

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Scienze Economiche “Marco Fanno”

FROM PLANNING TO MATURE:
ON THE DETERMINANTS OF

OPEN SOURCE TAKE OFF

STEFANO COMINO
Università di Trento

FABIO M. MANENTI
Università di Padova

MARIA LAURA PARISI

Università di Brescia

January 2007

“MARCO FANNO” WORKING PAPER N.35

From Planning to Mature: on the Determinants of

Open Source Take Off

Stefano Comino∗ Fabio M. Manenti† Maria Laura Parisi‡

January 2007

Abstract

Open source is an example of user-centric innovation initiated by an individual or group of
users to satisfy their specific needs; the more a software evolves towards a stable release able to
address the requirements of its developers, the more successful the project. In this paper we use
a large data-set obtained from SourceForge.net to estimate the impact of observed project char-
acteristics on the evolution of the source code from a preliminary release to its mature version.
We show that while projects distributed under highly restrictive licensing terms (GPL) have a
significantly smaller probability of reaching a stable release, applications towards sophisticated
users have a larger probability of evolving in the development status. Interestingly, we find
that the size of the “community of developers” increases the chances of progress but this effect
decreases as the community gets larger, a signal of possible coordination problems. Finally, we
show that the determinants of the development stage of older projects differ significantly from
those of newer projects, thus supporting the common perception of open source as an extremely
dynamic phenomenon.

Keywords: software market, open source software, development status, intended
audience, license

JEL classification: O38, L51, L63.

∗Dipartimento di Scienze Economiche, Università di Trento, Via Inama 5, 38100 TRENTO (Italy), Tel. (39) 0461
882221, email: stefano.comino@economia.unitn.it

†Corresponding author: Dipartimento di Scienze Economiche “M. Fanno”, Università di Padova, Via del Santo
33, 35123 PADOVA (Italy), Tel. (39) 049 8274238, Fax. (39) 049 8274211, email: fabio.manenti@unipd.it

‡Dipartimento di Scienze Economiche, Università di Brescia, Via San Faustino 74/b, 25122 BRESCIA (Italy), Tel.
(39) 030 2988 826, email: parisi@eco.unibs.it

1 Introduction

In recent years, the traditional paradigm of software innovation based on intellectual property

rights has been challenged by the emergence of the Open Source (OS hereafter) phenomenon. The

effectiveness and the general appeal of this alternative mode of software production have attracted

considerable attention. An increasing number of studies and public debates have been devoted to

understanding its underlying structure and to assessing the potential benefits of a more widespread

diffusion of open source.

According to von Hippel (2005), OS is an example of user-centric innovation where an individual

or group of users initiate a project because they expect to benefit from using the software they

develop rather than from selling it. From an economic point of view, OS software is a privately

provided public good ; it is the result of private efforts of developers who devote their time to writing

the source code and it is non-excludable and non-rival.1 Non-excludability is guaranteed by OS

licences which ensure that the source code is kept in the public domain; OS licenses are so crucial

that a software is defined as open source only when it is distributed under a licensing scheme that

satisfies the criteria set by the Open Source Initiative (see the OSI web site, www.opensource.org).

Furthermore, being an information good, software is non-rival since it does not depreciate with the

number of users who download it.

In this paper, we conduct an empirical analysis aimed at evaluating the impact of a series of

different characteristics of an OS project on its probability of success. Our analysis differs from

the existing studies on the same topic in two main respects. First, we define project’s success in

terms of the evolution of the source code released to the community: a project is “fully” successful

when its code reaches a stable or mature release. Our measure seems natural given the user-centric

characteristic of OS projects: the more a software project evolves towards its final release, the

better it addresses the specific needs of its developers. Second, we employ an extremely large data-

set extracted from SourceForge.net (SF hereafter), the most extensive available repository of OS

projects. In this way, we are able to exploit a very comprehensive set of information on the OS

phenomenon, thus notably reducing the risk of a sample selection bias.

We find that the licensing terms under which a code is released, together with the project’s
1For comprehensive surveys of the literature on the economic issues related to OS software see Lerner and Tirole

(2002), Bonaccorsi and Rossi (2003b) and Rossi (2004).

1

characteristics such as the age of the project, the audience the software is intended for or the

content of the software, are key drivers for project evolution. More specifically, we show that a

project distributed under a licensing scheme that places severe limitations on derivative works of

the software has a significantly smaller probability of evolving towards a stable release. We show

that applications for sophisticated users have greater chances of reaching an advanced development

stage, while applications for less sophisticated users are less likely to evolve towards a mature

release. Interestingly, the size of the “community of developers” has a positive but non-linear effect

on the evolution of software code. Finally, we find that the impact of projects characteristics on

the likelihood of success differs substantially between older and newer projects. In particular, we

find that for newer projects the type of license seems to play a less relevant role than for older ones.

The paper is organized as follows: in Section 2, we discuss how the issue of OS software success

has been studied in the literature and how our contribution adds to this literature; we formulate

various testable hypotheses on the determinants of the evolution of OS software code. Section 3

presents the data and the methodology used for the estimations while in Section 4 we provide and

discuss the results of the estimation. In Section 5 we check the robustness of our results and Section

6 concludes.

2 Theory and hypotheses

2.1 What is OS success? A survey of the literature

Different measures to define the success of open source projects have been proposed in the literature.

Moving from the more recent contributions, these can be classified into three categories: i) software

use, ii) size of the community and/or its level of activity and iii) technical achievements of the

project.

According to the first two categories, an OS software is successful when it is widely adopted

among users or when a large and active community of developers contributes to its production. In

Fershtman and Gandal (2004) software success is measured in terms of output per contributor, that

is the average number of source code lines written by each contributor. The analysis is based on a

sample of 71 open source projects observed during a period of eighteen months, and it shows that

output per contributor is significantly higher when the software is distributed under non-restrictive

2

licensing terms. A similar result is obtained by Stewart et al. (2005) in a study on 138 open source

projects registered on Freshmeat. They measure project success based on the number of subscribers

associated with a project, and find that this number is larger when the software is released under

non-restrictive schemes and sponsored by non-market organizations (e.g. Universities).

The third category of software success includes several possible indicators. Crowston et al.

(2003) consider a software successful when its source code is of high quality, e.g. it is highly modular,

correct and maintainable.2 Grewal et al. (2006) focus on the commits to the Concurrent Versioning

System (CVS), that is, they measure the technical achievements in terms of the number of new

releases of the code that the manager uploads to the CVS. The authors study the relationship

between organizational issues and software success; they focus on how projects are, to various

extents, interconnected, the so-called “network embeddedness”; based on a sample of 108 projects,

they find that network embeddedness positively affects software success.

2.2 Working definition of OS success and hypotheses

Open source is a typical example of user-driven innovation, usually initiated by an individual or

a group of users looking for new or additional software functionalities. After a planning phase,

the development of a software proceeds through several stages: from the release of intermediate

beta-versions up to the latest completion of a mature software. Since the project originates from

a specific need of an individual or group of developers, its evolution towards a final/stable version

can be considered a natural measure of success, i.e. when the needs of the initiators are effectively

satisfied. Therefore, we measure project success in terms of the development stage that it has

reached. Following the above classification, this definition of success belongs to the third category

of “technical achievements of the project” and it is in line with the one used in Grewal et al. (2006).

Various characteristics of an OS project are relevant in determining the likelihood of its success;

in what follows, we present a series of testable hypotheses that can be figured out from the most

recent debate on OS.

Licences are recognized as one of the fundamentals of open source; currently, according to the
2It should be noted that quality in software is a very controversial matter. Software quality is measured in terms

of conformance to certain requirements; the set of requirements is very wide and it may go from mere aesthetic issues,

such as the elegance of the code, to more practical evaluations such as readability, fault-tolerance and/or absence of

bugs.

3

OSI definition, more than 40 different schemes are defined as open source licences. OS licences are

usually classified according to the restrictions that they impose on derivative works (Bonaccorsi

and Rossi, 2003a; Rosen, 2001; Lerner and Tirole, 2005). The most restrictive licence is the General

Public License (GPL); according to this scheme, a software derived from other GPLed software or

simply including lines of code released under GPL, must be distributed under the same licensing

terms (inheritance or copyleft property). The GPL is by and large the most popular OS software

licensing scheme; nevertheless, the strong restrictions it imposes have induced the OS community

to develop other, less restrictive, licences. The Lesser GPL (LGPL) and the Berkeley Software

Distribution (BSD) licences are the two most popular alternatives to the GPL. The LGPL has

mainly the same characteristics as the GPL apart from the fact that it allows for the use of libraries

developed under LGPL in other software programs, without modifying the licence terms of these

latter. The BSD licence is even less restrictive since it allows the licensee to modify the source code

and even to create proprietary versions of the software (non-copyleft licence).

In principle, the degree of restrictiveness may have either positive or negative effects on the

success of a project. As discussed by Lerner and Tirole (2005) and West (2003), a more restrictive

license might be more likely to attract the OS community, especially the more “idealistic” program-

mers. On the other hand, less restrictive licenses potentially increase the monetary rewards that

can be obtained, thus attracting profit-motivated developers. Previous empirical studies suggest

that the negative effect of restrictiveness on project technical achievements dominates (Lerner and

Tirole, 2005; Fershtman and Gandal, 2004; Stewart et al., 2005); therefore, we test for the following

hypothesis:

Hypothesis 1. Projects distributed under highly restrictive terms are less likely to reach an ad-

vanced stage of development.

Various studies have pointed out that the vast majority of successful open source software are

applications for sophisticated/high-end users while it is hard to find successful OS applications

for less sophisticated users (Raymond, 1999; Berlecon, 2002; Comino and Manenti, 2005); notably,

Healy and Schussman (2003) show that while end user applications are the most downloaded OS

software, developers’ efforts mainly focus on “behind the scenes system applications, programming

environments or utilities providing basic functionalities to an operating system”. According to this

observation, we might expect that:

4

Hypothesis 2. Applications for sophisticated users are more likely to reach an advanced stage of

development.

Since Raymond’s seminal paper “The Cathedral and the Bazaar”, a large part of the literature

has focused on the role of the community in the production process of OS software; the underlying

idea is that the larger the community of developers, the greater the likelihood that the project

will succeed. However, a closer look at the data shows that the presence of a large community

is not a necessary condition for project development. Healy and Schussman (2003) note that the

distribution of projects according to the number of developers is highly skewed, with a median

number of one. Similar findings are also in Gosh and Prakash (2000) and in Krishnamurthy (2002).

It seems therefore of interest to test for the following hypothesis:

Hypothesis 3. The larger the community of developers, the more likely it is that a project will

reach an advanced stage of development.

Another interesting characteristic of the open source movement that has been frequently pointed

out refers to its evolving nature. Although it is extremely difficult to figure out a unique pattern

in the evolution of the OS phenomenon, various influential authors have suggested some possible

evolving paths. For instance, Raymond (1998) observes that the historic evolution of OS software

has come in different waves. During the seventies, most of the time and effort of programmers were

devoted to developing games and demos; in the eighties it was the turn of Internet tools while in the

nineties the interest shifted towards operating systems. The prediction for the future is that efforts

will be concentrated on “the last virgin territory” i.e. the development of programs/applications

for non-techies.

The ever changing nature of open source is also recognizable when looking at the “actors” of the

community. While in the early days of the movement the community was based on a limited number

of software experts devoting their spare time to programming new artifacts, nowadays the for-profit,

commercial world is heavily involved in the open source arena. According to Hecker (1999), many

commercial firms have entered the software industry using OS models of production and profiting

from related products; on the same line, West (2003) and Bonaccorsi and Rossi (2003b) have

pointed out that the very basic nature of the OS phenomenon based on altruistic motivations or

motivations other than profit seems to be under pressure due to an ever more substantial presence

5

of commercial actors on the open source stage.3 It seems therefore apparent that since its origin,

the OS phenomenon has experienced dramatic changes in its nature and characteristics, hence we

might expect that even in a shorter/medium run:

Hypothesis 4. The determinants of the development stage of older projects differ significantly

from those of newer projects.

3 Data and Methodology

The dataset we employ in our analysis consists of all OS projects that were hosted on Source-

Forge.net in December 2004.4 SourceForge.net is the largest existing online platform providing OS

developers with useful tools to control and manage software development. Project administrators

register their software project on SF and provide the required information which is then available

on-line. Registration is for free and administrators are encouraged to register their projects as well

as to maintain all the relevant information up-to-date.

For each registered project, SF provides the following information:

- development status: information regarding the current development stage reached by the

project. Each project can be classified into one of six different levels, from the earliest stage of

production to a fully developed software: planning, pre-alpha, alpha, beta, production stable

and mature. Even though the meaning of some levels is self-evident, no formal definition of

these six stages is available on SF;

- registration date: date at which the project was registered on SF;

- number of developers that are currently contributing to the development of the project;

- number of bugs, patches and feature requests:5 developers and users may submit bug reports,

feature requests and source code patches; for each project on SF, a dedicated tracker system
3For a recent analysis of the strategies adopted by profit-oriented firms in the OS world, see Bonaccorsi et al.

(2006).
4We employ the dataset crawled by Dawid Weiss; data are publicly available on www.cs.put.poznan.pl/dweiss/ and

Weiss (2005) provides full documentation of the crawling system.
5The feature request tracker allows the user to suggest or to require enhancements of the software. The patches

are lines of code that can be submitted both by users as well as by developers.

6

automatically updates these data so that information about the total number of bugs, patches

and feature requests submitted since the inception of the project is available;

- license: the licensing terms under which the code is released and distributed;

- intended audience: information about software audience. SF has adopted the following cat-

egories: end-users, developers, system administrators, information technology, customers,

finance, education, manufacturing, research, telecommunications, and others. Many projects

fall into more than one category, meaning that they may be of interest to more than one type

of audience;

- topic: information about software content. A project may be dedicated to: communications,

database, desktop environment, education, games-entertainment, Internet, multimedia, office-

business, science-engineering, security, software development, system management, terminals

and text editors;

- programming language used to write the program and the operating system that supports it

(i.e. the operating system which is compatible with the software).

Since its beginning in 1999, SF requests each project administrator to provide all this infor-

mation about her/his software; nevertheless, unlike development status and topic for which classi-

fication appears to be stable through time, SF has slightly modified the classification adopted to

describe the project’s intended audience. Up to 2002, SF grouped projects into only three categories

(apart from the residual one, called “others”): end users, developers and system administrators.

Since 2002, 7 new categories have been added to the list: information technology, customers, fi-

nance, education, manufacturing, research and telecommunications. In Section 3.2 we will discuss

how we have dealt with this change in the classification of intended audience.

The overall sample is composed of 88192 projects. In Figure 1 we group projects according to

their age (measured as the difference between the data collection date and the project registration

date). The oldest project was registered in November 1999, 5.12 years before the data collection

date; the average project age is 2.05 years. The figure highlights a dramatic increase in the number

of registrations since the third year of activity of SF, with 15609 projects with an age between 3

7

and 4 years, and with more than 21000 projects steadily registered during each of the following

years.

Fig 1: Age of the projects Fig 2: Number of developers per project

Figure 2 shows that the distribution of projects in terms of the number of developers is highly

skewed. Projects with just one developer account for 66.9% of the whole sample, and more than

80% of the projects have at most two developers. These figures confirm the findings of Gosh and

Prakash (2000), Krishnamurthy (2002) and Healy and Schussman (2003) who have already noticed

that the vast majority of open source software is designed and written within very restricted circles

of developers. In our sample, projects with large communities, for instance more than 16 developers,

account for less than 1% of the entire population. The largest community is made of 274 developers.

Table 1 provides project distribution percentages according to development status, intended

audience, topic and licensing terms. The table largely confirms the main characteristics of the open

source movement found in previous studies (Lerner and Tirole, 2005):

1. apart from mature ones, which account for only 1.6% of the entire sample, projects are quite

uniformly distributed across the various development stages;

2. projects geared towards developers represent more than 40% of the whole sample and this is

the most common intended audience;

3. the most popular OS topics are related to software development tools, the Internet, games

and systems development (kernels, hardware, networking), software for communications and

multimedia;

8

4. highly restrictive licenses (i.e. GPL) represent by and large the most popular licensing schemes

among project leaders.6

Table 1: Percentage distribution of projects characteristics

Development Intended Topic License

Status Audience

planning 20.8 % end-users 25.1 % communications 7.7 % highly restrictive 66.5 %

pre-alpha 18.4 % developers 44.3 % database 2.5 % restrictive 14 %

alpha 17.5 % system ad 22.9 % desktop 1.5 % unrestrictive 17.1 %

beta 21.9 % others 7.6 % education 1.5 % others 2.4 %

production stable 19.7 % games 10.9 %

mature 1.6 % Internet 11.6 %

multimedia 8.6 %

office 4.2 %

science 7.5 %

security 1.8 %

sw tools 22.4 %

system 15.6 %

terminals 0.8 %

text editors 3.2 %

The next two tables show percentage conditional distributions of categories of intended au-

dience. Table 2 shows the percentage distributions of intended audience conditional to the most

common categories of software topics. Apart from software tools that are extremely skewed towards

developers (89.47%), such skewness is not so prominent for the rest of conditioning topics. In par-

ticular, communication, system and Internet tool projects give to various extents rather uniform

distributions to the three categories of intended audiences; as far as games, multimedia tools and

science is concerned, end users and developers are the mode.

Table 3 analogously shows that while intended audience is rather uniformly distributed condi-

tional to highly restrictive licences (mainly the GPL), categories distributed under less restrictive

licences are quite skewed towards developers.
6Following Lerner and Tirole (2005), in Table 1 licenses have been classified into highly restrictive licenses (GPL

like), restrictive (LGPL like) and unrestrictive licenses (BSD like).

9

Table 2: Conditional to Topic distributions of Intended Audience

Intended Audience

Developers End Users System Ad Total

Topic

Communication 29.7 40.0 30.3 100
Games 36.3 58.0 5.7 100
Internet 42.4 23.9 33.7 100
Multimedia 44.4 50.3 5.3 100
Sw tools 89.1 1.4 9.5 100
System 32.8 12.6 54.6 100
Office 34.9 47.6 17.5 100
Science 65.7 29.6 4.7 100
Others 42.9 36.0 21.1 100

3.1 Caveat: the quality of the data

The dataset we employ is extremely large and contains detailed information; nevertheless it presents

some potential shortcomings that must be discussed before proceeding with the estimation (Crow-

ston and Howison, 2004). First of all, we need to observe that most of the available information

is based on declarations of the project administrators rather than on objective measures. In some

instances, in particular in the case of the project development status, these declarations depend

on the subjective evaluation/perception of the project leader. Even though we are not able to

verify the quality of this information, we believe that project leaders do not have incentives to

misrepresent them or not keep them up-to-date. Project leaders wish to persuade other developers

to contribute to the software code; the strategy of making the project appear to be something

different from what it is might attract the interest of developers initially but it is unlikely to induce

them to contribute: as soon as they get involved, developers will inevitably discover the project’s

real conditions (Lerner and Tirole, 2005). SF itself in various documentation encourages leaders

and administrators to maintain a correct behavior.

Second, a frequently claimed limitation of SF data relates to the alleged large number of projects

that have been registered but that are actually abandoned (and which the project leaders do not

bother to cancel from SF). A closer look at our dataset seems to confirm this observation: around

10

Table 3: Conditional to License distributions of Intended Audience

Intended Audience

Developers End Users System Ad Total

Highly restrictive 38.9 33.6 27.5 100
Restrictive 74.7 11.7 17.6 100
Unrestrictive 57.5 17.7 24.6 100
Others 58.0 17.2 24.8 100

80% of the projects do not show any interaction within the community of developers, having

recorded no bugs, patches or feature requests since their registration. In our view, the absence of

any activity has two possible explanations. First, it may be that the project is not able to attract

the interest of other developers. Therefore, the project is either completely abandoned or it is

carried on by the original developer (or developers, if more than one) with no contribution from or

interaction with the rest of the community. In both instances, such a project is meaningful for our

purposes; in particular, an abandoned project is a failure in the sense that it does not make any

progress in the development stage and, as such, it is crucial to include it in our empirical exercise.

The second possible explanation for the absence of any activity recorded on SF is that the

project has its own web page; that is, the project is listed on SF but actually hosted somewhere

else.7 For this type of project the information we have gathered on the stage of development may

not be the actual one. Unfortunately there is no way of disentangling unattractive/abandoned

projects from those that are hosted elsewhere; nevertheless, the projects that have their own web

site should not distort the estimates unless the vector of characteristics of these projects is biased

in some way.8

7To have an idea of the magnitude of the “listed but not hosted” phenomenon, we randomly extracted 100 projects

from SF; we found that only 8% of these projects has its own homepage outside SF that provides file downloading

and bug reporting facilities. However, in most cases there is a clear link between SF and the outside homepage,

suggesting that the information available on SF is maintained up-to-date.
8For example, we may have a problem if the projects with their own external web site are concentrated in the

category of, let’s say, end users. In this case our estimations about the impact of intended audience on project

development stage would be incorrect. Nevertheless there are no a-priori reasons to believe that this indeed occurs

for any specific characteristic.

11

In section 5 we discuss a series of control estimations to check the robustness of our main

results.

3.2 Econometric specification

We measure project success in terms of the development of its software code from a preliminary to

a mature release. The econometric model is built around the following latent regression:

Y ∗
i = β′xi + γ′Di + δ′Di NEWi + εi (1)

εi ∼ iid N(0, σ2)

where Y ∗
i is the unobserved continuous degree of development reached by project i, and xi is a

vector including the following project characteristics:

- AGEi is the age of the project measured as the difference between the data collection date

and the project registration date;

- DEVi and DEV 2
i are the number of developers contributing to project i and its square

(controlling for potential non-linearities);

Di is a set of dummy variables such as:

- HIRESTi takes value 1 when project i is distributed under highly restrictive licensing terms,

that is under the GPL, and it is 0 otherwise;9

- the audience for which the software is intended (see Table 1);

- the software topic (see Table 1);

- the programming language used to write the software (C++, C, Java, PHP, PERL, Python,

Javascript, C#, Visual Basic, Delphi, Unix Shell and Assembly);
9We treat the licensing scheme as an exogenous variable that is chosen at the beginning of the project. Even

though changing the licensing terms in due course is in principle possible, in practice, to the best of our knowledge,

this seems to be a very unfrequent event. In fact, as discussed in Lerner and Tirole (2005) the decision to switch the

license type is extremely complicated, and it also raises legal concerns.

12

- the operating system compatible with the software (Posix, MS Windows, OS independent,

PDA and Apple-MAC.10)

Moreover, we interact the vector Di with a dummy variable NEWi that takes value 1 when

project i is less than two years old.11 The test on the δ′ coefficients allow us to check whether the

impact of the dummies Di on project success differs in a significant way between older and newer

projects. Note also that for newer projects the coefficients of the dummies are given by γ′ + δ′.

The observed dependent variable in our data is the development stage of the project classified

into six discrete and successive categories: 1-planning, 2-pre-alpha, 3-alpha, 4-beta, 5-production

stable and 6-mature.12 Therefore, what we observe is Yi such that:

Yi = 1 if Y ∗
i ≤ α0

Yi = j if αj−1 < Y ∗
i ≤ αj for j = 1, . . . , 4

Yi = 6 if Y ∗
i > α4

where α0 to α4 are unobserved thresholds delimiting the steps needed by a project to jump to the

next degree of development. They are estimated together with β′, γ′, and δ′.

Given the nature of the dependent variable, discrete and ordinal, we estimate a univariate

ordered probit model. This is by now a standard maximization problem, for which Maddala (1983)

derived the first order conditions.

As pointed out above, in 2002 SF added seven new categories to the list of intended audiences.

This change in the classification may pose a problem when estimating the impact of intended

audience on project development status. In order to reconcile the new with the old classification,
10The Posix category groups: Linux, UCLinux, all the BSD platforms (i.e. FreeBSD/NetBSD/OpenBSD), Solaris

HP-UX, BeOS, SGI IRIX, SCO and IBM AIX. The MS Windows category includes: MS-DOS, MS Windows 3.X,

32-bit MS Windows (i.e. 95/98/NT/2000/XP), WinXP, Win2K, WinME, Cigwin, MS Windows Server 2003, WinE

and MinGW/MSYS. The PDA category groups: SymbianOS, WinCE and Palm OS.
11We chose 2 years as the closest integer number to the average project age which is 2.05. Note that qualitatively

identical results are obtained by setting this threshold level at values in the neighborhood of 2. The results are

available upon request from the authors.
12Note that in only a few cases administrators classified their projects into more than one development status

category. As a rule of thumb, in the estimations we used only those projects that have been classified into at most

three consecutive categories. For projects classified into two or three consecutive development stages we considered

the most advanced category as the actual stage of development reached by the project.

13

we should be able to assign projects that now fall into one of the new categories to one of the old

categories. This is easy for those projects belonging to one of the new as well as to one of the

original categories: in this case we have simply assigned these projects to the latter (old) category.

On the contrary, those projects falling only into new categories have been dropped from the sample,

because there is no clear way of associating these observations with any of the old categories of

intended audience.

4 Results

The aim of our empirical exercise is to estimate the impact of observed OS project characteristics

on its development status; Table 4 presents the estimated coefficients of interest in our model

specification. The regression includes other control variables like programming languages and

operating systems.

The bottom of the table shows a goodness of fit χ-square test and a Link specification test

(Pregibon, 1980). The χ-square tests whether the predicted probabilities in the six categories are

equal to the true ones; the value of this test is 10.69 with p-value equal to 0.06, thus indicating

that the model fits the data reasonably well. The Link specification test indicates that the model

is correctly specified.

Table 4: The Determinants of Development Status

Dependent: Development Status
AGE .1339*** (.0065)
DEV .0357*** (.0019)
DEV2 -.0001*** (.00002)
License
HIREST -.1156*** (.0153)

HIRESTnew .1076*** (.0210)
Topic
Communication -.0640*** (.0197)

Communicationnew .0574** (.0285)
Games -.2352*** (.0213)

Gamesnew -.0479 (.0304)
Internet .1049*** (.0174)

Internetnew -.0074 (.0246)
Continued on next page...

14

... Table 4 continued
Multimedia .1448*** (.0209)

Multimedianew -.0112 (.0298)
Sw tools .2134*** (.0200)

Sw toolsnew -.0633** (.0282)
System management .0396** (.0181)

System managementnew .0122 (.0262)
Office -.1180*** (.0336)

Officenew .0523 (.0472)
Science .0900*** (.0242)

Sciencenew .0009 (.0362)
Intended Audience
End users .0023 (.0154)

End usersnew .0690*** (.0225)
Developers -.0830*** (.0151)

Developersnew .1732*** (.0214)
System administrator .1159*** (.0178)

System administratornew .0591** (.0268)
α0 -.7986 (.0268)
α1 -.2176 (.0265)
α2 .2517 (.0265)
α3 .9101 (.0267)
α4 2.3243 (.0300)
Wald test (Licence) 26.22 [0.000]
Wald test (Intended Audience) 70.93 [0.000]
Wald test (Topic) 31.05 [0.005]
pseudo-R2 0.0241
χ-square test 10.69 [0.06]
link-test -.0055 [0.843]
Num of obs. 45100

Regressions are conditioned also on programming language and

operating system. Robust standard errors in parentheses;
∗∗∗ 1%, ∗∗ 5% and ∗ 10% refer to the significance levels for

parameters’ estimates. α0, α1, α2, α3 and α4 are cutoff points.

Wald tests are for the stability of the parameters between

NEW and OLD projects; p-values in brackets.

From this table, the following considerations can be derived:

1. The dummy variable controlling for highly restrictive licenses, HIREST, has a negative and

significant coefficient; this result confirms Hypothesis 1 and is in line with previous studies

15

(Fershtman and Gandal, 2004; Lerner and Tirole, 2005; Stewart et al., 2005).13 It is worth

noting that the test of significance on the parameter HIRESTnew indicates that new and old

projects do not have the same coefficient estimate for the highly restrictive license dummy

(value of the test: 26.22, p-value: 0.00); for newer projects the coefficient of the license dummy

is −0.008, i.e. the sum of HIREST and HIRESTnew coefficients. A simple t-test shows that

this coefficient is not significantly different from zero thus suggesting that for newer projects

the type of license does not have a significant impact on projects success;14

2. Hypothesis 2 suggests that applications directed towards sophisticated users are generally the

more successful ones. From the SourceForge list of software topics it is not always clear which

projects are directed towards sophisticated or unsophisticated users. The categories of “Soft-

ware tools” (i.e. tools for software development) and “System management” certainly identify

applications intended for sophisticated users, while “Games” and “Office” refer to software

suited for unsophisticated users; the other topic categories cannot be clearly associated with a

given type of user. The results shown in Table 4 seems to support Hypothesis 2: the dummies

controlling for Software and System management applications have positive and significant

coefficients, while the coefficients of Games and Office are negative and significant.

3. Hypothesis 3 is supported by the data: the size of the community, here measured by the

number of developers, has a positive impact on project development status. It is interesting

to note that the size of the community affects in a non-linear way the likelihood of reaching

an advanced stage of development. Indeed, the coefficient of DEV2 is negative, even though it

has a very small magnitude. This suggests that the contribution of an additional developer to

the productivity of the community of developers working on a certain project decreases with

the size of the community; a possible interpretation of this result relies on coordination issues:
13According to Lerner and Tirole (2005) a more restrictive licence may be chosen when the project has a limited

community appeal (e.g. when the community distrusts the project leader); if this is indeed the case, our estimations

about the impact of license restrictiveness should be considered with caution due to a problem of self- selection.

A way to test for self-selection is to check whether GPLed and non-GPLed projects follow different patterns in

their code evolution. We ran separate regressions for GPLed and non-GPLed projects and we found that the sign

and significance of the parameters are largely the same; this seems to suggest that self-selection does not have a

statistically significant effect.
14The standard error of the license dummy for newer projects is 0.016.

16

the larger the community of developers, the more complex its organization and governance.

4. In order to control for the evolving nature of OS, we have included the interaction of the

regressors with the dummy variable NEWi in the estimation. The Wald test for parameter

stability suggests that, overall, the impact of the licence terms, of topic and of intended audi-

ence on project development stage is significantly different between older and newer projects.

This result supports Hypothesis 4 and suggests that the OS phenomenon has changed through

time. However, looking at the sign and significance of these interactions it is difficult to pin-

point a clear direction in the evolution of the OS.

5. As far as the intended audience characteristics are concerned, projects geared towards system

administrators have greater chances of reaching an advanced development stage.

6. As expected, the coefficient of the variable AGE is positive and significant: the older the

project, the more advanced its development stage.

5 Robustness

In order to control for the robustness of our results and to deal with the concerns related to the

quality of the data, we ran two complementary estimations: equation (1) was estimated a) by

dropping from the sample the 5%-largest projects measured in terms of the number of developers,

and b) by aggregating the development status of the projects into four broader categories: 1 if the

project is classified as planning, 2 if the project is classified as pre-alpha or alpha, 3 if it is classified

as beta and 4 when the project falls into either the production stable or the mature category.

As discussed in Section 3, one of the main concerns about the use of the data collected on SF

is the so- called “listed-but-not-hosted” phenomenon: projects may decide to create their own web

sites, omitting to update the information on their development stage reported on SF. Although

there is no clear relationship between the project’s characteristics and the fact that it has its own

web page, two patterns seem reasonable: projects that have reached an advanced development stage

or projects that have a large community of developers may need more sophisticated and specific

on-line facilities than those provided by SF. Therefore, the “listed-but-not-hosted” concern may be

a real issue, if any, in relation to projects that have reached an advanced development stage or that

17

are characterized by a large community of developers.

In regression a) of Table 5 we dropped from the sample the top 5% projects in terms of the

number of developers; we therefore replicated the estimation of equation (1) focusing on projects

with a “small community of developers”, that is, those projects for which the “listed-but-not-

hosted” should be a less relevant issue.

Regression b) was included in order to deal with the second pattern according to which a project

creates its own web page. Consider a “production stable” project that creates its own web page

and that, at the same time, omits to update the information on SF. In this case, if the project goes

forward to the next stage, i.e. it becomes mature, then information on SF would not be correct:

the project is observed as “production stable” while it is actually “mature”. By aggregating the

more advanced stages of development we reduce these possible shortcomings of the database, even

though we base our estimation on a rougher classification for the development stage.

Employing broader categories of development status is also helpful to control for another po-

tential pitfall of the database. As discussed above, it is not easy to pinpoint what makes a project

belong to two adjacent categories of development stage: by aggregating successive categories we

also control for this possible source of distortion.

The results reported in Table 5 are in line with those obtained in our full-sample regression

of Table 4: the signs and the statistical significance of all the coefficients do not show relevant

differences in the three estimations.15 The stability of results in the three sets of regressions

strongly supports our full-sample estimation and is a confirmation of the quality of the dataset;

therefore we can claim that the “listed-but-not-hosted” phenomenon either is not an issue (i.e. even

those projects that have their own web page continue to keep the information on SF up-to-date)

or it does not distort the results of our analysis.16

15The main difference is in the impact of the number of developers on development status: in regression a), DEV2

positively affects the likelihood of reaching an advanced development status, rather than negatively as in Table 4, thus

suggesting an increasing marginal impact of an additional developer. This is not surprising: when the community is

not big enough, coordination is not a problem and having one more developer working on a project may have a more

than proportional impact on the probability of its success.
16We have also re-run our main regression removing from the sample the “autistic” projects i.e. those projects that

have only one developer and that do not show any interaction with the community. For these projects the available

information might be less reliable since it is not filtered by the community. Again, the sign and significance of the

parameters of interest do not change with respect to our main regression.

18

Table 5: Robustness

Dependent: Development Status
a) Restricted b) Aggregated

sample develop. status
AGE .1270*** (.0067) .1328*** (.0067)
DEV .0088 (.0174) .0396*** (.0021)
DEV2 .0053* (.0030) -.0001*** (.00002)
License
HIREST -.1071*** (.0159) -.1062*** (.0157)

HIRESTnew .0956*** (.0216) .0995*** (.0215)
Topic
Communication -.0749*** (.0204) -.0755*** (.0200)

Communicationnew .0683** (.0293) .0683** (.0291)
Games -.2257*** (.0221) -.2343*** (.0212)

Gamesnew -.0430 (.0314) -.0526* (.0305)
Internet .1087*** (.0180) .1043*** (.0180)

Internetnew -.0228 (.0252) -.0070 (.0255)
Multimedia .1415*** (.0219) .1394*** (.0213)

Multimedianew -.0158 (.0308) -.0226 (.0306)
Sw tools .2120*** (.0208) .2082*** (.0206)

Sw toolsnew -.0662** (.0290) -.0603** (.0290)
System management .0339* (.0187) .0460** (.0188)

System managementnew .0142 (.0269) .0016 (.0272)
Office -.1247*** (.0350) -.1266*** (.0343)

Officenew .0547 (.0487) .0647 (.0484)
Science .0819*** (.0254) .0763*** (.0247)

Sciencenew .0125 (.0375) .0051 (.0372)
Intended Audience
End users .0010 (.0160) .0045 (.0158)

End usersnew .0733*** (.0230) .0700*** (.0230)
Developers -.0886*** (.0156) -.0909*** (.0156)

Developersnew .1795*** (.0219) .1806*** (.0220)
System administrator .1076*** (.0184) .1203*** (.0184)

System administratornew .0679** (.0274) .0668** (.0278)
α0 -.8590 (.0320) -.7913 (.0274)
α1 -.2754 (.0317) .2559 (.0272)
α2 .1970 (.0316) .9147 (.0273)
α3 .8590 (.0318)
α4 2.2555 (.0346)
Wald test (Licence) 19.61 [0.000] 21.38 [0.000]

Continued on next page...

19

... Table 5 continued
Wald test (Intended Audience) 73.83 [0.000] 73.39 [0.000]
Wald test (Topic) 34.80 [0.002] 29.93 [0.008]
pseudo-R2 0.0208 0.0281
χ-square test 6.01 [0.305] 4.00 [0.261]
link-test 0.0556 [0.188] -.0149 [0.617]
Num of obs. 42814 45100

Regressions are conditioned also on programming language and operating system. Robust standard er-

rors are in parentheses; ∗∗∗ 1%, ∗∗ 5% and ∗ 10% refer to the significance levels for parameters’ estimates.

α0, α1, α2, α3 and α4 are cutoff points. Wald tests are for the stability of the parameters between NEW

and OLD projects; p-values in brackets.

6 Conclusions

In this paper, we have evaluated the impact of various characteristics of an OS project on its

probability of success. Our analysis adds to the existing literature in several respects. We measure

the success of a project in terms of the development stage it has reached. This seems to be an

appropriate measure of success given the user-centric innovation characteristic of OS projects, and

it is in line with the definition adopted in other studies that focus on the technical achievements

of a software. In the empirical exercise we employ a comprehensive dataset, consisting of all the

projects hosted on SourceForge.net in December 2004. Previous studies have usually focussed on

a more limited number of projects and, typically, on projects that have already reached some level

of success; by using such a large dataset, we notably reduce the risk of sample selection.

We find that projects distributed under restrictive licensing terms have a lower probability of

reaching an advanced development stage; this effect disappears for more recent projects. Applica-

tions for sophisticated users have higher chances of evolving towards a stable release. Interestingly,

we find that the size of the “community of developers” has a non-linear impact on the probability

of success of a project; the negative and significant sign of the coefficient of DEV 2 might signal

possible problems of coordination when the community of developers gets larger. Finally, we find

that the impact of project characteristics on the likelihood of success significantly differs between

older and more recent projects; nevertheless, we are unable to characterize a clear dynamic pattern

in the evolution of the OS phenomenon.

Our analysis has some limitations too. By employing a large set of data we cannot control

20

for some important determinants of software success. In particular, we do not consider different

organizational aspects of the projects that have been shown to be relevant by other studies, e.g.

the degree of modularity or the level of embeddedness of a project (see, for instance, Grewal et

al., 2006). Nonetheless, we believe that this paper may help to have a better understanding of a

complex phenomenon such as that of OS.

Acknowledgements: Paper presented at the 2006 EARIE Conference (Amsterdam) and at the

2006 Jornadas de Economia Industrial (Barcelona). We wish to thank Nicolas Garrido for the

extremely helpful discussions and Riccardo Marcon for research assistance. Financial support

from the University of Padua through the “Progetto di Ateneo” research programme is gratefully

acknowledged. The usual disclaimer applies.

References

Berlecon (2002). Free/Libre and Open Source Software (FLOSS): Survey and Study. International

Institute of Infonomics, University of Maastricht and Berlecon Research.

Bonaccorsi, A., Giannangeli, S., and Rossi, C. (2006). Entry Strategies under Competing Standards:

Hybrid Business Models in the Open Source Software Industry. Management Science, 52(7):1085–

98.

Bonaccorsi, A. and Rossi, C. (2003a). Licensing Schemes in the Production and Distribution of

Open Source Software. An Empirical Investigation. Sant’Anna School of Advanced Studies, Pisa.

Bonaccorsi, A. and Rossi, C. (2003b). Why Open Source Software Can Succeed. Research Policy,

32:1243–1258.

Comino, S. and Manenti, F. M. (2005). Government Policies Supporting Open Source Software for

the Mass Market. Review of Industrial Organization, 26(2):217–240.

Crowston, K., Annabi, H., and Howison, J. (2003). Defining Open Source Software Project Success.

Proceeding of International Conference on Information Systems.

21

Crowston, K. and Howison, J. (2004). The Perils and Pitfalls of Mining SourceForge. Proc. of Work-

shop on Mining Software Repositories at the International Conference on Software Engineering

ICSE.

Fershtman, C. and Gandal, N. (2004). The Determinants of Output per Contributor in Open

Source Projects: An Empirical Examination. CEPR Discussion Paper, 4329.

Gosh, R. and Prakash, V. (2000). The Orbiten Free Software Survey. First Monday, 5(7):1–8.

Grewal, R., Lilien, G., and Mallapragada, G. (2006). Location, Location, Location: How Net-

work Embeddedness Affects Project Success in Open Source Systems. Management Science,

52(7):1043–56.

Healy, K. and Schussman, A. (2003). The Ecology of Open-Source Software Development. Univer-

sity of Arizona, mimeo.

Hecker, F. (1999). Setting Up Shop: the Business of Open-Source Software. IEEE Software,

16(1):45–51.

Krishnamurthy, S. (2002). Cave or Community? An Empirical Examination of 100 Mature Open

Source Projects. First Monday, 7.

Lerner, J. and Tirole, J. (2002). Some Simple Economics of Open Source. Journal of Industrial

Economics, 50(2):197–234.

Lerner, J. and Tirole, J. (2005). The Scope of Open Source Licensing. Journal of Law, Economics

& Organization, 21(1):20–56.

Maddala, G. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Econometric

Society Monographs in Quantitative Economics. Cambridge, Cambridge University Press.

Pregibon, D. (1980). Goodness of Link Tests for Generalized Linear Models. Applied Statistics,

29:15–24.

Raymond, E. (1998). Homesteading the Noosphere. First Monday, 3.

Raymond, E. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source from an

Accidental Revolutionary. Sebastapol, CA: O’Reilly and Associates.

22

Rosen, L. (2001). Which Open Source License Should I Use for My Software? Open Source

Initiative.

Rossi, A. (2004). Decoding the Free/Open Source (F/OSS) Software Puzzle: a Survey of Theoretical

and Empirical Contributions. Quaderni - Università di Siena, n. 424.

Stewart, K., Ammeter, A., and Maruping, L. (2005). Impact of Licence Choice and Orgnizational

Sponsorship on Success in Open Source Software Development. University of Maryland, mimeo.

von Hippel, E. (2005). Democratizing Innovation. The MIT Press, Cambridge Mass., London.

Weiss, D. (2005). A Large Crawl and Quantitative Analysis of Open Source Projects Hosted on

SourceForge. Research report ra-001/05, Institute of Computing Science, Poznań University of

Technology, Poland.

West, J. (2003). How Open is Open Enough? Melting Proprietary and Open Source Platform

Strategies. Research Policy, 32:1259–1285.

23

