd(1 − λ)r − q

= rdγ − λr(β + γ(1 − α − dθ + γq))
θ − θ

− q = 0

(10)

Solving for q, we obtain

(11) qM(d) = r(γd(θ(1 − λ) − θ) + λ(γ(1 − α) + β))
θ − θ − γ2λr

.

Proof of Proposition 1

The result easily follows from (4).

Proof of Proposition 2

Omitted as it directly follows from the discussion in the main text.
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