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Abstract

The paper analyses the timing of spontaneous environmental innovation

when second-mover advantages, arising from the expectation of declining in-

vestment costs, increase the option value of waiting created by investment

irreversibility and uncertainty about private payoffs. We then focus on the

design of public subsidies aimed at bridging the gap between the spontaneous

time of technological change and the socially desirable one. Under network

externalities and incomplete information about firms’ switching costs, auc-

tioning investment grants appears to be a cost-effective way of accelerating

pollution abatement, in that it allows targeting grants instead of subsidizing

the entire industry indiscriminately

JEL: Q28; O38.

Keywords: Environmental innovation, Investment irreversibil-

ity, Network externalities, Investment grants, Second-price auc-

tion.
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1 Introduction

Since pollution abatement generally requires investment expenditures, profit-

maximizing firms do not spontaneously1 improve their environmental perfor-

mance2 unless costs are offset by some expected private benefits. Following

the literature on so-called voluntary approaches, these benefits may come

from better use of inputs (e.g. energy or material savings, abatement of

waste disposal costs), sales increase (consumers may be willing to pay more

for environment-friendly products or for goods produced by a firm which has

acquired a green reputation) and/or regulatory gains (preemption of more

stringent mandatory regulation or regulatory capture) (Brau and Carraro,

1999; Carraro and Léveque, 1999).

The performance of self-regulation has been analysed across different di-

mensions, including its impacts upon market competition and environmental

effectiveness. As far as the latter is concerned, Carraro and Léveque (1999)

cite two frequent sources of concern about the actual contribution of volun-

1By spontaneous pollution control ("self-regulation") we mean control efforts which are
neither imposed by explicit directives ("command-and-control regulations) nor are driven
by "marked-based" regulations that encourage firms to undertake pollution abatement
(e.g. pollution charges or tradable permits).

2Firms may improve their environmental performance either by undertaking process
innovations or changes in product design which involve pollution abatement during the
product life cycle.

3



tary approaches to environmental quality improvements. One is that firms

may not respect their commitments. The second cause concerns the low

ambition of pollution abatement targets.

A third potential cause of ineffectiveness, addressed in this paper, relates

to the timing of environmental innovation. Although firms have discovered

potentially profitable green investment opportunities, voluntary process in-

novations or changes in product design may occur too slowly, i.e. they may

not prevent undesirable levels of pollutant accumulation and environmental

damage.

Why would firms, which have discovered a green investment opportunity

whose costs are counter-balanced by expected private gains, postpone envi-

ronmental innovation? The real options approach to investment decisions

provides a possible answer. For instance, this approach teaches that when

an agent does not face a now-or-never investment decision, an option value

of waiting emerges before undertaking a project involving sunk costs and

uncertain payoffs (irreversibility effect). In other words, the agent may find

it profitable to delay the investment, despite the project exhibiting a positive

net present value.3

3Obviously, not all green investment decisions meet the conditions required in order
to apply the conclusions of the real options approach: for example, these conclusions do
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This standard result stems from the analysis of investment decisions for

a single agent in isolation, i.e. without regarding to the potential impact of

other firms’ investment strategies. For instance, recent developments of the

real options approach show that when these decisions take place in a compet-

itive environment, strategic interactions between firms may either decrease

or further increase the option value of waiting (Lambrecht and Parraudin,

2003; Grenadier, 2002; Mason and Weeds, 2001; Moretto, 2000).

The value of waiting may significantly decrease if the investment payoffs

depend on the number of firms which have already improved their environ-

mental performance and there is an advantage in being first. For exam-

ple, preemption can hasten pollution abatement when firms interpret self-

regulation as a product differentiation strategy aimed at differentiating their

product or process from those of other firms in the industry in order to in-

crease their market share. In other words, the risk of foregone competitive

advantages may counter-balance the benefits of waiting for additional infor-

mation about consumers’ response to the supply of green products.

However, instead of hastening environmental innovation, strategic inter-

actions may further increase the option value of waiting. This may occur

not apply when firms are able to recover investment expenditures should the payoffs (e.g.
consumers’ willingness to pay for green products) turn out to be worse than anticipated.
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when there is an expectation of declining switching costs, due to the diffu-

sion of green technologies, whilst the investment payoffs are not negatively

correlated (e.g. when market demand shifts upward when green products

are sold in the market) or are independent of the number of firms which

have improved their environmental performances (e.g. when the investment

payoffs are expected to come from input savings or from avoidance of future

costs of forthcoming public regulations that firms cannot influence).

Both strategic interactions typically involve an inefficient time pattern

of private investment decisions. However, if we adopt a narrow view and

focus on the environmental effectiveness of self-regulation, the most critical

scenario is the one where, because of second-mover advantages, strategic

interactions exacerbate, rather than mitigate, the irreversibility effect. In

particular, the expectation of declining investment costs may involve a war

of attrition whose effect is to further delay pollution abatement.

The purpose of this paper is twofold. First, we illustrate the impacts

of the war of attrition upon the option value of waiting and, consequently,

upon the private time of pollution abatement. Secondly, assuming that a

public authority has somehow arbitrarily pre-identified the desirable time for

technological change, we focus on the design of policy instruments - namely,
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investment grants - aimed at bridging the gap between the spontaneous time

of environmental innovation and the "socially" desirable one.

We do this by extending and generalizing the continuous-time model of

environmental policy adoption of Dosi and Moretto (1997; 1998). In mar-

kets with no large investors, Dosi and Moretto (1997) stressed that, in order

to enhance the effectiveness of environmental policies, regulators should ac-

count for the option value firms face when deciding the time of an investment

involving sunk costs and uncertain returns. In particular, the optimal sub-

sidy must be selected to compensate the firm’s value of waiting. However,

in the case of large investors the problem faced by policy-makers becomes

more complicated because they have to consider the impact of other firms’

investment strategies. In this respect, Dosi and Moretto (1998) analysed the

impacts of declining switching costs in a duopoly model and argued that reg-

ulators may accelerate environmental innovation by auctioning investment

grants.

Here we generalize the above papers by providing a general solution ap-

proach for deriving the firms’ equilibrium investment strategies in a second-

mover-advantages framework. We consider both the irreversibility effect and

network externalities on the investment costs in a N+1 agents-model and we
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model the competition for the investment grant as a Vickrey auction where

firms simultaneously submit their bids, the subsidy is granted to the most

efficient firm and it is priced according to the second-best bidder. Moreover,

in order to illustrate the properties of the model and get some quantitative

idea of the effect of the second-mover-advantage on the firms’ adoption deci-

sion, we calibrate the model following as far as possible the indications given

in the real option literature (Dixit and Pindyck, 1994).

The rest of the paper is organised as follows. Section 2 presents a model in

which N+1 firms, belonging to the same industry, face the same opportunity

of undertaking an irreversible green investment involving stochastic payoffs;

each agent’s timing of technological change is influenced by the investment

decision of the other, because switching costs are negatively correlated to the

number of firms which have adopted the green technology. Section 3 deals

with the war of attrition game that emerges; we show that if switching costs

are private knowledge, the free-riding attitude induced by the expectation

of network benefits may significantly increase the option value of waiting

and, consequently, the investment delay. Section 4 focuses on the design of

investment grants aimed at bridging the gap between the expected private

time of innovation and the socially desirable time; we examine the properties
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of a second-price auction, in which agents bid for the right to obtain public

funds for use in financing the technological change. Section 5 concludes, and

the Appendix contains the proofs omitted in the text.

2 The model

Consider a situation where N+1 (N > 0) risk neutral firms, belonging to the

same industry, can abandon, at any time, their present (polluting) production

process, in order to adopt a new (green) one, by affording a sunk switching

cost Cn, n = 1, 2.....N + 1.

The instantaneous green investment payoff at time t, xt, is stochastic and

evolves according to a geometric Brownian motion:

dxt = αxtdt+ σxtdzt with α, σ > 0 and x0 = x. (1)

where dzt is the increment of a standard Wiener process, satisfying the con-

ditions that E(dzt) = 0 and E(dz2t ) = dt; both the drift parameter α and the

volatility parameter (σ) are constant over time. Therefore E(dxt) = αxtdt

and E(dx2t ) = (σxt)
2dt, i.e. starting from the initial value x0, the random

position of the instantaneous payoff xt at time t > 0 has lognormal distrib-
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ution with mean x0e
αt and variance x20(e

σ2t − 1) which increases as we look

further and further into the future. The process has no memory, i.e. i) at

any point in time t,the observed xt is the best predictor of future profits, ii)

xt may next move upwards or downwards with equal probability.

Whilst the investment payoff is independent of the number of green firms,

we assume that agents’ switching cost, Cn, depends on the number of firms

q that have adopted the green technology:4

Cn(θ, q) = θnk(q), n = 1, 2...N + 1 and q = 1, 2...N + 1

where k(q) stands for the pure capital cost which is common knowledge,

and θn ∈ [0 ≤ θ, θ̄ ≤ ∞] is a private valuation parameter reflecting agent

n’s perception of foregone alternative investment opportunities in the future.

4As anticipated, the aim of this paper is to focus on situations where strategic interac-
tions exacerbate the impacts of investment irreversibility and uncertainty. However, the
model could be easily expanded to explore the impacts of preemption upon environmental
innovation time. For instance, if the instantaneous investment payoffs decline with the
number of green firms, a first-mover advantage will emerge whose effect is to reduce the
second-mover advantage resulting from the expectation of declining investment costs. See
for example Murto and Keppo (2002), Grenadier (2002) and Lambrecht and Perraudin
(2003) for preemption models and Moretto (2000) for an application of both effects to a
duopoly model.
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We assume that:5

k(q) =

⎧⎪⎪⎨⎪⎪⎩
k for q = 1

k −∆k for q 6= 1
and 0 < ∆k < k

Since 0 < ∆k < k there is an the advantage in coordinating or joining a

network : the higher the agent’s investment opportunity cost, θn, the greater

its share value of the network benefit.6

According to the classical real-option based models (Dixit and Pindyck,

1994) the firms’ optimal investment rule is that the new technology’s benefits

must outweigh its costs, where the latter consist of the individual strike price

Cn plus the value of the option exercised by undertaking the investment. As,

at any time t, all information about the future evolution of x is summarized

in the current value xt, the optimal decision rule relies on a realization of x

that is necessary and sufficient to stop waiting and undertake the project. In

5For the sake of simplicity, we consider a quite extreme form of war of attrition in
that all the firm but the first gain the same network benefit. Although this may be fairly
realistic for investment costs reduction that are expected to come from input savings, our
model may be generalized to situations in which the network benefit increase as long as
more firms adopt the new technology.

6For different reasons we exclude both ∆k = 0 and ∆k = k. If ∆k = 0 there would be
no strategic interaction and each firms’ problem could be solved separately. On the other
hand, if ∆k = k the model reduces to a game of private provison of a pure public goood
(except for the fact that if two or more firms provide the good at the same time, their
provisions costs would fall to zero), with stochastic flow benefits (see Bliss and Nalebuff,
1984).
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other words, the firms will invest if the current flow of income xt has crossed

from below an upper single trigger value x̄n, n 1, 2, ...N + 1.

The agent n0s investment option can be written as follows:

Vn(x̄
∗
n, Cn;x) = E0

½
e−rTn

µZ ∞

Tn

xte
−rtdt− θnk

¶
| x0 = x

¾
∀n, (2)

where r > α is the constant risk-free rate of interest7, and E0(.) is the

operator expectation conditional on the information available at time t = 0.

Furthermore, Tn = inf(t > 0 | xt = x̄∗n), is the future random starting time

at which firm n finds it optimal to go first and x̄∗n is the income threshold

that triggers it.

3 The war of attrition

Firms’ time of investment is affected by two sources of inertia. On the one

hand, because of sunk costs, environmental innovation is slowed by the un-

7Alternatively we can use a discount rate that includes an appropriate adjustment for
risk and take the expectation with respect to a distribution for x that is adjusted for risk
neutrality (see Cox and Ross, 1976; Harrison and Kreps, 1979).
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certainty about the investment payoffs (irreversibility effect). On the other

hand, innovation is decelerated by the second-mover advantage resulting from

declining switching costs. In particular, as far as the second source is con-

cerned, the uncertainty about the other firms’ opportunity cost makes it ad-

visable to wait in order to see how things go for the others before switching

(war of attrition effect). If this does not happen and the rivals are reluctant

to adopt the green technology, the agent may eventually decide to switch

first.

At each time t firms observe the realization of the state variable xt, and,

depending on their private valuation parameter θ, decide whether to invest.

Secondly, there is a Bayesian learning process where agents learn by observing

the rivals’ behaviour. A Nash equilibrium will then be the solution of a pair of

linked stopping time problems, where each agent solves its switching problem

by taking account of the rivals’ possible actions and learning about the rivals’

valuation parameters from the fact that they have not switched up to that

moment.

Specifically, each agent n will optimally select an upper trigger level x̄∗n,

n = 1, 2....N + 1. Thus, if at time t xt ≥ x̄∗n and the rivals have not yet

switched, the agent n will unilaterally innovate. Otherwise, if any one of its
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rivals has already switched at xt < x̄∗n, agent n learns that it can adopt the

green technology by paying k −∆k and with him, all the others.

Note, however, that the certainty of being second does not imply switch-

ing immediately. As the switching cost depends on θ, and x is assumed to

be independent of the number of green firms, a lower trigger level x̄∗∗n < x̄∗n

always exists, below which the only dominant strategy is to keep the option

to invest alive, and wait longer before exercising it. Only when xt crosses x̄∗∗n

do the agents consider the possibility of switching second.

As long as x̄∗∗n < xt < x̄∗n each firm waits for the others to change

technology first. During this period of excess inertia (Farrell and Saloner,

1985) each firm experiences both costs (foregone expected cash flows) and

benefits of delaying: the latter come from the hope of getting additional

information about the investment payoffs and by second-mover advantages.

In continuous time, this countervailing interest can be represented by the

following bandwagon strategy:

an =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(a) if 0 < x < x̄∗∗n

(b) if x̄∗∗n ≤ x < x̄∗n

(c) if x ≥ x̄∗n

for ∀n. (3)
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where:

(a) do not switch, regardless of the rivals’ behaviour;

(b) switch only if a rival has already switched, i.e. jumping on the band-

wagon;

(c) unilaterally switch, i.e. initiating the bandwagon.

3.1 The optimal private trigger values

Consider the optimal trigger value x̄∗n for agent n (by symmetry the same

results hold for all N + 1 agents as well). We assume that firm n has ra-

tional conjectures about the distribution of the other firms’ triggers. More

specifically, we assume that each firm’s investment trigger is continuously

distributed and drawn independently from a common distribution function

F (x̄∗n) which is strictly increasing on the interval [x̄
l,∞) and has a continuous

differentiable density f(x̄∗n).

As long as the N + 1 firms are independent, what matters for the firm n

is the event min[x̄∗j , j 6= n] and, consequently, the joint distribution:

F (N)(x̄∗n) ≡ Pr
©
min[x̄∗j , j 6= n] ≤ x̄∗n

ª
≡ 1− (1− F (x̄∗n))

N
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which is the cumulative distribution (with density f (N)(x̄∗n)) of the minimum

of the N rivals’ triggers (i.e. the probability that all the other N firms have

lower triggers than n) on the same support [x̄l,∞).

Let’s now derive the optimal investment rule for firm n, taking account

of the other firms’ behaviour as exogenously given. Firm n’s option value at

time zero to adopt the green technology at time Tn if the other firms are still

using the polluting technology is given by:

Vn(x; x̄
∗
n) =

Eminj 6=n(Tj)

(
E0

(
e−rminj 6=n(Tj)

ÃZ ∞

minj 6=n(Tj)

xte
−rtdt− θn(k −∆k)

!)
| Tn ≥ min

j 6=n
(Tj)

)

+E0

½
e−rTn

µZ ∞

Tn

xte
−rtdt− θnk

¶¾
Pr(Tn < min

j 6=n
(Tj))

In other words, firm n’s option value of investing is given by the sum

of the option value to go as second at cost θn(k − ∆k) when a firm has

already adopted at time minj 6=n(Tj) = inf(t > 0 | xt = min
©
x̄∗j , j 6= n

ª
),

plus the option value of not investing until time Tn and then going first.
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Tn = inf(t > 0 | xt = x̄∗n) is then the switching time at which agent n

decides unilaterally to adopt the green technology (strategy c).

Furthermore, as xt moves randomly over time, the firm n will update its

conjecture. In particular, as time goes by and xt hits new upper levels without

the rivals switching, agent n learns that the rivals’ triggers lie in a smaller,

higher interval. A sufficient statistic that captures this information is given

by ut = sup0<s<t(xt) which denotes the maximum level of payoff up to time

t without one of the firms having adopted the green technology. The firm n

then observes the realization of the state variable xt, updates its conjecture on

the rivals’ thresholds by using F (N)(x̄∗n;ut) =
F (N)(x̄∗n)−F (N)(ut)

1−F (N)(ut) ,which is strictly

increasing on the interval [ut,∞), and instantaneously considers when it is

profitable to invest by maximizing:

Vn(xt; x̄
∗
n) = (4)

x̄∗nZ
ut

Et

(
e−r(minj 6=n(Tj)−t)

ÃZ ∞

minj 6=n(Tj)
xse

−rtdt− θn(k −∆k)

!)
dF (N)(x̄;ut)

+Et

½
e−r(Tn−t)

µZ ∞

Tn

xse
−rtdt− θnk

¶¾
(1− F (N)(x̄∗n;ut))
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The following proposition describes the properties of the stationary strat-

egy (3) resulting from maximization of (4).

Proposition 1 (i) If a threshold level x̄∗n ∈ [x̄l,∞) exists, such that 0 <

x̄∗∗n < x̄∗n, then a perfect equilibrium involves each firm playing the following

stationary strategy:

an(F
(N)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Strategy (a) if 0 < x < x̄∗∗n

Strategy (b) if x̄∗∗n ≤ x < x̄∗n

Strategy (c) if x ≥ x̄∗n

∀n

where the optimal trigger values are:

x̄∗∗n =
β

β − 1(r − α)θn(k −∆k), ∀n (5)

x̄∗n =
β

β − 1(r − α)θnk +
β

β − 1(r − α)θn∆k
x̄∗nNh(x̄∗n)

β
, ∀n (6)

h(x̄∗n) ≡ f(x̄∗n)
1−F (x̄∗n)

is the hazard rate and β > 1 is the positive root of the

quadratic equation Φ(β) ≡ 1
2
σ2β(β − 1) + αβ − r = 0.

(ii) The optimal triggers are monotonically increasing in θn.

Proof. See Appendix.
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According to (4) and (6), although the value of the green investment

depends on both the current value of xt and on the statistic ut, the threshold

that triggers the technological change does not because the the hazard rate

Nh(x̄∗n) is independent of both xt and ut (see Appendix).

Since the hazard rate is defined as the likelihood of an event occurring in

the next instant, given that the event has not occurred up to that instant,

in (6) it measures the likelihood of the firm n investing at x̄∗n. The hazard

rate is zero when there is no probability of one firm going first and goes to

infinity when ut and/or N goes to infinity.

Following Lambrecht and Perraudin (2003), let’s consider what happens

as the incomplete information case reduces to one with complete information.

If θn is common knowledge and the degree of asymmetry in the firm-specific

parameters is low (i.e. the interval [θ, θ̄] is small), firms have no interest

in going unilaterally. They will be better-off coordinating and choosing to

invest at the time when the firm with the highest cost parameter θn switches.

The unique Nash equilibrium in pure strategies is characterized as a war of

attrition where the firms try to invest as late as possible and, thereby, at the

optimal trigger of the less efficient firm. That is, there is a common trigger
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value:

x̄∗∗ = sup
n∈[1,N+1]

(x̄∗∗n ) ≡
β

β − 1(r − α)(k −∆k) sup
n∈[1,N+1]

(θn)

above which firms switch to the green technology.8 Consequently, unlike in

Farrell and Saloner (1985), there might be excess inertia even under complete

information. The firms with lower cost parameters will find it optimal to wait

until technological change becomes profitable for some of their rivals and then

coordinate adoption. The loss due to waiting is more than compensated by

the reduction in investment cost deriving from coordination.9

For the latter limit case, suppose that an upper trigger x̄u exists so that

x̄∗n ∈ [x̄l, x̄u].As ut → x̄u and no firms have adopted yet, the firm n knows that

at least one of its rivals will act almost certainly in the next few instants,

which causes the hazard rate to explode to infinity. The trigger value for

firmn should therefore also explode to infinity which contradicts the fact of

having an upper bound x̄u <∞.

Finally, a third interesting and related limiting case occurs when the

8If the degree of asymmetry is high there exist an equilibrium in which always one firm
invest before the others (Sparla, 2000).

9In the symmetric case θn = θ for all n, the social optimum is always obtained. A unique
threshold x̄∗∗ exists beyond which all the firms find it optimal to move simultaneously (see
Moretto, 2000).
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number of competing firms goes to infinity. Since limN→∞Nh(x̄∗n) =∞, also

the trigger x̄∗n converges to infinity. This is a straightforward consequence of

the war of attrition; as N increases each firm knows almost certainly that at

least one of its rivals will go first. Each firm takes this opportunity, delaying

the investment indefinitely.

The following corollary illustrates the effect of the war of attrition on the

strategic option trigger:

Corollary 1 The strategy (c)’s optimal trigger is situated between infinite

and the non-strategic trigger which, in turn, is above the second-mover trig-

ger, i.e.:

x̄∗∗n ≤ x̄+n ≤ x̄∗n ≤ ∞

where x̄+n ≡ β
β−1(r − α)θnk.

The upper bound is reached when h(x̄∗n) → ∞ or N → ∞, while when

h(x̄∗n)→ 0 the optimal trigger converges to x̄∗∗ = supn∈[1,N+1](x̄
∗∗
n ).

In short, whilst x̄+n reflects the irreversibility effect, the second term on

the r.h.s. of (6) reflects the war of attrition effect which exacerbates the

impacts of investment irreversibility and uncertainty about private benefits,
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i.e. increases the optimal trigger value and the investment delay.

Furthermore, proposition 1 shows that the higher θn the greater the in-

stantaneous investment payoff at which it becomes profitable to invest: the

optimal trigger x̄∗n(θn) is an increasing mapping function of θn, in the support

[x̄l(θ), x̄u(θ̄) =∞).10 Therefore, even without making use of a discrete-time

model, we can also have sequential investments depending on the wedge in

agents’ valuation parameter θn. Specifically, if the firm n is the leader, we

get the following result.

Corollary 2 Sequential investment (‘diffusion’ ) exists if x̄∗∗j (θj) > x̄∗n(θn),

for some j 6= n.

3.2 Numerical results

To illustrate the properties of the above model and get some quantitative

ideas of the impact exercised by the war of attrition on the competitive adop-

tion of the new technology, in this section we provide some numerical solu-

tions of (5) and (6). The choice of parameters was made in the interest of sim-

10Using a model of preemption Lambrecht and Perraudin (2003) show that asymmetric
information on costs results in the optimal trigger value x̄∗n being a unique continuous
increasing mapping function of θn, i.e. x̄∗n = x̄∗n(θn) ∈ [x̄l(θ), x̄u(θ̄) =∞), with

∂x̄∗n(θn)
∂θn

>

0.
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plicity, respecting as far as possible some indications found in other studies

(Dixit and Pindyck, 1994; Mauer and Ott, 1995; Lambrecht and Perraudin,

2003). The base parameters take the values: r = 0.05, α = 0.03, σ = 0.2,

N = 4, k = 10 and ∆k = 5, 2.5. The choice of α is made to guarantee

the firms’ average waiting time positive. Figures 1 and 2 show numerical

solutions for x̄∗∗n (θn) and x̄∗n(θn) within the interval θn ∈ [0, 2], when F (x̄∗n)

is a Pareto distribution of the form 1−
³
x̄∗n
x̄l

´−γ
, with γ = 1 and x̄l = 0.094.

Figure 1 about here

Figure 2 about here

The triggers shown include: (i) the strategic trigger x̄∗n; the non-strategic

trigger x̄+n ; and the second-mover trigger x̄
∗∗
n , for cost reduction of 50% and

25% respectively. In both cases the solution starts at the origin and increases

monotonically for all the interval [0, 2]. The second-mover trigger is always far

below the optimal trigger under the war of attrition. In addition, the ratio
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between the strategic trigger and the non-strategic trigger, x̄∗n/x̄
+
n , equals

2.48 for ∆k = 5 and 1.74 for ∆k = 2.5 respectively. Thus current investment

payoffs have to rise more than double the level that ensures a positive net

benefit for a single firm in isolation before the war of attrition ceases to

be worth playing by the firms (war of attrition effect). If, to this effect,

we add the irreversible effect measured by the multiplier β
β−1 = 3.85 (i.e.

β = 1.35), we get a total effect of 5 to 6 times the point in which the total

expected discounted investment payoffs equals the cost of investment, i.e. the

Marshallian trigger x̄Mn ≡ (r − α)θnk Therefore, even if the cost of capital

is as low as 5% per year, the value of waiting with network externalities can

quite easily lead to adjusted hurdle rates of 20 to 30 per cent.

4 Auctioning investment grants

Let’s now consider an agency which, on the grounds of available information

on firms’ pollutant emissions, accumulation processes and consequent social

damage, has identified T̂ as the date by which all firms should abandon

the polluting technology and adopt the green one. Moreover, let’s assume

that the agency is unable or unwilling to adopt mandatory regulations and,
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if necessary, intends to accelerate environmental innovation by subsidizing

green investment expenditures. Subsidies will be granted if, and only if,

the agency believes that firms face a value of waiting, before undertaking the

green investment, greater than the one faced by society as a whole. However,

since the private switching time T is a stochastic variable, the agency has

to set a policy-rule referring to T ’s probability distribution. For the sake of

simplicity, we assume the following simple rule:11

E(T ) = T̂ (7)

By (1) and the definition of T , (7) may be reformulated in terms of the

instantaneous investment payoff, x, at which the technological change should

take place in order to satisfy the agency’s environmental objective. We denote

with x̂ the social trigger value such that E[inf(t > 0 | xt = x̂)] = T̂ .12

11Depending on different assumptions about the agency’s risk aversion, the policy-rule
can be made more stringent by giving different weights to different moments of the private
switching time distribution.
12As the instantaneous payoffs are driven by (1), the first passage time T from x to x̂ is

a stochastic variable with first moment E(T ) = m−1 ln( x̂x ), with m ≡ (α − 1
2σ

2) so that

x̂ = xeπT̂ (Cox and Miller, 1965, p. 221-222).

25



To solve the optimization problem the environmental agency has to find

an optimal compensation function. In order to optimize this compensation

function for all possible functions we apply the revelation principle which

reduces the possible set of grant-aided schemes to those where lying is not

profitable. We organize the model as an auction of the Vickrey-type where

each firm simultaneously reports their respective optimal private triggers,

without seeing each other’s bid, and the subsidy is given to the firm that

reports the lowest one (Laffont and Tirole 1993 pp.314-320).

Before describing the grant-aided scheme, it is worth underlying two im-

portant features of our model. First, since the evolutionary pattern of x is a

Markov process (Harrison, 1985, pp. 80-81), the agency’s announcement of

T̂ (or, equivalently, x̂) does not affect the firms’ waiting game played prior

to T̂ . Secondly, while the second-mover advantage, resulting from ∆k, slows

down the spontaneous technological change, the existence of network bene-

fits provides the agency with the opportunity to adopt a targeted policy. For

instance, by subsidizing the firm with the lower trigger x̄∗n (the leader firm),

i.e. by anticipating initiation of the bandwagon, the agency may accelerate

the technological change throughout the entire industry.
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In particular, we will show that the subsidy received by the leader is

formed by the sum of a fixed payment function - defined according to the

difference between the announced trigger x̃∗n and the social trigger x̂ - plus a

linear sharing of overruns which depends on the announced trigger value. If

this subsidy is incentive-compatible it will be sufficient to induce the leader

to announce the true trigger x̃∗n = x̄∗n, and to adopt the green technology

when x, randomly fluctuating, hits the social trigger x̂. Although granting

a subsidy only to the leader firm may not be enough to achieve the policy

objective, by creaming the industry the proposed grant-aided scheme allows

the agency to induce the followers to jump on the bandwagon without paying

informational rents.13

The rationale behind the proposed grant-aided scheme can be summarised

as follows. Since the war of attrition which will emerge within the industry

can be interpreted as a sequence of (all-pay) second-price auctions14, granting

13By the revelation principle instead of having the firms submit their bid as a function
of x̄∗n and then applying the rules of the auction mechanism to choose who receives the
subsidy, we could directly ask the firms to report their values x̄∗n and then make sure that
the outcome is the same as if they had submitted bids.
14Referring to the literature of auctions, what has just been described as a war of

attrition can be interpreted as a sequence of all-pay second-price auctions (Hirshleifer
and Riley, 1992, ch.10). For instance, at each time t, it is as if agents bid the value of
their opportunity to invest (4), Vn(xt; x̄∗n), and compare the relative merit of dropping out
immediately (investing first) or staying in (delaying the decision) and bidding a further
amount. Agents bid by deciding upon a maximum (stochastic) number of periods over
which to compete which is determined by their optimal trigger levels x̄∗n. Thus, as long as
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a subsidy to the leader firm implies that the agent with the lowest investment

opportunity cost, whilst losing the war of attrition, will be the winning bid-

der in the public auction.15 By contrast, the followers will gain the network

benefit, but will not receive public subsidies, unless their investment oppor-

tunity costs are so high that a public grant is still required in order to avoid

an undesirable time lag between the leader’s and the followers’ innovation

time.

4.1 The agency’s optimization problem

Let’s assume that the environmental agency acts as a utilitarian regulator

interested in accelerating environmental innovation.

Since x̄∗n is private information, in order to exploit the potential regula-

tory benefits resulting from network externalities, the agency has to iden-

tify an appropriate incentive mechanism such that the (unknown) leader

firm will find it profitable to abandon the polluting technology the first

firms can perfectly observe the rival’s actions and immediately respond to them, if after
Tn = inf(t > 0 | xt = x̄∗n) periods firms j 6= n find that n has abandoned the polluting
technology, they adopt the green one by paying less than the rival’s bid, i.e.:

Vn(x̄
∗
n; x̄
∗
n) ≡

x̄∗n
r − α

− θnk ≤ Vj(x̄
∗
n; x̄
∗∗
j ) ≡

x̄∗n
r − α

− θj(k −∆k), ∀j 6= n (8)

provided that θnk ≥ θj(k −∆k). .
15See also Bulow and Klemperer (1999)
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time x, randomly fluctuating, hits the social trigger x̂. Therefore, defining

yn(x̄
∗
n; x̄

∗
−n) as the probability that firm n is selected to receive the subsidy,

with x̄∗−n = (x̄
∗
1, x̄

∗
2, .x̄

∗
n−1, ., x̄

∗
n+1, .x̄

∗
N+1) and

N+1X
n=1

yn = 1, the optimal targeted

grant-aided scheme, under incomplete information, should emerge maximiz-

ing at time T̂ a welfare function, the maximand of which is the expectation

of:

Ã
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)

!
B − (1 + λ)

N+1X
n=1

sn(x̄
∗
n; x̄

∗
−n) +

N+1X
n=1

πn(x̄
∗
n; x̂) (9)

where B is the estimated social benefit brought about by accelerating en-

vironmental innovation (i.e. by lowering firms’ optimal trigger value at

x̂), sn(x̄∗n; x̄
∗
−n) is the subsidy in annuity terms, λ ≥ 0 is the shadow cost

of public funds and πn(x̄
∗
n; x̂) denotes the subsidized firm’s rental price:

πn(x̄
∗
n; x̂) = Ex̄−n

©
sn(x̄

∗
n; x̄

∗
−n)− yn(x̄

∗
n; x̄

∗
−n)(x̄

∗
n − x̂)

ª
, for x̂ ≤ x̄∗n.

Furthermore, without loss of generality, we may assume that the agency

knows the firms’ conjectural distribution. Therefore, conditional on the in-

formation available at the time when the grant-aided scheme is announced,
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the firms’ optimal trigger levels are drawn independently from the same con-

tinuous distribution F (x̄∗n;ut), with density f(x̄
∗
n;ut) and ut = x̂.

The agency’s optimization problem is then:

max
yn,πn

Ex̄∗n,x̄
∗
−n

(Ã
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)

!
B − (1 + λ)

N+1X
n=1

sn(x̄
∗
n; x̄

∗
−n) +

N+1X
n=1

πn(x̄
∗
n; x̂)

)

subject to all the N +1 firms’ optimization problem. The firm’s n optimiza-

tion problem is given by:

max
x̄∗n

πn(x̄
∗
n; x̂) ≥ 0 ∀n

Continuing with agent n as representative, the following proposition in-

dicates the results of the auction.

Proposition 2 The firm n will receive the subsidy only if:

x̄∗n < min
©
x̄∗j , j 6= n

ª
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and the optimal expected transfer in annuity terms is:

Ex̄∗−n
©
sn(x̄

∗
n; x̄

∗
−n)
ª
= (x̄∗n − x̂)(1− F (x̄∗n; x̂))

N +

∞Z
x̄∗n

(1− F (x̃∗n; x̂))
Ndx̃∗n

Proof. See Appendix.

Differentiating the above equation yields:

∂Ex̄∗−n
©
sn(x̄

∗
n; x̄

∗
−n)
ª

∂x̄∗n
= −N (1− F (x̄∗n; x̂))

N−1 h(x̄∗n) < 0

which shows that the subsidy is strictly monotone decreasing in x̄∗n, and

confirms the efficiency of the auction: the subsidy is given to the most efficient

firm.

4.2 Implementation

While maximization of (9) determines expected transfers, i.e. the firms’ op-

timal reporting strategies on average given the rivals’ strategies through the

probability (1− F (N)(x̄∗n; x̂)), we can construct a dominant strategy auction

of a Vickrey type that implements the same investment strategy as the one

found from optimizing the welfare function (9), and selects the most efficient
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firm.16

Since, for the Vickrey auction, revelation of the true trigger value x̄∗n is

a dominant strategy but the subsidy is priced according to the second bid

(second-price auction), in our N +1 agents case this implies implementing a

subsidisation scheme of the type:

(10)

s̃n(x̄
∗
n; x̂) = (x̄∗n − x̂) + (min

©
x̄∗j , j 6= n

ª
− x̄∗n), for x̄

∗
n ≤ min

©
x̄∗j , j 6= n

ª
s̃n(x̄

∗
n; x̂) = 0 otherwise

When agent n wins the auction, the subsidy is equal to the individually

rational transfer (x̄∗n − x̂) plus the rent it gets when the conjectural distrib-

ution is truncated at the lowest rivals’ trigger value min
©
x̄∗j , j 6= n

ª
. Since

Ex̄j {s̃i(x̄∗i ; x̂)} = si(x̄
∗
i ; x̂), the contract given by (10) costs the same in terms

of annuity subsidy as the optimal Bayesian auction (Laffont and Tirole, 1993,

pp. 319-320).

Thus competition among the firms implies that the interval of possible

private investment triggers [x̄l,∞) is truncated to [x̄l,min
©
x̄∗j , j 6= n

ª
] where

16A dominant strategy auction is an auction where each agent has a strategy that is
optimal for any bids by its opponents.
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min
©
x̄∗j , j 6= n

ª
is the second-lowest bid reported at time T̂ when the auction

is run.

Alternatively, we can calculate the total subsidy to be transferred to the

leader firm as:

Sn(x̄
∗
n; x̂) = (11)

=

Ã
x̂+ (x̄∗n − x̂) + (min

©
x̄∗j , j 6= n

ª
− x̄∗n)

r − α
− θnk

!
−
µ

x̂

r − α
− θnk

¶
≡

(min
©
x̄∗j , j 6= n

ª
− x̂)

r − α

Recalling that xt has lognormal distribution with mean E0(xt) = x0e
αt,

the first term in the r.h.s. of (11) represents the expected net present value

of the payoffs starting at the given initial position xT̂ = x̂+ s̃n(x̄
∗
n; x̂), whilst

the second term is the net present value of the project starting at the initial

position x̂ without compensation.

Continuing with the numerical solutions of section 3.2, we are able to

evaluate the total subsidy (11). Let’s assume that the second-lowest bid-

ding firm has a private valuation parameter equal (normalized) to one, i.e.

min {θj, j 6= n} = 1, so that its optimal trigger values are min
©
x̄∗j , j 6= n

ª
=

1.34 for ∆k = 2.5 and 1.91 for ∆k = 5 respectively.
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If T̂ = 20 years from now and the income starting state is x = 1, the

social trigger value equals x̂ = 1.22. Then, provided that x̄∗n > 1.22, the

winning firm’s total subsidy is equal to Sn = 6 with ∆k = 2.5 and 34.5 with

a cost reduction ∆k = 5 respectively.17 Further, if T̂ reduces to 10 years and

then x̂ = 1.1, the total subsidy increases substantially from Sn = 12 with

∆k = 2.5 to 40.5 with ∆k = 5 respectively.

Although the above results should be viewed as illustrative in nature and

limited to giving an initial idea of the magnitude of the network effect, they

show that the total subsidy to induce the most efficient firm to adopt the

green technology earlier can be considerably higher than the investment cost.

This suggests guidelines for more realistic research.

So far, we have considered the case where the network benefit is such

that adoption of the green technology by the (subsidized) leader firm is suf-

ficient to induce the other firms to switch immediately afterwards. However,

as shown in Corollary 2, we can have diffusion depending on the wedge in

firms’ opportunity cost θ. In particular, when n goes first, we get sequential

adoption if x̄∗∗j (θj) > x̄∗n(θn), at least for some j 6= n. In this case, granting

a subsidy to the leader firm is not enough to induce technological change

17The private average waiting time for θ = 1 varies from nearly 30 to 65 years.
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throughout the entire industry: in other words, a subsidy should also be

granted to other firms. However, under our assumptions, on the basis of

the announcement received from the leader firm, the subsidy received by the

followers does not involve payment of an informational rent and it will be

calculated referring to x̄∗∗j .

5 Final remarks

Even when firms have discovered profitable green investment opportunities,

various sources of inertia may involve a private time of environmental inno-

vation incompatible with avoidance of undesired levels of pollutant accumu-

lation and social damage. This may occur when investment irreversibility,

and the ability to postpone the decision, creates an option value of waiting

before undertaking a technological change involving uncertain payoffs.

Strategic interactions may either decrease or further increase this option

value. This occurs when the value of an investment depends on the number

of firms which have undertaken the technological change, so that each agent’s

investment time is influenced by the investment decisions of others. In this

paper we have examined what appears to be the most critical scenario from
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an environmental point of view, i.e. a situation where second-mover advan-

tages exacerbate the irreversibility effect and increase the option value of

waiting. In particular, we have explored the impacts of second-mover advan-

tages arising from the expectation of declining investment costs due to the

diffusion of new green technologies.

Although the expectation of declining investment costs tends to further

decelerate voluntary irreversible green investments, the existence of network

benefits provides the policy-maker with the opportunity of targeting invest-

ment grants to the firm(s) with lower switching costs. In fact, by accelerating

initiation of technological change, the regulator may induce the whole indus-

try to switch. However, this policy strategy requires knowledge of the private

switching costs. Otherwise, appropriate incentive mechanisms are required

to minimize agents’ informational rents.

To find a cost-effective grant-aided scheme, we have examined a second-

price sealed-bid private value auction where agents are required to announce

their optimal trigger values, and a subsidy is granted to the firm which an-

nounces the lowest one, i.e. to the agent with the lowest switching cost.

However the subsidy is priced according to the second-best bidder. Besides

taking into account pure capital expenditures and including informational
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rents, the subsidy under consideration must compensate the leader firm for

killing its option value of waiting. In other words, the firm must be compen-

sated for the loss of benefits from delaying investment, i.e. for the value of

waiting for more information about the investment payoffs and for the loss

of network benefits.

Granting a subsidy only to the leader firm may prove to be insufficient

to induce the other agents to switch immediately afterwards. For instance,

simultaneous or sequential environmental innovation may emerge, depend-

ing on the wedge in firms’ switching cost. However, under the proposed

grant-aided scheme, the subsidy received by the followers does not involve

payment of an informational rent. In other words, auctioning investment

grants may prove to be a cost-effective way of creaming the industry, and

accelerating environmental innovation, under incomplete information about

private switching costs.
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A Appendix

A.1 proof of proposition 1

The first part of the proof consists in identifying the optimal choice of the

pure strategies’ trigger levels for all players as a function of the state variable

x and of the conjectural distribution F , and then looking for the stationary

Nash equilibrium strategies. Let’s begin with strategy (b). As investment

payoffs do not depend on the number of green firms, agent n does not need to

know his rivals’ valuation parameter θ to follow strategy (b). He will consider

switching only if xt ≥ x̄∗∗n which is obtained by maximizing:

Vn(x̄
∗∗
n ;x) ≡ E0

½
e−rTn

µZ ∞

Tn

xte
−rtdt− θn(k −∆k)

¶
| x0 = x

¾
(12)

By using standard results (McDonald and Siegel, 1986; Dixit and Pindyck,

1994), it easy to write (12) as:

Vn(x̄
∗∗
n ;x) ≡ (

x̄∗∗n
r − α

− θn(k −∆k))

µ
x

x̄∗∗n

¶β

. (13)
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where β > 1 is the positive root of the quadratic equation Φ(β) ≡ 1
2
σ2β(β −

1) + αβ − r = 0.

Finally, taking the derivative of the above expression with respect to x̄∗∗n

and solving it, we obtain (5) and the value of the option to go second becomes:

Vn(x̄
∗∗
n ;x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
( x̄

∗∗
n

r−α − θn(k −∆k))
³

x
x̄∗∗n

´β
for x < x̄∗∗n

x
r−α − θn(k −∆k) for x ≥ x̄∗∗n

(14)

where x̄∗∗n is the point at which Vn(x; x̄
∗∗
n ) smoothpastes to the exercise line

x
r−α − θn(k −∆k) (Dixit and Pindyck, 1994, p. 183)

Let’s continue with strategy (c). If agent n decides to invest unilaterally,

taking account of the probability of being anticipated, the value at time t of

adopting the green technology is given by (4). As stated in the text, using

Bayes’ rule, the relationship between F (N)(x̄∗n) and F
(N)(x̄∗n;ut) for t > 0 can

be described by:

F (N)(x̄∗n;ut) =
F (N)(x̄∗n)− F (N)(ut)

1− F (N)(ut)
where ut = sup

0<s<t
(xt). (15)

In addition, indicating h(x̄∗n) =
f(x̄∗n)

1−F (x̄∗n)
as the current value of the hazard
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rate, it can be easily seen that it is independent of ut, that is:

f (N)(x̄∗n;ut)

1− F (N)(x̄∗n;ut)
=

f (N)(x̄∗n)

1− F (N)(x̄∗n)
=

Nf(x̄∗n)

1− F (x̄∗n)
= Nh(x̄∗n) (16)

Therefore, making use of (13) and (15), the option value (4) can be rewritten

as:

Vn(x̄
∗
n;xt) =

µ
x̄∗∗n
r − α

− θn(k −∆k)

¶µ
xt
x̄∗∗n

¶β
x̄∗∗nZ
ut

dF (N)(x̄;ut)+

µ
x̄∗n

r − α
− θnk

¶µ
xt
x̄∗n

¶β

+

⎡⎣ x̄∗nZ
x̄∗∗n

"µ
x̄

r − α
− θn(k −∆k)

¶µ
x̄∗n
x̄

¶β

−
µ

x̄∗n
r − α

− θnk

¶#
dF (N)(x̄;ut)

⎤⎦µ xt
x̄∗n

¶β

.

(17)

The first term accounts for the case in which ut < x̄∗∗n . In this case, the

agent does not invest even if it knows that it will pay k −∆k. The second

term is the usual option value of a single firm, and finally the third term is

the expected gain by fighting before adopting. Firm n’s optimal trigger value
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can be obtained by maximizing (17). The first order condition requires:

∂Vn(x̄
∗
n;xt)

∂x̄∗n
=

1− β

(r − α)x̄∗n

µ
xt
x̄∗n

¶β ¡
1− F (N)(x̄∗n;ut)

¢
× (18)

∙¡
x̄∗n − x̄+n

¢
− (x̄+n − x̄∗∗n )

x̄∗nf
(N)(x̄∗n;ut)

β(1− F (N)(x̄∗n;ut))

¸
= 0.

where x̄+n =
β

β−1(r−α)θnk is the trigger value of going first without strategic

behavior (or if firms do not expect a network benefit, i.e. ∆k = 0). Looking

for a maximum of Vn(xt; x̄∗n) also requires the square-bracketed term below

to be positive:

∂2Vn(x̄
∗
n;xt)

∂(x̄∗n)
2

=
(1− β)

β(r − α)x̄∗n

µ
xt
x̄∗n

¶β ¡
1− F (N)(x̄∗n;ut)

¢
× (19)

∙
β − (x̄+n − x̄∗∗n )Nh(x̄∗n)− (x̄+n − x̄∗∗n )x̄

∗
nN

dh(x̄∗n)

dx̄∗n

¸
< 0
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where the assumption that h(x̄∗n) is increasing in x̄
∗
n assures the sufficiency.

18

Rearranging (18) we obtain the following implicit form for the trigger level

x̄∗n:

x̄∗n = x̄+n + (x̄
+
n − x̄∗∗n )

x̄∗nf
(N)(x̄∗n;ut)

β(1− F (N)(x̄∗n;ut))
(20)

= x̄+n + (x̄
+
n − x̄∗∗n )

x̄∗nNh(x̄∗n)

β

Although x̄∗n is invariant to the current value of the state variable x, in general

it is not so with respect to ut. The agent cannot credibly commit itself to

the trigger level x̄∗n
θn
as xt increases, and the bandwagon optimal rule defined

in (3) and (20) is a contingent plan of how to play each time t for possible

realization of the state x, which summarizes the entire history of the game

up to that point. However, as the hazard rate (16) is independent of ut, the

trigger value also becomes independent of the information variable ut. This

makes the optimal operating rule an stationary.

Finally, by (17) and (20) we are able to write the value of the option to

18This assumption is satisfied by standard distributions as uniform, negative exponen-
tial, Weibull and Pareto.
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invest first at time t as:

Vn(x̄
∗
n;xt) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
A(x̄∗∗n )F

(N)(x̄∗∗n ;ut)x
β

t +A(x̄∗n)x
β

t +B(x̄∗n)x
β

t for xt < x̄∗n

xt
r−α − θnk for xt ≥ x̄∗n

(21)

where A(x̄∗∗n ) ≡
³

x̄∗∗n
r−α − θn(k −∆k)

´
(x̄∗∗n )

−β, A(x̄∗n) ≡
³

x̄∗n
r−α − θnk

´
(x̄∗n)

−β

andB(x̄∗n) ≡
"

x̄∗nR̄
x∗∗n

∙
x̄

r−α − θn(k −∆k)
³
x̄∗n
x̄

´β
−
³

x̄∗n
r−α − θnk

´¸
dF (N)(x̄;ut)

#
(x̄∗n)

−β.

That is, the stationary trigger x̄∗n is the point at which the envelope function

Vn(ut;ut) smoothpastes to the exercise line xt
r−α − θnk (Moretto, 2000; Lam-

brecht and Perraudin, 2003). This concludes the first part of the proposition.

For the second part, applying the implicit function theorem to (6) we

obtain:

dx̄∗n
dθn

=
(x̄+n + (x̄

+
n − x̄∗∗n )x̄

∗
nNh(x̄∗n))

2

θn
³
x̄+n − (x̄+n − x̄∗∗n )(x̄

∗
n)
2N dh(x̄∗n)

dx̄∗n

´ > 0

Positivity of the above expression is guaranteed by the second order condition

for a maximum (19).
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A.2 Proof of proposition 2

We look for an incentive-compatible mechanism [sn(.), yn(.)], n = 1, 2...N +

1 that induces a truth-telling Bayesian Nash equilibrium. Defining with

sn(x̃
∗
n; x̃

∗
−n) the firm n’s subsidy per unit of time, required to induce adoption

of the green technology at x̂, as a function of the announced trigger levels

x̃∗n and the rivals’ announcement x̃
∗
−n = (x̃1, x̃2, ..x̃n−1, ., x̃n+1, ..x̃N+1), its

expected rental price can be expressed as:

πn(x̄
∗
n, x̃

∗
n; x̂) = Ex̃−n

©
sn(x̃

∗
n; x̃

∗
−n)− yn(x̃

∗
n; x̃

∗
−n)(x̄

∗
n − x̂)

ª
, for x̂ ≤ x̃∗n.

(22)

We refer to (22) as the firm n’s profit function, and yn(x̃∗n; x̃
∗
−n) is the prob-

ability that firm n is selected to receive the subsidy, with
N+1X
n=1

yn(x̃
∗
n; x̃

∗
−n) = 1.

A necessary condition for truth-telling is that the derivatives of firms’

profit with respect to the agent n’s announcement x̃∗n, and evaluated at the

true trigger value, i.e. x̃∗n = x̄∗n, is nil.

∂πn
∂x̃∗n

= Ex̄∗−n

½
∂sn
∂x̃∗n
− ∂yn

∂x̃∗n
(x̄∗n − x̂)

¾
= 0, ∀n (23)

44



Then, letting πn(x̄∗n; x̂) be firm n’s profit function when telling the truth, by

the envelope theorem, (22) and (23) we obtain:

dπn(x̄
∗
n; x̂)

dx̄∗n
= −Ex̃∗−n

©
yn(x̄

∗
n; x̄

∗
−n)
ª
< 0, ∀n (24)

That is, at the optimum the profit function is nonincreasing in x̄∗n. It follows

that the firm n’s individual rationality (participation constraint) is satisfied

if it is satisfied at x = x̄u ≤ ∞.Finally, by using (22) and (23) to integrate

(24), we obtain:

πn(x̄
∗
n; x̂) = πn(x̄

u; x̂) +

x̄uZ
x̄∗n

Ex̃∗−n
©
yn(x̃

∗
n; x̄

∗
−n)
ª
dx̃∗n, ∀n (25)

and the sufficient condition for truth-telling requires (Fudenberg and Tirole

1991, theorem 7.2 p. 260):

Ex̄∗−n

½
∂yn
∂x̄∗n

¾
≤ 0, ∀n. (26)

From (9) and the above arguments, the environmental agency’s ex ante ob-
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jective function can be expressed as:

Ã
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)

!
B+(1+λ)

N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)(x̄

∗
n−x̂)−λ

N+1X
n=1

πn(x̄
∗
n; x̂) (27)

Since the agency’s objective function is decreasing in πn, and from (24) the

profit function is decreasing in x̄∗n, the individual participation constraint will

be tight at the highest trigger value x̄u. That is, assuming that, outside the

relationship with the regulator, each firm has opportunities normalized to

zero, we get: πn(x̄u; x̂) = 0, for all n.

The agency’s optimization problem under incomplete information can be

expressed as follows:

max
yn,πn

Ex̄∗n,x̄
∗
−n

(Ã
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)

!
B + (1 + λ)

N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)(x̄

∗
n − x̂) (28)

−λ
N+1X
n=1

πn(x̄
∗
n; x̂)

)

subject to an Incentive Constraint, a Participation Constraint and a Sufficient

Condition:
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dπn(x̄∗n;x̂)
dx̄∗n

= −Ex̄∗−n
©
yn(x̄

∗
n; x̄

∗
−n)
ª
< 0, ∀n

πn(x̄
u =∞; x̂) = 0, ∀n.

Ex̄∗−n

n
∂yn
∂x̄∗n

o
≤ 0, ∀n

N+1P
n=1

yn(x̄
∗
n; x̄

∗
−n) = 1, for any x̄∗n and x̄

∗
−n.

As is usual in the regulatory theory under asymmetry of information,

we first ignore the second-order condition to check later that it is indeed

satisfied at the optimum. As πn is considered the state variable in the above

maximization, we can substitute (25) in the agency’s objective function and

solve for the optimal yn. Integrating by parts (28) for given x̄∗−n, the objective

function can be rewritten as follows:

Ex̄∗n,x̄
∗
−n

(
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)

∙
B − (1 + λ)(x̄∗n − x̂)− λ

F (x̄∗n; x̂)

f(x̄∗n; x̂)

¸)

Recalling the learning process (15), we simplify the agency’s objective func-

tion as:

Ex̄∗n,x̄
∗
−n

(
N+1X
n=1

yn(x̄
∗
n; x̄

∗
−n)R(x̄

∗
n, x̂;x, λ)

)
, ∀n (29)

where:
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R(x̄∗n, x̂;x, λ) =

∙
B − (1 + λ)

µ
(x̄∗n − x̂) +

λ

1 + λ

F (x̄∗n)− F (x̂)

f(x̄∗n)

¶¸

By the monotone hazard rate assumption the term R(x̄∗n, x̂;x, λ) is nonin-

creasing in x̄∗n, therefore the optimal choice by the regulator would be:

yn(x̄
∗
n; x̄

∗
−n) = 1 if x̄∗n ≤ minj 6=n x̄∗j

yn(x̄
∗
n; x̄

∗
−n) = 0 if x̄∗n > minj 6=n x̄

∗
j

Hence Ex̄∗−n
©
yn(x̄

∗
n; x̄

∗
−n)
ª
is nonincreasing almost everywhere which im-

plies that the second order condition (26) is always satisfied. Finally, from

(22), (24) and (25), the optimal Bayesian auction-based grant-aided scheme

is such that:

Ex̄∗−n
©
sn(x̄

∗
n; x̄

∗
−n)
ª
= πn(x̄

∗
n; x̂) +Ex̄∗−n

©
yn(x̄

∗
n; x̄

∗
−n)(x̄

∗
n − x̂)

ª
,

= Ex̄∗−n
©
yn(x̄

∗
n; x̄

∗
−n)(x̄

∗
n − x̂)

ª
+

∞Z
x̄∗n

Ex̄∗−n
©
yn(x̃

∗
n; x̄

∗
−n)
ª
dx̃∗n ,

for all n. Finally as long as the probability of being the lowest bidder is

Ex̄∗−n
©
yn(x̄

∗
n; x̄

∗
−n)
ª
= 1− F (N)(x̄∗i ; x̂) ≡ (1− F (x̄∗i ; x̂))

N , we get the subsidy

in the text. This concludes the proof.
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Figure 1. Network effect ∆k = 5

Figure 2. Network effect ∆k = 2.5
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