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Abstract

I report results of an experiment designed to study the relation between the process of infor-
mation search and learning in a Cournot oligopoly, with limited a priori information. Different
theories of learning have been applied to this setting, each yielding a specific market outcome in
the long run, and postulating specific informational requirements. By allowing players to choose
the information they wish to acquire, and controlling for these choices, I study the features of the
learning model actually followed by the subjects, and the relation between the information they
gather and the market behavior they adopt.
According to my results, learning appears to be a composite process, in which different components
coexist. Belief learning seems to be the leading element, as subjects try to form expectations about
their opponents’ future actions and to best reply to them. When subjects also look at the strate-
gies individually adopted by their competitors, though, they tend to imitate the most successful
behavior, which makes markets more competitive. Finally, reinforcement learning also plays a non-
negligible role, as subjects tend to favor strategies that have yielded higher profits in the past. I
show that these different elements may be usefully incorporated into a more sophisticated learning
model, shaped after self tuning EWA learning model.
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1 Introduction

The experimental study I present concerns the relation between the process of information search and
players’ behavior in a repeated Cournot oligopoly. This research is aimed at finding out what happens
when information acquiring and processing is too difficult or too costly for the agents to behave
according to the perfect rationality paradigm. I investigate what pieces of information subjects look
for and which heuristics they adopt when playing a Cournot game with these information constraints,
in order to understand how different pieces of information may affect the subjects’ learning processes
and in turn also their market behavior.
The topic is not particularly new: the interest on it reached its apex after 1997, when in an article
appeared in Econometrica, Vega-Redondo [26] proposed a theoretical model of behavior of Cournot
oligopolists which leads to surprising conclusions. According to the author’s theory, if firms tend to
imitate the behavior that proved most successful in the previous period (that is: they produce the level
of output that yielded the highest profit) but with positive probability experiment other strategies,
Walrasian behavior can emerge in the long run within any Cournot oligopoly with homogeneous goods.
In a number of following works 1 Vega Redondo’s theory has been experimentally tested and compared
with other learning models that make different assumptions about players’ information and lead to
different behaviors and market equilibria.
Despite the efforts made during those years, I do not believe that a final conclusion has been reached.
Rather, it seems that the attention has been averted from this topic but a definitive answer to the
questions it brings up has not yet been provided.

The main novel contribution of the experiment presented in this paper consists in combining
the study of learning with an experimental analysis of the way subjects select the information they
need before choosing their strategy. Instead of comparing subjects market behavior under different
informational frameworks – which is the approach adopted in all the previous experiments about this
topic – I provide the players with a broad range of information, but force them to choose only some
pieces of it. The players’ process of information gathering is strictly (but non obtrusively) controlled,
by means of a special software, originally called MouseLab and developed by Eric J. Johnson et al.
(1988) [17].
Paying attention not only to what players do but also to what they know, it is possible to better
understand the mental mechanisms which guide their choices and consequently the impact that the
informational framework has over their behavior.

I believe that the results of my experiments can contribute to the debate which has developed after
the article by Vega-Redondo [26], because the technique I adopt enable me to investigate more deeply
the relation between information and behavior.
Moreover, with my experiment I want to test the MouseLab technique as an experimental device that
– despite some very insightful applications – is not yet widely used in experimental economics and that
could be effectively adopted to investigate other interesting topics, such as the process of information
acquisition in auctions and phenomena like informational cascades and herding behavior in financial
markets.

The main results I get are that: (i) the attitude to best reply to the strategies adopted by the
opponents in the previous period seems to be the most important driver of players’ behavior, (ii) imi-
tation plays a non negligible role in learning, and drives players’ choices away from the best reply, (iii)
information gathered by the subjects affects their behavior and (iv) it may be usefully incorporated
into a rather sophisticated learning model, shaped after self tuning EWA learning model, proposed by
Ho, Camerer and Chong (2007) [11].

The paper proceed as follows: in Section 2 I mention the main literature related with the topic
I study and with the empirical methodology I adopt. Section 3 presents the experimental design.
Three theoretical benchmarks meant to support the analysis of the results are illustrated in Section

1see for example Huck et al. 1999 [13], Rassenti et al. 2000 [22], Offerman et al. 2002 [20] and Bosh-Domènech
and Vriend 2003 [3]. More recently, further experiments on Vega-Redondo’s imitation model have been conducted by
Apesteguia et al. [1, 2], but these experiments were not framed as oligopolies.
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4. Section 5 contains the results of the experiment and Section 6 concludes, also mentioning possible
future developments of this research.

2 Related Literature

2.1 Information and Learning in Oligopoly Experiments

Between 1999 and 2002, four articles were published, which presented experiments regarding infor-
mation and learning in a Cournot oligopoly setting. In these works the same experiment is repeated
under different treatments, varying the quality and quantity of information provided to the subjects.
The authors then compare the actual behavior observed in the different treatments and make inference
about the impact that the various informational frameworks have on players’ choices. Nonetheless a
number of details changes from one experiment to the other, and maybe this is the first reason why
the results obtained by the authors are not at all unanimous, nor they are conclusive: for example,
the experiments performed by Huck, Normann and Oechssler [13] and by Offerman, Potters and Son-
nemans [20] provide a rather strong support to the theory proposed by Vega Redondo, mentioned
before, while the works presented by Rassenti et al [22] and by Bosch-Domènech and Vriend evidence
no trend towards the Walrasian equilibrium and do not find any clear indication that players tend to
imitate the one who got the best performance in the previous period.

Huck et al.’s experiments (HNO from now on) study a 40-periods Cournot market with linear
demand and cost, in which four symmetric firms produce a homogeneous good. Across their five
treatments, they vary the information they provide to the subjects, both about market and about
what other players in the same market do. In particular, information about market can be complete,
partial or absent.
When information is complete, participants are informed about the symmetric demand and cost
functions in plain words and they are provided with a ‘profit calculator’, which can compute market
price and firm’s profit when one enters the total output of other firms and his own output, and can also
suggest to the subject the quantity which would yield him the highest payoff given the hypothetical
total quantity produced by the competitors.
Information is said to be absent when participants do not know anything about the demand and cost
conditions in the market nor do the instructions explicitly state that these would remain constant over
time; in these treatments all subjects know is that they would act on a market with four sellers and
that their decisions represent quantities. Finally, in treatments with partial information, participants
are just told that market conditions remain constant for all periods and coarsely informed about
demand and profit functions.

In three of the treatments, participants are also informed about competitors’ individual quantities
and profits in the previous period, while in the remaining two treatments they are told only the
total quantity the others have actually supplied. HNO find significant differences in individual and
aggregate behavior across the treatments, and collect data suggesting that increasing information
about the market decreases total quantity, while providing additional information about individual
quantities and profits increases total quantity. HNO also test other learning theories besides the one
proposed by Vega Redondo, and they find that when subjects know the true market structure, their
quantity adjustments depend significantly on the myopic best reply to the quantity produced by their
competitors in the very last period. In general, though, none of the theoretical learning models they
consider, per se, seems to fully explain the observed behavior.

Offerman et al. [20] conducted a similar computerized experiment, obtaining results which are
consistent and complementary to those presented by HNO. In their setting, a triopoly with non-linear
demand and cost functions is repeated 100 times, with complete information about market. The
authors study how players’ behavior changes across three treatments, which differ for the amount
of information provided to the subjects about individual quantities and revenues of the other two
competitors in their market.
In one treatment (Qqπ) firms were provided with individualized information about the quantities and
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the corresponding profits of the other two firms; in a second treatment (Qq) they were just told the
quantities produced by the opponents, but not their profits, and in the last treatment (Q) firm were
only informed of the total quantity produced it their market. As HNO, they observed a substantial
difference between the treatments, and the data they collected evidence that the feedback information
provided to the subjects affects the behavioral rules they adopt. Moreover, in agreement with what
reported by HNO, the Walrasian outcome is only reached quite often in treatment Qqπ, where the
players are informed about their opponents’profits. On the other hand, they observe that the collusive
outcome seems to be a stable rest point only in treatment Qq and Qqπ, but not in the treatment
with no information about others’ individual quantities and profits, in which the only rest-point is
represented by the Cournot-Nash equilibrium.

The experiment performed by Bosch-Domènech and Vriend (BDV) differs from the previous two
both for the setting and for the aims. While HNO and OPS compare the prognostic capability of
different learning rules which lead to different theoretical outcomes, here the authors focus specifically
on Vega-Redondo’s behavioral rule and the main purpose is to investigate whether people are incline
to imitate successful behavior and, in particular, whether this behavior is more prevalent in a more
demanding environment. The authors study a series of 22-periods Cournot duopolies and triopolies
with homogeneous commodity and linear demand and cost functions. They examine six treatments
altogether: for both duopolies and triopolies they consider three different treatments that differ in the
way information is provided and in the time pressure put on the players.
In the treatment denominated “easy”, the players are given a profit table that conveniently summarizes
all the information concerning the inverse demand curve and the cost function, and there is no time
pressure on the players. After each period, each player gets information about the actions of each of
the other players in the same market, but not about their profits.
In the ‘hard’ and ‘hardest’ treatments, players have just one minute to decide on their output level;
after each period they receive feedback information both about the actions of all players and about
the profits obtained by each of them, and the output decision which led to the highest profit is
highlighted.
In the ‘hard’ version, the players get an inconveniently arranged enumeration of the market prices
associated with all possible aggregate output levels and of all possible cost levels. The ‘hardest’
version differs from the ‘hard’ treatment in that the information about the demand side of the market
is limited to the statement that ‘the price level depends on aggregate output’.
The purpose of the ‘hard’ and ‘hardest’ treatments is to explore to what extent imitation is influenced
by the bounds imposed on the subjects’ choice capabilities and to check if it is actually more prevalent
when the task of learning about the market becomes more difficult and at the same time the decision
of the most successful firm is displayed more prominently, and the answer they give to this question
is essentially negative. The data they collected show that as the learning-about-the-environment task
becomes more complex, average output increases, but the Walrasian output does not seem to be a good
description of the output levels observed in the experiment and if anything, imitation of successful
behavior tends to decrease rather than to increase when moving to more complicated environments.

The fourth experiment has been conducted by Rassenti et al. (RRSZ); it represents an oligopoly
with homogeneous product, in which five firms interact repeatedly for 75 periods, with fixed payoff
conditions. The setting exhibits a substantial difference from the previous three since in this case the
cost functions – linear, with constant marginal costs and no fixed costs – are private information and
differ across the firms. The demand function is linear, and is public information among the players.
The authors perform two different treatments: one in which subjects were able to observe past output
choices of each one of their rivals, the other in which they are informed only about the past total
output of rivals.
They use their experimental results to test a number of learning models – such as best response
dynamics, fictitious play and more general models of adaptive learning. None of these models receives
strong support from the data they collected: the observation of actual movement of total output over
time appears to be inconsistent with both best response dynamic and with fictitious play, for most
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experiments. Moreover the authors show that their data do not provide any evidence neither in support
for learning models based on imitation, nor for the more traditional hypothesis that information about
competitors enhance the potential for collusion, because the treatment conditions involving provision of
information about rivals’ outputs and prior experience do not seem to have a significant effect on total
output levels. The evidence relative to individual behavior is mixed, and no predominant models of
learning emerge; the most prominent result is that in general observed behavior for individual subject
sellers is not converging to the static Nash equilibrium predictions for individual output choices in
these experiments.

In light of these results, I would conclude that it is worthwhile going on investigating on information
and learning in oligopolistic markets, because the topic is interesting from a theoretical point of view
and it also has interesting practical implications, but a theory consistent with experimental data is
still far from being definitely developed. For this reason I decided to design an experiment which is
similar to the four previously mentioned under many respects but introduces the use of an experimental
technique that allowed me to monitor the information acquisition process through a computer interface.
The main idea underlying this software – originally developed by Johnson et al. (1988) [17] – consists
in hiding relevant pieces of information behind a number of boxes on the screen so that to access them
the decision maker has to open the boxes and look at their content. He can open just one box at a
time, and by recording the number and the duration of the look-ups the program provides precious
information about the decision makers’ learning process. To my knowledge, this technique has never
been applied to the analysis of learning processes in repeated strategic games.
Next section summarizes four among the most famous experiments using Mouselab, with the aim of
explaining how this program works in practice and of pointing out its strength points. A more detailed
survey on the experimental study of cognition via information search can be found in Crawford (in
press) [7].

2.2 Experiments Controlling the Information Acquisition Process

One of the most famous experiments using MouseLab has been performed by Johnson, Camerer, Sen
and Rymon(JCSR) [16]: in this work the information acquisition process is observed with the aim
of testing the game theoretic assumption of backwards induction. The subjects were asked to play
eight three-round alternating-offer bargaining games, with a different anonymous opponent each time.
In the first round one of the two players makes an offer to his opponent about how to share a given
amount of money; if the other player accepts, than the game is concluded, otherwise he will have to
make a counteroffer about how to share a new pie, smaller than the first one. Again, if the first player
accepts, the game is over and each of them gets his part as established in the agreement; on the other
hand, if the first player rejects the offer the pie shrinks again and he will have the opportunity to make
one last offer to his opponent. If even this offer is rejected, nobody gets anything. The sizes of the
three pies are represented on the computer screen in front of each player, but they are hidden under
three boxes that can be opened only one at a time, simply by putting the mouse’ cursor over the box
itself. The box will stay open until the mouse is moved somewhere else.
The authors observe three measures of information search: the number of times each box is opened
in a period, the total time each box stays opened in a period and the number of transitions from one
specific box to another. They note that most of the looking time is spent looking at the first round
pie size and contrary to the backward induction prediction there are always more forward predictions
than backward ones. From the data collected through these experiments they conclude that people
do not use backwards induction instinctively, even if an additional treatment in which players are pre-
viously trained to use backward induction shows that people are able to learn it when appropriately
instructed.
They also found that there is a strong correlation between differences in information processing and
differences in players’ behavior. This and the other results presented in this paper testify that mea-
suring attention directly can effectively contribute to the comprehension of both failure and successes
of the game theoretic predictions and help to understand how information and learning can affect the
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outcomes of different games.
Another seminal study on information acquisition processes has been done by Costa-Gomes, Craw-

ford and Broseta [6](CGCB). They asked the subjects to play 18 two-players normal form games, with
different anonymous partners. The payoff tables are hidden and MouseLab is used to present them:
for every combination of strategies, subjects could look up their own or their partner’s payoff as many
times as they wanted, but they could only see one of these numbers at a time. Till the end of the
series of games, no feedback was provided to the agents, in order to suppress learning and repeated
game effects as much as possible.
In Johnson et al. the goal was to test a specific theory of behavior – namely backward induction.
On the contrary, here the authors compare nine different decision rules (or types) and try to make
inference about which one is more likely to inform players’ behavior. As in JCSR, they assume that
each decision rule determines both a player’s information search and his decision once he gets the
information he was looking for. Therefore, by observing both the information acquisition process
performed by the agents and the choices they actually make when playing the games, it is possible to
deduce what decision rule they adopt.
This study confirms the presence of a systematic relationship between subjects’ deviations from search
pattern associated with equilibrium analysis and their deviations from equilibrium decisions. Besides,
according to Costa-Gomes et al.’s analysis most of the subjects are much less sophisticated than game
theory assumes: between 67% and 89% of the population belong to two types, namely to the Näıve
type, who best responds to beliefs that assign equal probabilities to each of their partner’s possible
strategies and to L2 type, who best replies to Näıve subjects.

More recently, MouseLab has been used again in two experiments that provide further evidence
about how the study of the information acquisition process can be useful to understand what behavioral
rules and heuristics are adopted by subjects who display out of equilibrium choices.
One experiment has been conducted by Costa-Gomes and Crawford [5](CGC) and has the same
theoretical and econometric framework of CGCB but it differs for the class of games submitted to the
subjects. In this case, participants were requested to play 16 different two-person guessing games, with
anonymous partners and no feedback till the end of the series. The games have been designed so that
the space of possible behaviors is wide and there is a strong separation of the guesses and searches
implied by the different decision rules considered in the paper. Results are consistent with those
presented in CGCB [6], but they are significantly sharper: many subjects can be easily attributed to
a particular type only by their guesses, and most of the others can be identified via an econometric
and specification analysis keeping into account also their information search pattern.

Another interesting application of MouseLab has been recently presented by Gabaix, Laibson,
Moloche and Weinberg [10], who experimentally evaluate the directed cognition model : a bounded
rationality model that assumes that at each decision point, agents act as if their next search operations
were their last opportunity for search. As in the other three experiments, the authors register the
search pattern actually adopted by the subjects in two experiments and they compare it with with
what is predicted by the directed cognition model and by the optimal search model (i.e. the Gittins-
Weitzman algorithm), traditionally adopted in economics.
In the first experiment they asked the participants to choose among three projects whose outcome
is uncertain, but could be discovered at a given cost. In the second experiment the subjects were
requested to solve a highly complex choice problem in which the classical optimal choice model is
analytically and computationally intractable: they had to choose one out of eight goods which each
have nine attributes that could be discovered by opening different boxes on the computer screen.
The players cannot collect all the information about the goods, because in this game time is a scarce
resource. Individual information acquisition processes were recorded through the MouseLab interface,
and the data collected this way reveal that the directed cognition model successfully predicts the
empirical regularities observable in subjects’ behavior.

The four experiments mentioned in this section evidence how the study of the information ac-
quisition process is complementary to the observation of subjects’ actual choices which traditionally
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constitutes the empirical basis for testing models of decision making or trying to develop new ones.

3 Experimental Design

The market environment I have chosen for my experiments is similar to the one proposed by HNO [13];
if possible it is even simpler. In all the sessions and treatments, the setting remains the same. Four
identical firms compete à la Cournot in the same market for 40 consecutive periods. Their product is
perfectly homogeneous. In every period t each firm i chooses its own output qt

i from the discrete set
Γ = {0, 1, ..., 30}, which is the same for every firm. The choice is simultaneous.
Price pt in period t is determined by the inverse demand function:

pt = max(0, 81−
∑

i

qt
i)

Let Ci(qt
i) = qt

i be the cost function for every firm i ; firm i ’s profit in period t will be denoted by

πt
i = ptqt

i − Ci(qt
i).

The shape of these functions has been chosen so that the three main theoretical outcomes – namely
collusive, Cournot and Walrasian outcomes – are well separated one from the other and belong to the
choice set Γ. More precisely, collusive equilibrium is denoted by ωM = (10, 10, 10, 10), Cournot-Nash
equilibrium is ωN = (16, 16, 16, 16) and Walrasian equilibrium is ωW = (20, 20, 20, 20).

A time limit of 30 seconds per round was introduced, so to force subjects to choose the information
they are really interested in, and to reproduce an environment in which rationality s bounded because
of external factors. If a subject failed to make his choice within the time limit, his quantity was
automatically set equal to 0, granting him a profit of 0 for that period.

3.1 Information Provided to the Subjects

Participants knew how many competitors they had (anonymity was nonetheless guaranteed). Instruc-
tions explained in plain words that there is an inverse relation between the overall quantity produced
by the four firms and market price and that a firm’s production costs increase with the number of
goods it decides to sell. Besides, players were told that per-period profit is given by market price times
the number of goods sold by the firm, minus production costs (see the instructions in Appendix A).

Subjects were also endowed with a profit calculator similar to the one proposed by Huck et al. [13].
This device had two functions: (i) it could be used by a player to evaluate the quantity that would
yield him the highest profit, given the quantity produced on the whole by his three competitors, and
to compute the profit he would earn if he produced the suggested number of units; (ii) it could also
be used to calculate the profit given both the quantity produced by the player himself and the overall
quantity produced by his competitors.
The software I developed for this experiment recorded how many times each subject used the profit
calculator and every trial he did.

The number of rounds was common knowledge among the subjects. According to game-theoretic
predictions, cooperation should be sustainable only if our stage game were repeated in(de)finitely
many times, but according to Selten et al. [23]

Infinite supergames cannot be played in the laboratory. Attempts to approximate the
strategic situation of an infinite game by the device of a supposedly fixed stopping prob-
ability are unsatisfactory since a play cannot be continued beyond the maximum time
available. The stopping probability cannot remain fixed but must become one eventually.

In light of this consideration and of the results obtained by Normann and Wallace [19] – who show
that the termination rule does not have a significant effect on players’ behavior except for an end effect
– I decided to adopt a commonly known finite horizon, for sake of transparency and practicality.
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In every period after the first one, the profits earned in the previous period by the player himself
and by each of his opponents were displayed. Three distinct buttons – each corresponding to one of
the player’s competitors – served to display the strategy they chose in the previous period, that is the
quantity they decided to produce. Another button allowed the subject to open a window displaying,
by means of a table and a couple of plots, the quantity chosen and the profits earned by the player
himself in every previous period. It was also possible for the player to look at the aggregate quantity
produced in each of the previous periods by his competitors. This information was conveyed through
a table and a plot, if the subject pushed the corresponding button.

As mentioned before, it was not possible to access various pieces of information at the same time,
since opening a new window automatically closed the previous one. The graphical interface granted
me a deep control over the subjects’ information search behavior, making sure that every look-up is
intentional and allowing me to verify which piece of information is more interesting for the subjects.

On the computer screen there was a counter showing the running cumulative profits earned by the
player since the game began, and a timer displaying how many seconds remained before the end of
the current period. Figure 9 in the appendix shows how subjects’ computer screen looked like.

4 Three Theoretical Benchmarks

I am interested in studying the market dynamics when the stage game so defined is repeated several
times, and the firms do not have all the information (or the computational capabilities) to evaluate
what the standard theory predicts is an optimal behavior for them.

Required information Predicted equilibrium

Best Reply Dinamics
Competitors’ aggregate
quantity and BR function

Nash (q = 16)

Imitate the Best
Last period individual profits
and quantities

Walrasian (q = 20)

Trial and Error
Own past profits and
quantities

Collusive (q = 10)

Table 1: Theoretical benchmarks

As a first benchmark to evaluate the experimental results, I individuated three theoretical learning
models based on very different assumptions on the information available to the firms and yielding three
well distinct market outcomes, namely the Cournot, Walrasian and joint profit maximizing outcomes,
respectively. These models are summed up in table 1 and presented more in detail in the following
paragraphs.

4.1 Best Response Dynamics

Following Huck, Normann and Oechssler [13] I consider here the simplest model of best reply dynamic.
This model theorize that in every period each player myopically chooses his output as a best reply to
the sum of the quantities produced by the other three in the previous period. More precisely, the best
reply correspondence for player i maps

∑
j 6=i q

t−1
j to the set

BRt
i := {q ∈ Γ : πt

i(q,
∑
j 6=i

qt−1
j ) ≥ πt

i(q
′,

∑
j 6=i

qt−1
j ), ∀q′ ∈ Γ}.
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Under the hypotheses I made on market structure, due to the discreteness and finiteness of the choice
set, we have:

BRt
i =



{0}, if
∑

j 6=i q
t−1
j ≥ 80

{30}, if
∑

j 6=i q
t−1
j < 20{

80−
∑

j 6=i qt−1
j

2

}
if 20 ≤

∑
j 6=i q

t−1
j < 80 and

∑
j 6=i q

t−1
j is even{

80−
∑

j 6=i qt−1
j

2 − 0.5,
80−

∑
j 6=i qt−1

j

2 + 0.5
}

otherwise.

In this last case, it is assumed that the player chooses qt
i from BRt

i according to some probability
distribution with full support.

The best reply dynamic defined this way yields a Markov chain over the state space Ω = Γ4

which does not necessarily converge to a stable equilibrium, consistently with what has been shown
by Theocharis [25] for the case in which quantities are chosen in a continuous space.
To catch an intuition of this result, suppose for example that the system reaches one of the two states
of the absorbing set s = {(30, 30, 30, 30), (0, 0, 0, 0)}: once this has happened, the system will keep on
oscillating between this two states and will never be able to escape the set.
HNO state the following theorem:

Theorem 1 The best reply dynamic with inertia converges globally in finite time to the
static Nash equilibrium.

Within the framework considered here, this implies that the learning process brings the system to
converge to the state ωN = (16, 16, 16, 16).

For sake of completeness I replicate here HNO’s demonstration, applying it to the specific context
under exam.
To introduce inertia into the learning model, HNO simply hypothesize that in every period each player
i chooses qt

i from the set BRt
i with some fixed probability (1 − θ), while with probability θ he sticks

to the quantity he chose in the previous period, so qt
i = qt−1

i . We will see that the best reply dynamic
with inertia can be represented by an ergodic Markov chain having only one recurrent set, therefore
the probability distribution over the state space approximate the unique invariant distribution of the
process, regardless of the initial state, and that this invariant distribution puts probability one over
the state ωN , which is the only recurrent state in Ω.

Proof of Theorem 1: It is clear that ωN is an absorbing state, since the process we have defined
can never escape from it; in order to prove the result, it is necessary to demonstrate that no other
state in Ω is recurrent, namely ωN is accessible from any other state:

ω′ → ωN ∀ ω′ ∈ Ω, ω′ 6= ωN

which means that there exist a τ ∈ N \ {0} such that the probability p
(τ)

ω′,ωN of reaching state ωN from
ω′ in τ periods is positive.

To prove this result we shall first show that the state ωN is accessible from any ω+ ∈ Ω+, where
Ω+ = {(q1, q2, q3, q4) ∈ Ω : qi > 0, i = 1, 2, 3, 4}, then we shall conclude by verifying that for any
ω0 ∈ Ω \Ω+ there exists an ω+ ∈ Ω+ such that ω+ is accessible from ω0 (ω0 → ω+), therefore, by the
Chapman-Kolmogorov equation, it follows that ω0 → ωN . ∀ω0 ∈ Ω.

The first part of the proof requires the preliminary definition of the concepts of “ordinal potential”,
“ordinal potential game” and “improvement path”, introduced by Monderer and Shapley [18].
Let N = {1, 2, ..., n} be the set of players, Yi denote the set of strategies of player i and ui : Y → R
the payoff function of player i, where Y = Y1 × Y2 × ...× Yn is the set of the strategy profiles.
A function P : Y → R is an ordinal potential for the game G = (N,Y, u) if, for every i ∈ N and for
every y−i ∈ Y−i

ui(x, y−i)− ui(z, y−i) > 0 ⇔ P (x, y−i)− P (z, y−i) > 0 ∀x, z ∈ Yi
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An ordinal potential game is a game that admits an ordinal potential.
An improvement path in Y is a sequence γ = (y0, y1, ...) of elements of Y such that, for every k ≥ 1,
there exists a unique player – say player i – such that the following conditions are simultaneously
satisfied:

• yk = (x, yk−1
−i ); x ∈ Yi, x 6= yk−1

i

• ui(yk) > ui(yk−1)

The proof of Theorem 1 relies on the following Lemma by Monderer and Shapley [18]:

Lemma 1.1 Every improvement path of a finite potential game is finite.

Proof of Lemma 1.1: For every improvement path γ = (y0, y1, ...), by the definition of ordinal
potential we have:

P (y0) < P (y1) < P (y2) < . . .

As Y is a finite set, this sequence must be finite.
This result can be applied to our model, since – as shown by HNO – the function P (ω) = (p(ω)−

1)
∏4

j=1 qj is an ordinal potential for our game if the strategy set of each player is restricted to
Γ\{0}. Therefore, there is a finite improvement path departing from every state ω0 ∈ Ω+ where Ω+ =
{(q1, q2, q3, q4) ∈ Ω : qj > 0, j = 1, 2, 3, 4}.
By definition this improvement path ends in a state ωk such that no player can improve his own payoff
by changing his strategy if the quantities chosen by the other players remain the same, i.e.

@i s.t. πi(ωk+1) > πi(ωk) where ωk+1 = (q′, qk
−i) for some q′ 6= qk

i , q′ ∈ Γ \ {0}

This condition is clearly satisfied only by ωC = (16, 16, 16, 16), representing the unique Nash equilib-
rium of the stage game.

Finally, note that the Best Reply process with inertia can give rise to an improvement path over
Ω+, since with positive probability in every period only one player changes his strategy while the
others stick to the quantity they previously chose. So, under the Best Reply process, ωN is accessible
from every state in Ω+.

As mentioned before, to complete the proof of Theorem 1 it is enough to show that

∀ω0 ∈ Ω \ Ω+ ∃ω+ ∈ Ω+ s.t. ω0 → ω+

Let ω0 = (q0
1, q

0
2, q

0
3, q

0
4) ∈ Ω \Ω+ and ωBR be a state in which every player i chooses qi ∈ BR0

i , giving
a best reply to ω0. By definition, ωBR is accessible from ω0 under the process defined by the Best
Response Dynamics (ω0 → ωBR).
If

∑
i q

0
i < 79 it is straightforward to see that ωBR ∈ Ω+ since the best reply to a quantity strictly

smaller than 79 is always positive.
If

∑
i q

0
i ≥ 79 it can be shown that the sum

∑
i BR0

i ≤ 162− 3
2

∑
i q

0
i ≤ 43.5, since for every player i

BR0
i ≤

80−
∑

j 6=i q0
j

2 + 1
2 . Therefore ∃ω+ ∈ Ω+ s.t. ωBR → ω+, thus the system moves from ω0 to ω+

with positive probability in at most 2 steps.
This concludes the proof.

The problem with the analysis I have just concluded is that it makes predictions for the long run
outcomes, and for a positive, but undefined degree of inertia. Since it might be interesting also to
check how the process behaves in the short run, for various degrees of inertia, I complete this and
the following sections by presenting the results of simulations I have done for this and the other two
models, under the setting presented in section 3. My simulation then reproduces a market with four
firms, facing the demand and cost functions characterizing my experiments, and interacting for 40
consecutive periods. The quantities produced in the first period are randomly drawn from a uniform
distribution over the set {0, 1, . . . , 29, 30}, while firms’ behavior in the following periods – in this case –
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Figure 1: Frequency distribution of individual choices in the 40th round; 10000 cycles of simulation.

is determined by the best response dynamics with a degree of inertia equal to θ, taking values 0.05, 0.1,
0.15. I ran 10000 cycles of simulation per each value of θ. The frequency distributions of individually
chosen quantities in period 40 are reported in figure 1.

According to my simulations, the higher is the degree of inertia, the faster the convergence to the
static Cournot-Nash equilibrium. More specifically, we notice that a degree of inertia below 10% is
not sufficient to obatin some convergence within 40 periods.

4.2 Imitate the Best

The learning model presented here has been originally proposed by Vega-Redondo [26]. The core of
the model is represented by the imitation dynamic: a discrete time dynamic which assumes that at
every time t each firm chooses its output qt

i from the set:

Bt−1 = {q ∈ Γ : ∃j ∈ I s.t. qt−1
j = q and πt−1

j ≥ πt−1
i ∀i ∈ I, i 6= j}

This learning process, when applied to the specific context of our fictitious market, defines a Markov
chain over the state space Ω = Γn (where n = 4 in our case). Let ωq stand for the monomorphic state
(q, q, ..., q) in which every firm chooses the same quantity q ∈ Γ. It is easy to verify that ∀q ∈ Γ the
monomorphic state ωq is absorbing and that all the non-monomorphic states are transient. Therefore,
the process has a number of recurrent sets equal to the cardinality of Γ, and there is a stationary
distribution µq corresponding to each of them, which puts probability one over ωq. Thus, the long
run behavior of the evolutionary process consisting only in the imitation dynamic displays a large
potential multiplicity, since it can rest forever in any monomorphic state.

To investigate the robustness of each of these multiple outcomes, Vega-Redondo introduced a
perturbation into the process, assuming that in every period t each firm sets its quantity according to
the imitation rule with probability 1− ε, while with probability ε it departs from the rule and chooses
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its quantity according to a distribution with full support over Γ. The interpretation here can be that
with small probability every firm makes an error or it experiments a different strategy. This perturbed
process defines a Markov chain irreducible and ergodic – since each state is accessible from any other
one and all the states are aperiodic. As a consequence, the chain has only one stationary distribution
µε, which clearly depends on ε; moreover, the τ -steps transition matrix P (τ) converges to a rank-one
matrix in which each row is the stationary distribution µ, that is:

lim
τ→∞

P (τ) = uµ

where u is the unit vector: namely, the Markov chain converges to its stationary distribution, regardless
where it began.

Recall that the perturbation has been introduced into the imitation process in order to test the
robustness of the multiple outcomes of the unperturbed process. We are then interested in investigating
the behavior of the perturbed process as ε → 0.

The crucial result for our application is a straight consequence of the theorem stated by Vega-
Redondo:

Theorem 2 The limit distribution µ0 = limε→0 µε is a well defined element of the unit
simplex ∆(Ω). Moreover, µ0 puts probability one over the state ωW = (qW , qW , qW , qW )
where qW is such that p(nqW )qW − Ci(qW ) ≥ p(nqW )q − Ci(q) ∀q ∈ Γ.

. This implies that under the “imitate the best” dynamic, the only stochastically stable outcome in
our setting is the Walrasian outcome ωW = (20, 20, 20, 20), in which all the firms get zero profits.

Proof of Theorem 2:
The proof of this theorem relies on the graph-theoretic techniques developed by Freidlin and Wentzell
[9], therefore some basic concepts should be introduced in order to expose it.
A directed graph G is an ordered pair G := (V,A) with

• V , a set of vertices or nodes,

• A, a set of ordered pairs of vertices, called directed edges, arcs, or arrows.

An edge e = (x, y), x, y ∈ V is considered to be directed from x to y, so y is said to be a direct
successor of x, and x is said to be a direct predecessor of y. More generally, if there exists a path
leading from x to y, then y is said to be a successor of x, and x is said to be a predecessor of y.
To apply this idea to the situation under analysis, first let O be the directed graph having Ω as the
vertex set and in which for every vertex ω ∈ Ω there exists an edge e(ω, ω′), ∀ω′ ∈ Ω, ω′ 6= ω.
A resistance r(ω′, ω′′) can be associated to every edge e(ω′, ω′′), where

r s.t. 0 < lim
ε→0

ε−rP ε
ω′,ω′′ < ∞

and P ε
ω′,ω′′ denotes the (one step) transition probability from ω′ to ω′′ according to the perturbed

process defined by the Imitation Dynamics with a probability of error equal to ε. The resistance
simply measures the total number of mistakes (or experiments) involved in the transition from state
ω′ to ω′′.
An ω-tree H for any vertex ω of O is a tree spanning O so that for every ω′ 6= ω, ω′ ∈ Ω there exists
a unique directed path from ω′ to ω. Let r(H) =

∑
(ω′,ω′′)∈H r(ω′, ω′′) denote the resistance of the

ω-tree H, and Hω be the set of all the ω-trees in O.
The stochastic potential of a state ω ∈ Ω is:

γ(ω) = min
H∈Hω

r(H)

Let γ∗ = minω∈Ω γ(ω).
Now we can provide the proof for theorem 2, which follows directly from the following three

lemmata:
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Lemma 2.1 Let P ε denote the Markov chain defined by the perturbed process, and µε be its unique
stationary distribution. Then limε→0 µε = µ0 exists and µ0 is a stationary distribution of P 0 –
the Markov chain defined by the unperturbed process. Moreover, the probability µ0

ω associated
to the state ω by the limit stationary distribution µ0 is strictly positive if and only if γ(ω) = γ∗.

Lemma 2.2 The stochastic potential γ(ωW ) equals the cardinality of Γ minus 1.

Lemma 2.3 For all q 6= qW , the monomorphic state ωq has a stochastic potential

γ(ωq) ≥ |Γ|

Proof of Lemma 2.1:.We shall follow the demonstration provided by Peyton Young [21] (Appendix),
that we report here for sake of completeness.
First we can apply to P ε a result established by Freidlin and Wentzel [9](Chapter 6, Lemma3.1) for
every aperiodic, irreducible stationary Markov processes the unique stationary distribution is given
by the formula:

µε
ω = pε

ω/
∑
ω′∈Ω

pε
ω′

where
pε

ω =
∑

H∈Hω

∏
(ω′,ω′′)∈H

P ε
ω′,ω′′

Choose the ω-tree H with minimum resistance and consider the identity:

ε−γ∗
∏

(ω′,ω′′)∈H

P ε
ω′,ω′′ = εr(H)−γ∗

∏
(ω′,ω′′)∈H

ε−r(ω′,ω′′)P ε
ω′,ω′′ (1)

By the definition of r,
lim
ε→0

ε−r(ω′,ω′′)P ε
ω′,ω′′ > 0,∀(ω′, ω′′) ∈ H (2)

If r(H) = γ(ω) > γ∗ it follows from (1) and (2) that

lim
ε→0

ε−γ∗
∏

(ω′,ω′′)∈H

P ε
ω′,ω′′ = 0

therefore
lim
ε→0

ε−γ∗pε
ω = 0.

Similarly, if r(H) = γ(ω) = γ∗ we obtain

lim
ε→0

ε−γ∗pε
ω > 0.

Since
µε

ω = ε−γ∗pε
ω/

∑
ω′∈Ω

ε−γ∗pε
ω′

it follows that

lim
ε→0

µε
ω =

{
= 0 if γ(ω) > γ∗

> 0 if γ(ω) = γ∗

Finally, since limε→0 P ε
ω′,ω′′ = P 0

ω′,ω′′ ∀ω′, ω′′ ∈ Ω and µε satisfies the equation µεP ε = µε ∀ε > 0, then
µ0P 0 = µ0. µ0 is therefore a stationary distribution of P 0, hence it puts probability 1 over one of the
monomorphic states. This concludes the proof for Lemma 1.
We shall now show that the monomorphic state having positive probability under the stationary
distribution is precisely ωW .
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Proof of Lemma 2.2: here we shall apply the proof provided by Vega Redondo [26] to the specific
context we are analyzing, to show that:

γ(ωW ) = |Γ| − 1 = 30.

Note that
∀ω ∈ Ω, ∃ωq s.t. P 0

ω,ωq
> 0 and therefore r(ω, ωq) = 0.

Consider any monomorphic state ωq, q ∈ Γ, and a state ω̃q = (q1, q2, q3, q4) such that ∃i ∈ I : qi =
qW and qj = q ∀j 6= i, j ∈ I. By the definition of r it is easy to check that r(ωq, ω̃q) = 1 since
P ε

ωq ,ω̃q
> 0 if ε > 0, according to the previously stated definition of the perturbed process.

To conclude the proof, it is enough to verify that, for any q 6= qW , the resistance r(ω̃q, ω
W ) is equal to

zero. Indeed, it is straightforward to check that P 0
ω̃q ,ωW > 0 under our hypotheses, because the firm

producing qW gets always the highest profit, regardless of the output produced by the others:

π(qW , 3q) > π(q, 2q + qW ) ∀q ∈ Γ, q 6= qW .

Proof of Lemma 2.3: to prove that γ(ω) > |Γ| ∀ωq 6= ωW it suffices to show that at least two
mistakes are necessary to escape from the basin of attraction of ωW , namely: there is no

ω̃W = (q1, q2, q3, q4) : ∃i : qi 6= qW , qj = qW ∀j 6= i, j ∈ I

such that r(ω̃W , ωq) = 0, since P 0
ω̃W ,ωq

= 0 because the profit of the firm producing q 6= qW is always

lower than the profit earned by each of the other three firms, producing qW :

π(q, 3qW ) < π(qW , 2qW + q)∀q ∈ Γ, q 6= qW .

As for the best response dynamics, I ran a simulation to depict the behavior of this model in the
short run, with different levels of experimentation. Again, I ran 10000 cycles of simulation per each
value of ε, taking values 0.01, 0.05, 0.1. The frequency distributions of individually chosen quantities
in period 40 are reported in figure 2.
Simulation results, show that with any of the considered levels of experimentation, the process con-
verges pretty quickly to the predicted outcome, but convergence is faster as experimentation becomes
more probable.

4.3 Trial and Error

This model of learning has been firstly proposed by Huck, Normann and Oechssler in 2000 [14] then
revised by the same authors in a subsequent article [15] where they present a continuous time version
of it.
Both versions of the learning model are, in principle, very simple. Assuming that the strategy set
of the player is ordered, the model predicts that every time a player changes the strategy he adopts,
he will check whether his payoff has consequently increased or decreased. If he observes a raise, in
the following period he will keep on changing his strategy in the same direction as before. On the
contrary, if the payoff declines the player will change his strategy in the reverse direction. This is the
model with the most lax hypotheses about information: it just requires that the firms know their own
past actions and their own profits.
Huck et al. show that Trial and Error learning yields a collusive outcome. They proove this result
analytically for the continuous time version, and for the discrete version with only two firms, and they
extend it to the discrete case with more than two firms by means of simulations.

Since in the case we are analyzing both time and the strategy set are discrete, we will consider the
discrete version of the model, applying it to the oligopoly setting described above.
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Figure 2: Frequency distribution of individual choices in the 40th round; 10000 cycles of simulation.

Given the quantity qi
1 ∈ Γ chosen by any firm in period one, in every following period t > 1 each firm

will set how much to produce according to the following rule:

qi
t =


0 if qi

t−1 + si
t−1 < 0

30 if qi
t−1 + si

t−1 > 30
qi
t−1 + si

t−1 otherwise.

where the direction of change is given by

si
t = sign(qi

t − qi
t−1)sign(πi

t − πi
t−1)

if (qi
t − qi

t−1)(π
i
t − πi

t−1) 6= 0; otherwise s is randomly chosen among the values −1, 0, 1, each having
positive probability.
This defines a Markov chain over the state space Ω = Γ4 × {−1, 0, 1}4. As for the previous model,
we assume the possibility of experimentation or mistakes, thus defining a perturbed process, in which
with some small probability ε > 0 each firm chooses an arbitrary direction of change st

i. This defines
a Markov process which is irreducible and aperiodic, therefore has a unique stationary stable distri-
bution. By contrast, in principle the unperturbed process may have many stationary distributions.

In what follows, I will show that (i) the unperturbed process has several absorbing sets, (ii) all
the states belonging to these absorbing sets have the same stochastic potential, therefore (iii) they
are all stochastically stable, meaning that all the absorbing sets of the unperturbed process belong to
the support of the limit distribution µ0 = limε→0 µε.

Recall that under the maintained assumptions, the cardinality of the state space is 314 × 34. If
we disregard the order of the players, then the number of possible states reduces to

(
96
4

)
. Among

these states, we want to individuate those, if any, which are recurrent. This was done by means of
simulations and numerical analysis. First, the evolution of the unperturbed process was simulated over
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first recurrent set

11 ↓ 11 ↓ 11 ↓ 11 ↓

average quantity: 10
10 ↓ 10 ↓ 10 ↓ 10 ↓
9 ↑ 9 ↑ 9 ↑ 9 ↑

10 ↑ 10 ↑ 10 ↑ 10 ↑

second recurrent set

11 ↓ 11 ↓ 11 ↓ 10 ↑

average quantity: 10.25

10 ↑ 10 ↑ 10 ↑ 11 ↑
11 ↓ 11 ↓ 11 ↓ 12 ↓
10 ↓ 10 ↓ 10 ↓ 11 ↓
9 ↑ 9 ↑ 9 ↑ 10 ↓

10 ↑ 10 ↑ 10 ↑ 9 ↑

third recurrent set

11 ↓ 11 ↓ 10 ↑ 10 ↑

average quantity: 10.77

10 ↑ 10 ↑ 11 ↑ 11 ↑
11 ↓ 11 ↓ 12 ↓ 12 ↓
10 ↓ 10 ↓ 11 ↓ 11 ↓
9 ↑ 9 ↑ 10 ↓ 10 ↓

10 ↑ 10 ↑ 9 ↑ 9 ↑

fourth recurrent set

11 ↓ 10 ↑ 10 ↑ 10 ↑

average quantity: 10.47

10 ↑ 11 ↑ 11 ↑ 11 ↑
11 ↓ 12 ↓ 12 ↓ 12 ↓
10 ↓ 11 ↓ 11 ↓ 11 ↓
9 ↑ 10 ↓ 10 ↓ 10 ↓

10 ↑ 9 ↑ 9 ↑ 9 ↑
Note: the numbers indicate the quantity produced by each of the four firms, the arrows the
direction of change.

Table 2: Recurrent sets of the unperturbed process

200 iterations of the stage game, replicating this cycle for 10000 times. Regardless of the initial state
of each cycle, which was randomly chosen from a uniform distribution over the whole state space,
it emerged that during the last ten iterations the process rests over only 22 of the possible states,
and that these 22 states belong to four recurrent sets, as displayed in table 2. Through a following
numerical analysis I checked that all the other states are transient under the unperturbed process,
meaning that the t-steps transition probability from each of these states to at least one of the states
belonging to the recurrent sets is positive, for a finite t 2.

It is easy to verify that one and only one mistake is sufficient to transit from a recurrent set to
the following one. It follows that all the states in the four recurrent sets have the same stochastic
potential, which equals the number of recurrent sets minus one. As a consequence following directly
from the aforementioned Lemma 2.1, all the states in the recurrent sets are stochastically stable.

A quick look at the quantities produced by the four firms in all of the recurrent states confirms
the result previously stated by Huck et al., namely that the Trial and Error process converges to a
neighborhood of the joint profit maximizing outcome, which in this case is obtained when all the firms
produce a quantity equal to 10.

I conclude this chapter by presenting the results of the simulation I did to study the short run
behavior of the trial and error model, with different probabilities of mistakes. As in the previous two
models, I ran 10000 cycles of simulation per each level of the error probability ε, taking values 0.01,
0.05, 0.1. Alike the imitate the best process, also trial and error turns out to converge to states which
are close to the stochastically stable one within the number of repetitions that will take place in my
experiments, regardless of the probability of error. In particular, we observe that as the probability
of error decreases, the variance of the distribution decreases too and convergence is more precise.

2The analysis was performed with Matlab c©. The code is available from the author upon request.
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Figure 3: Frequency distribution of individual choices in the 40th round; 10000 cycles of simulation.

5 Results

The experiment was run on November 29 and 30, 2007, in the computer lab of the faculty of Eco-
nomics, at the University of Bologna, in Italy. It involved 48 undergraduate students in Business
Administration, Law and Economics, Commercial Studies, Economics, Marketing and Finance. Three
identical sessions were organized, with 16 participants each. The length of the sessions ranged from
one hour to one hour and fifteen minutes, including instructions and payment. The average payment
was 13 ewith a maximum of 17 and a minimum of 9, including a show-up fee of 4 e.

At the beginning of each session, subjects were welcomed into the computer room and sat in front
of personal computers, and they were instructed not to communicate in any way with other players
during the whole experiment. They received a printed copy of the instructions 3, which were read
aloud so to make them common knowledge. Thereafter, they had the opportunity to ask questions,
which were answered privately. Before starting the real game, subjects were also asked to complete a
test on their computer, aimed at checking their understanding of the graphical interface they would
have had to use during the game.
Only when all the players managed to answer correctly to all the questions in the test, the real game
began. Each subject was randomly and anonymously matched with other three participants, who
were to be his “opponents” throughout the whole game. At the and of the game, subjects were paid
in cash, privately, in proportion to the profits they scored during the game.
The experiment was programmed and conducted with the software z-Tree (Fischbacher 2007 [8]).

In what follows I will first present some qualitative results about the output choices made by the
subjects, and about their information search pattern. I will then try to establish a relation between
the information acquired and the choices made by the subjects by means of two econometric models.
Finally, I will briefly comment on the effects of education on the learning model adopted by the

3A translation of the instructions can be found in Appendix A
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subjects.

5.1 Quantities

Figure 4 displays the frequency distribution of the individual output choices in all the periods and
sessions of the experiment. First, we observe that the average (17.76)4 is higher than the Cournot

Figure 4: Frequency Distributions of Individual Output Levels.

output (16), but lower than the Walrasian one (20), which is instead the modal output. We also
observe peaks corresponding to multiples of five, revealing a tendency to simplify the game focusing
only on some of the available strategies, which can probably explain why 15 is chosen more often than
16, representing the Nash equilibrium in the stage game. The Pareto-dominant collusive outcome of
10 is chosen only in 5.36% of the cases.

Looking at table 3, we observe an increase in the average output as the game proceeds. For all the

Table 3: Average individual output choice

Session 1 Session 2 Session 3
Periods 1-10 17.238 17.013 16.968
Periods 11-20 17.101 17.385 18.038
Periods 21-30 17.585 17.623 19.815
Periods 31-40 17.478 17.912 18.911
Total 17.353 17.487 18.436

three sessions, though, a non parametric Wilcoxon rank-sum test fails to reject (at the 1% significance
level) the hypothesis that observations for the first and the last ten periods are drown from the same
distribution. We also notice that the average quantity produced in the third session is significantly
higher than in the other two5.

4 In this figure and in the following ones, the average is evaluated dropping the 40 observations in which the outcome
was zero because a subject did not answered in time.

5According to a Wilcoxon rank-sum test, at 1% significance level.
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Figure 5 presents the aggregate quantity produced in each group across all the periods of a game.
We notice that the variability in total outcome remains high even towards the end of the game, with
fluctuations between the Cournot and Walrasian equilibrium outcomes. In general, therefore, we
cannot speak of convergence.

Figure 5: Aggregate quantity produced, by session and group.

5.2 Attention

Figure 6 shows that most of players’ attention is devoted to the profit calculator. Indeed, the share
of look-up time spent using the profit calculator is on average significantly higher than the time spent
looking at any other piece of information, according to a Wilcoxon matched-pairs signed-ranks test
(1% significance level). In line with what observed for the first experiment, in all the sessions players
paid limited attention to their own past, so the trial and error learning model – which only requires
this sort of information to be applied – finds weak support in these data.
On the other hand, if we observe the results for the three sessions, we notice that some differences
emerge. In particular, in the third session the time spent using the profit calculator is significantly
less that in the other two sessions (according to a Wilcoxon rank-sum test, at 1% significance level),
while more attention is paid to the outcome individually chosen by each of the player’s opponents in
the previous period. We have already observed above that the average outcome in the third session
was significantly higher than in the other two sessions. So, these data provide some support to Vega-
Redondo’s idea that information about the strategies chosen by the opponents yields a more aggressive
competition between players. In the following, we will see that this impression is supperted also by a
deeper econometric analysis.
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Figure 6: Distribution of players’ attention in the three sessions.

Another noticeable fact emerges from figure 7: the fraction of look-up time dedicated to the profit
calculator decreases along the game, and on average is significantly higher in the first than in the
last 20 periods (see table 4), while the opposite is true for the time spent looking at the output

Table 4: Fraction of look-up time dedicated to the profit calculator and to competitors’ output choices in the
first and in the second half of the game.

Session 1 Session 2 Session 3 Total

profit calculator
Periods 1-20 0.384 0.414 0.319 0.371

∼ >∗∗ >∗∗∗ >∗∗∗

Periods 21-40 0.370 0.309 0.261 0.315

competitors’ output
choice

Periods 1-20 0.276 0.172 0.271 0.241
∼ <∗∗∗ <∗∗∗ <∗∗∗

Periods 21-40 0.293 0.295 0.338 0.308

Note: the symbols ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5% and 10% level, respectively.

individually chosen by the player’s competitors in the previous period. Again, this shift in players
attention together with the previously observed increase in the average output level seems to be in
line with Vega-Redondo’s model, even if the evidence is weak due to the lack of significance of the
increase in quantities.

5.2.1 Use of the Profit Calculator

We have already noted that players made wide use of the profit calculator in this game. In particular,
this device has been used in almost half of the observations collected through the three sessions, mostly
to evaluate the myopic best reply to some aggregate quantity hypothetically produced by the player’s
opponents (see table 5).

Suppose a subject followed the aforementioned Best Response Dynamics rule and best replied to
the aggregate output chosen by his opponents in the previous period: before using the profit calculator
he should have gathered information about his competitors aggregate output in previous periods, by
opening the appropriate box. When this happened, I claim that the look-up sequence is consistent
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Figure 7: Allocation of players’ attention along the game.

Table 5: Use of the two functions of the profit calculator, and percentage of observations in which the look-up
sequence is consistent with a myopic best reply.

Use of the p.c. N. obs (%) % of L.U. sequences consistent with BRD
both functions 130 (13.56%) 91.54%
1st function (best reply) only 584 (60.90%) 82.86%
2nd function only 245 (25.55%) 79.62%
total 959 82.06%

Profit calculator not used 961 –

with best response dynamics (BRD), and it turns out that this is the case in more than 80% of the
times the profit calculator was used.

When using the profit calculator, subjects had to enter a number corresponding to the hypothetical
aggregate quantity produced by their opponents. This quantity can be seen as a proxy for their
expectations about their competitors’ future strategies. Figure 8 presents the frequency distribution
of the difference between this quantity and the aggregate quantity actually chosen by competitors in
the previous period.
According to these data, more than half of the times the profit calculator was used the quantity
inputed belonged to the interval [Q−1(t− 1)− 3, Q−1(t− 1) + 3], where Q−1(t− 1) represents the sum
of the quantities produced by the player’s opponents in the previous period. This provides further
support to the best response dynamics as a model of learning in this setting.

5.2.2 Interest for the strategies adopted by opponents.

As we have seen above, a considerable amount of attention is dedicated to the boxes showing the
output individually chosen by each of the player’s opponents in the previous period. Table 6 shows

Table 6: Average look-up time

Best Not Best
Opponent 1 2.07 >∗∗∗ 1.53
Opponent 2 1.44 >∗∗∗ 0.78
Opponent 3 2.45 >∗∗∗ 1.69

Note: The statistical test is a two sample Wilcoxon rank-sum test. The
symbol ∗∗∗ indicates significance at the 1% level
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Figure 8: Frequency distribution of the distance between the opponents’ quantity entered in the profit calculator
and the one observed in the previous period.

that on average the look-up time dedicated to each of the opponents was greater when he had gotten
the highest profit in the previous period. Still, if we compare the time spent looking at the strategy
adopted by “the best” with the total time dedicated to the strategies adopted by the other opponents,
we notice that the latter is significantly higher (see table 7).

So, in partial contradiction with what suggested by Vega-Redondo’s theory of imitation, players
in this experiment seem to be concerned not only with the choice made by the competitor who best
performed in the previous period, but also with the output chosen by each of the others.

Table 7: Average look-up time

Session Best opponent Other opponents
Session 1 1.700 <∗∗∗ 3.088
Session 2 1.317 <∗∗∗ 2.146
Session 3 2.309 <∗∗∗ 3.211
Total 1.775 <∗∗∗ 2.815

Note: The statistical test is a Wilcoxon signed-rank test. The symbol ∗∗∗

indicates significance at the 1% level

5.3 Learning

I start the analysis of the learning mechanisms adopted by the players by comparing the explanatory
power of the three aforementioned simple learning models: trial and error, imitation of the best and
best response dynamics.

In a first attempt to have a picture of the learning model adopted by the players in this game,
I adopted a measure proposed by HNO to assess to which extent the three simple learning rules
presented in section 4 are able to predict each single choice the subjects made.
Let

zt
i =

qt
i − qt−1

i

at
i − qt−1

i

where at
i is the quantity predicted, in turn, by Imitate the Best (IB), Trial and Error (TE) and Best

Response Dynamics (BR).
According to the figures presented in table 8, best response dynamics is the rule that provides the
most precise forecast (0.5 <= zt

BR < 1.5) and predicts the right direction of change (zBR > 0) with
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the highest frequency. It is also worth noting that “imitate the best” in general overshots, when it
predicts the right direction of change, meaning that it forecasts a variation in quantity that is more
than twice as big as the actual one (0 <= zIB < 0.5); the reverse is true for “trial and error” model.
Table 9 shows how many subjects report positive zt

i values in at least 70% of the rounds and how many

Table 8: Hit ratios (%)

z < 0 0 <= z < 0.5 0.5 <= z < 1.5 z >= 1.5
IB 45.45 26.70 21.38 6.47
BR 29.61 27.74 28.29 14.36
TE 47.09 13.21 6.14 33.55

present hits close enough to 1 (0.5 ≤ z < 1.5) at least 30% of their decisions. None of the subjects
seems to adopt the “trial and error” rule, while nine players behave according to what predicted by
“imitate the best” in at least 12 periods. Yet, “best response dynamics” is the model that seems
to inform the behavior of most of the players. Being interested also in how information affects the

Table 9: Hit ratios at the individual level

0.5 <= z < 1.5 z > 0 total
IB 9 3 48
BR 18 25 48
TE 0 0 48

learning model players adopt, I grouped observations by the type of information subjects spent most
of their look up time on and measured the percentage of observations in which (0.5 <= zt

i < 1.5), for
each of the three basic learning rules (Table 10). We notice that in general “best response dynamics”
prevails over the other two rules, but when players dedicated the greatest part of their attention to the
output individually chosen by each of their competitors in the previous period, then is “imitate the
best” rule that gets the highest score, and this effect is even more pronounced when the time spent
looking at the strategy adopted by the best among the opponents is longer than the time dedicated to
the others. This is one more element in favor of Vega-Redondo’s theory claiming that when subjects
have information about their opponents strategies and payoffs, they tend to become more competitive
since they are tempted to imitate the one who got the best result.

5.3.1 Ordered probit estimation

Estimation procedure I now consider a model in which the sign of a player’s output change, ∆q,
is a function of the direction, x, indicated by the target output levels according to each of the three
learning rules. This way, I should be able to determine to what extent each behavioral rule affects the
way players adjust their output in every round of the game.
Let:

∆qt
i = sign(qt

i − qt−1
i )

and, for every learning rule r, let
xt

r,i = sign(at
r,i − qt−1

i )

where at
r,i denotes the quantity predicted for player i at round t by rule r, as above. In this experiment,

I also control for the information gathered by players in every period. As mentioned above, each of the
three basic learning models considered here requires a different type of information: more precisely, to
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Table 10: 0.5 <= z < 1.5 (%)

Longest L.U. Time IB BR TE N. obs.

opponents’
individual output

mostly to the best 36.73 19.05 4.08 147

mostly to the others 23.79 23.45 5.52 290

profit calculator
L.U. seq. consistent with BR 17.77 37.50 8.43 664

L.U. seq. not consistent with BR 20.37 31.48 1.85 108
opponents’ aggregate past output 22.66 23.56 4.83 331

player’s past output and profits 20.32 23.53 6.95 187
no information acquired 14.43 15.46 3.09 97

Total 21.38 28.29 6.14 1824

imitate the best one must have looked at the output produced by the best competitor in the previous
period, to play according to trial and error a player needs to remember the strategy he has chosen
and the profits he has obtained in the last two periods, meaning that he probably would have to open
the box containing information about his own history of play, while to best reply he must know the
aggregate output of his competitors in the previous period and he must use the profit calculator. For
this reason, I created three dummy variables dt

b,i, which indicate respectively if player i in period t
had the information (b) necessary to best reply (InfoBR), to imitate the best (InfoIB) or to follow the
“trial and error” model (InfoTE).
These dummy variables enter the model per se, but are also interacted with the variables x denoting
the sign of the output variation predicted by the three learning models considered here.

Since subjects repeatedly interact with the same three opponents throughout the whole game, a
critical point in this analysis is how to control for repeated observations of the same individuals or the
same group. Moreover, I also wanted to check for possible correlation between data collected within
each of the three sessions. For this purpose, I adopted a multilevel model with a random effect at the
subject level nested within a random effect at the group level, which in turn is nested within a random
effect at the session level.

More specifically, I assume that the latent response variable, z, be a linear function of the inde-
pendent variables plus a subject specific error term ζi,g,s, a group specific error term ηg,s, a session
specific error term θs and finally and i.i.d. error term ut,i,g,s. Random intercepts are assumed to be
independently normally distributed, with a variance that is estimated through the regression.

The full model is then:

z =
∑

r

βrxr +
∑

b

γbdb +
∑

r

∑
b

δb,rdbxr + ζ + η + θ + u

where subscripts r and b both take values in {IB, TE, BR}. For simplicity I omitted the subscripts
for individual, group, session and period.

The dependent variable is derived in the standard way for an ordered probit given the latent
variable and cutoffs between categories. Maximum likelihood estimation is used to fit values for the
cutoffs, β, γ and δ, and for the variances of the subject, group and sessions specific error terms.
The model was estimated using GLLAMM 6, a software specifically designed to provide a maximum
likelihood framework for models with unobserved components, such as multilevel models, certain latent
variable models, panel data models, or models with common factors.

I first estimated the full model, then I progressively obtained a more compact model using
Likelihood-Ratio tests with a significance level of 5%. First, I checked for significance of the vari-

6see Rabe-Hesketh and Skrondal, 2004 [24] and http://www.gllamm.org
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ances at the session and group levels; the null hypothesis that these were not significant was not
rejected, so I adopted a more compact model with a random effect only at the subject level. Then, in
steps, I eliminated the dependent variables that turned out not to be significant. For sake of simplicity,
I present only the last estimate of this reduced model in table 11.

Table 11: Ordered Probit Model: Estimations

Coefficient Standard Error
βs

TE -0.022 0.041
BR 0.134** 0.066
IB 0.484*** 0.053

γs
InfoIB 0.327*** 0.080

δs
InfoTExTE 0.148** 0.068
InfoTExBR 0.151** 0.067
InfoBRxBR 0.520*** 0.067
InfoIBxBR 0.258** 0.075

cut1 -0.041 0.065
cut2 0.369*** 0.066
N 1824
logL -1576.005

Note: In this table and in the following ones, the symbols ∗∗∗, ∗∗ and
∗ indicate significance at the 1%, 5% and 10% level, respectively.

Results We notice that the rule based on trial and error does not find strong support in these
data even if it seems to guide, at least in part, players’ behavior when they acquire the information
necessary to apply it. We also observe that when players looked at the strategies adopted in the
previous period by their opponents, and at the relative profits, they tended to increase their quantity
(the estimated coefficient for InfoIB is positive and highly significant).
Remarkably, if the impact of information is not taken into consideration the “imitate the best” model
seems to account for the greatest part of output variations; the coefficient for “best response dynamics”
is also positive and significant, but is smaller in magnitude. This relative weakness of the best response
model disappears if we consider the effect of information: indeed, according to these statistics if a
subject acquire any of the three pieces of information considered here he will be more incline to
move in the direction predicted to best reply, and particularly so if he uses the profit calculator after
having looked at the aggregate output produced by his competitors in previous periods (namely, when
InfoBR= 1).
One possible reason why the coefficient for xIB is higher than the one for xBR is that subjects were
always informed about the profits individually obtained in the previous period by each of the players
in their group. It is possible, then, that any time they realized that their profit was not the highest
they tended to increase their output, then moving in the direction predicted by “imitate the best”,
even if they did not know the exact output chosen by the player who had got the best profit.

The first impression is that the hypothesis that subjects follow some very simple heuristic to choose
their strategy in our game should be rejected. Learning through trial and error does not seem to be a
plausible explanation of subjects behavior, both because the players pay too little attention the their
own past profits and quantities, which is the only information required to apply this learning rule,
and because their choices are not in line with what is theoretically predicted according to this model.
On the other hand, imitating the best performer – per se – is not always able to forecast the observed
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choices correctly, even if subjects’ look up patterns are consistent with this learning model. Myopic
best reply seem to drive players’ choices, at least partially, and is supported by the information they
acquire, on average. In fact, to apply this learning rule the subjects need to know the sum of the
quantities produced by their competitors in the last period – an information they almost always look
at – and they must be able to compute a best reply, which means that either they use the profit
calculator or they have used it extensively in the past and already know what the best reply is. Still,
this model does not fully explain the observed variations in players’ behavior.

According to the ordered probit regression, players’ behavior is rather driven by the interplay of
best reply and imitation, which in a sense confirms Vega-Redondo’s idea: even if subject are incline
to adopt the best reply when they know the market structure sufficiently well, if they are provided
with information about their rivals’ strategies and profits, they will be tempted to imitate those who
are more successful, which yields more competitive outcomes.

Still, the model I estimated is essentially based on three extremely simple learning rules, and could
therefore be too rigid to encompass all the facets of players learning behavior. For this reason, I
decided to estimate a second, more complicated learning model, based on the self-tuning experience
weighted attraction learning model proposed by Ho, Camerer and Chong (2007) [11].

5.3.2 EWA Learning Model

The parametric version of the Experience-Weighted Attraction (EWA) model was first proposed by
Camerer and Ho [4] and Ho et al. [12]. It is a model that hybridizes features of other well known
learning rules, such reinforcement learning and belief learning, and that thanks to its flexibility has
proven to fit data better than other models. This model is based on the idea that every player assigns
to each strategy a given level of attraction, which can be represented by a number. Attractions
are updated after every period, according to the players’ experiences, and determine every player’s
probability distribution over his or her choice set.

In the original model, attractions are updated using the payoff that a strategy either yielded, or
would have yielded, in a period: the rule for updating attraction Aj

i (t) attached by player i to strategy
j in period t is

Aj
i (t) =

φN(t− 1)Aj
i (t− 1)

N(t)
+

[δ + (1− δ)I(sj
i , si(t))]πi(s

j
i , s−i(t))

N(t)
(3)

where sj
i denotes strategy j of player i, s−i(t) the strategy vector played by player i’s opponents in

period t and N(t) is a measure of the weight players put on past attractions relative to present ones;
it can be interpreted as the number of “observation-equivalents” of past experience relative to one
period of current experience.
I(x, y) is an indicator function which takes value 1 if x = y and value 0 otherwise. So, according to
this model, it is assumed that players are able to evaluate the foregone payoffs they would have earned
in period t had they chosen a different strategy sj

i .
The parameter δ measures the relative weight given to hypothetical payoffs, compared to actual payoff
πi(si(t), s−i(t)). The second parameter to be estimated is φ: a discount factor that depreciates previous
attractions.

The variable N(t) is also updated after every period according to the rule:

N(t) = φ(1− κ)N(t− 1) + 1 t ≥ 1 (4)

where parameter κ determines the growth rate of attractions, which reflects how quickly players lock
into a strategy: a third parameter that has to be estimated. When κ = 0 attractions are weighted
averages of lagged attractions and past payoffs, so that attractions cannot grow outside the bounds
of the payoffs in the game. When κ = 1 attractions cumulate, so they can be much larger than
stage-game payoffs.
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Attractions determine probabilities. More specifically: the probability P j
i (t + 1) that player i

chooses strategy j in period t + 1 is monotonically increasing in Aj
i (t) and decreasing in Ak

i (t), k 6= j.
The relation between attractions and choice probabilities is represented by a logistic stochastic response
function:

P j
i (t + 1) =

eλAj
i (t)∑

k eλAk
i (t)

(5)

where the parameter λ measures sensitivity of players to attractions.
One of the main criticisms on parametric EWA concerns the number of parameters to be estimated.

To solve this issue, Ho, Camerer and Chong (2007) [11] developed a simpler version on the model in
which some parameters are fixed at plausible values, while others are replaced with functions of
experience, that no longer need to be estimated. More specifically: parameter k is set equal to 0,
because this capture almost all familiar learning models, and also because according the previous
work by the same authors this parameter does not affect fit much. The initial experience N(0)
is restricted to be equal to 1, which is not a crucial assumption since in general subjects come to
the experiment with weak priors, whose influence gradually disappears as the experiment proceeds.
Finally, parameters δ and φ are replaced with functions of players’ experience.
Parameter δ – representing weight of foregone payoffs – is substituted with the function:

δj
i (t) =

{
1 if πi(s

j
i , s−i(t)) ≥ πi(si(t), s−i(t))

0 otherwise.

meaning that subjects reenforce, by a weight of one, only chosen strategies and all the other strategies
that would have yielded a weakly higher payoff.
The discount factor φ is instead replaced by the “change detector” function φi(t) varying across
time within the same game. The hypothesis made by the authors, here, is that the weight put on
previous experiences should be lower when the player senses that the environment is unstable or
that the strategies adopted by her opponents are changing. They then build a “surprise index” Si(t)
measuring the difference between opponents’ most recently chosen strategies and the strategies they
adopted in all previous periods, and let φi(t) = 1 − 1

2Si(t). The surprise index is made up by two
main elements: a cumulative history vector hi(t) and a recent history vector ri(t). The vector element

hj
i (t) =

∑t
τ=1 I(sj

−i,s−i(τ))

t measures the frequency with which strategy sj
−i was adopted by player i’s

opponents in period t and in all the previous ones. Vector ri(t) instead has all the elements equal to
0 but the k-th, where sk

−i = s−i(t). The surprise index Si(t) simply sums up the squared deviations
between the cumulative history vector hi(t) and the immediate history vector ri(t):

Si(t) =
∑

j

(hj
i (t)− rj

i (t))
2.

Self-tuning EWA model has two important advantages: first, it is particularly flexible since the
functions δj

i (t) and φi(t) naturally vary across time, people, games and strategies; second, it can shift
from a learning model to a different one as the game proceeds.

A modified version of self-tuning EWA model According to EWA learning model, attractions
are updated keeping into account also foregone profits, but in the experiment I present here foregone
payoffs from unused strategies are not known by the players. Subjects, though, can use the profit
calculator to discover the profit a particular strategy would yield, given the strategies chosen by the
other players. As explained in section 3.1, the profit calculator can be used in two different ways:

1. the profit calculator can be used by the players to evaluate the quantity that would yield them
the highest profit given the aggregated quantity produced by their competitors, and inform them
about the profit they would earn if they produced the suggested amount of good.
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2. it can be also used to know the profit given both the quantity produced by the player and the
sum of the quantities produced by his opponents.

By checking how a player used the profit calculator in each period, I know precisely which information
he used to evaluate each strategy in every period.

If they wish, players can also access information about the profits earned in the previous period
by their competitors. If they wanted to imitate the strategy chosen by the player who got the highest
profit in the previous period – as suggested by Vega Redondo – they would attach a higher attraction
to that strategy.

Keeping this peculiar characteristics of the game in mind, I decided to change the attraction
updating rule, so that attractions in every period t are modified considering three elements:

• the profit πi(s
j
i , s−i(t− 1)) actually obtained by the player in period t− 1;

• the profits πj
i,imit(t − 1) obtained by each of the player’s opponents playing strategy sj in the

previous period;

• the profits πj
i,PC1(t) and πj

i,PC2(t) evaluated by the player using the first and the second function
of the profit calculator respectively, given his or her expectations about the competitors’ choices
7.

While the player always knew the strategy he played in the previous round and the profit he obtained,
πimit, πPC1 and πPC2 may be known or unknown to the player, depending on the pieces of information
he or she decided to look up.
To check for the information the subject is aware of, I define four dummy variables:

dj
i,PC1(t) =


1 if in period t player i used the first function of the profit calculator, and this

device indicates strategy sj as the best reply to the strategies played by the three
opponents, and associates it to some profit πj

i,PC1(t)
0 otherwise.

dj
i,PC2(t) =


1 if in period t player i used the second function of the profit calculator, and

this device associates strategy sj to some profit πj
i,PC1(t) given the opponents’

strategies.
0 otherwise.

dj
i,h(t) =

1 if player i in period t knew that his opponent h had played strategy sj in the
previous period

0 otherwise.

bi,h(t− 1) =

{
1 if player h had the highest profit in period t− 1 among the opponents of player i

0 otherwise.

These dummy variables, in a sense, replace the function δj
i (t) representing the weight of foregone

profits in the original version of self-tuning EWA learning.
Now, it is possible to state our modified updating rule for attractions:

7If the second function of the profit calculator is used more than once by player i in period t, the profit πj
i,PC2(t)

is calculated as an average of the various profits associated to strategy sj
i by the device (different profits correspond to

different hypotheses about the other players’ behavior).
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Aj
i (t) =

φi(t)N(t− 1)Aj
i (t− 1) + απi(s

j
i , s−i(t− 1))

N(t)
+

+
βdj

i,PC2(t)π
j
i,PC2(t) + γdj

i,PC1(t)π
j
i,PC1(t)

N(t)
+

+
ε
∑

h 6=i d
j
i,h(t)bi,h(t)πj

i,imit(t− 1) + ζ
∑

h 6=i d
j
i,h(t)(1− bi,h(t))πj

i,imit(t− 1)

N(t)

(6)

In this formula, attractions in period t are updated according to a weighted average between (some
of) the information the player has about the profit each strategy yielded in the previous period and
the profit it may yield in the future.
Parameters α, β, γ ε and ζ then measure, respectively, the relative weight given to player’s own
experience, to the results potentially provided by the two functions of the profit calculator and to the
profits earned by player’s opponents, if observed.

Note that, in our model, Aj
i (t) depends on the profits actually earned and (possibly) on the profits

the opponents achieved in the previous period, and may be updated in period t with the profits
evaluated by the profit calculator. So, the probabilities P j

i (t) depend on Aj
i (t), and not on Aj

i (t− 1),
as in the original model. The updating rule is then:

P j
i (t) =

eλAj
i (t)∑

k eλAk
i (t)

(7)

In order to test whether the difference between the estimated weight attributed to the profits
achieved by the best competitor and the profits earned by other competitor is significant, I also
estimated a restricted version of EWA model, in which equation (6) is replaced by equation (8)

Aj
i (t) =

φi(t)N(t− 1)Aj
i (t− 1) + απi(s

j
i , s−i(t− 1))

N(t)
+

+
βdj

i,PC2(t)π
j
i,PC2(t) + γdj

i,PC1(t)π
j
i,PC1(t) + δ

∑
h 6=i d

j
i,h(t)πj

i,imit(t− 1)

N(t)

(8)

.

Results Table 12 displays estimation results for the unrestricted and restricted version of the EWA
model. Learning in this setting appears to be a blended process in which different components play

Table 12: Results of the EWA learning models

unrestricted restricted
b se b se

α 0.476*** 0.097 0.477*** 0.148
β 0.845*** 0.171 0.848*** 0.263
γ 1.187*** 0.241 1.189*** 0.373
δ – – 0.356*** 0.114
ε 0.338*** 0.077 – –
ζ 0.383*** 0.089 – –
ln(λ) 0.499** 0.197 0.497 0.308
Log-Likelihood -5680.350 -5680.603
Sample size 1920 1920

an important role. The component related to belief learning seems to predominate: subjects attach
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the highest weight to strategies hypothetically tested by means of the profit calculator. A Wald test
fails to reject the hypothesis that β and γ are equal, so according to my results subjects tended to
attribute less importance to the results from the first function of the profit calculator – evaluating best
reply – than from the second one – which computes the profit given the output choice of the player
and the aggregate output hypothetically produced by his opponents.
Both a Wald test on the results of the unrestricted model, and a likelihood ratio test between the
restricted and the unrestricted model fail to reject the hypothesis that ε and ζ are equal. This means
that subjects, when evaluating a strategy, do take into account the profits realized by other players
choosing that strategy (the coefficient is always positive and highly significant), but do not attach
more weight to the profit realized by the best among their competitors.
Finally, we notice that the estimates for α are positive, significant, and higher than those for parameters
δ and ε and ζ, respectively for the restricted and unrestricted models. This suggest that reinforcement
learning, based on player’s own past experiences – plays a role, which seems to be even more important
than the one played by “imitation”.

5.4 Individual Characteristics

Finally, I would like to point out some interesting differences emerging among students having different
educational backgrounds. Table 13 shows some facts about the composition of my subjects pool.

Table 13: Subjects’ education

master bachelor
Business Administration 8 3
Law and Economics 1
Commercial Studies 6
Economics 6 3
Finance 2 7
Marketing 12

First, it is worthwhile noting that master students pay relatively less attention to the strategies
individually adopted by their opponents, and more to the profit calculator (see table 14). According
to our previous results, this should make them less incline to imitate and more to best reply, which
in theory should be viewed as a more “rational” behavior. In fact, master students turn out to be
less aggressively competitive: the average quantity they choose is significantly lower, and so are their
profits. They seem to adopt a follower behavior, best replying to opponents who tend to keep their
own output high.

bachelor master
Average share of L.U time

competitors’ individual output 0.314 >∗∗∗ 0.204
player’s own history of play 0.119 <∗∗∗ 0.133

competitors’ past aggregate output 0.213 <∗∗∗ 0.259
profit calculator 0.329 <∗∗ 0.368

Average output 17.76 >∗∗∗ 16.72
Average profit 176.82 >∗∗∗ 158.14

Table 14: Comparison between bachelor and master students

Second, sizable differences emerge between students with different curricula of studies (table 15).
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In particular, students in Finance, Marketing and Law and Economics show much less interest in
the profit calculator, and much more in their competitors’ output. This is somehow surprising, since
all curricula except Commercial Studies and Law and Economics envisage an introductory course
in microeconomics – including elements of the theory of oligopoly – for first year bachelor students,
while only master students in Economics have a specific training in Industrial Organization and Game
Theory. So, it is not clear whether this different attitude towards information and learning – which
as we have seen has an impact on the level of market competition – derives from a different approach
to economics characterizing different curricula or from individual attitudes that in turn have affected
also subjects’ choice for a certain course of studies.

Table 15: Allocation of attention: a comparison between different curricula

Business
Admin.

Comm.
Studies

Economics Finance Marketing
Law and
Econom.

Competitors’
individual output

0.234 0.219 0.123 0.428 0.340 0.476

Player’s own history
of play

0.118 0.130 0.113 0.102 0.145 0.176

Competitors’ past
aggregate output

0.227 0.207 0.262 0.188 0.251 0.152

Profit
calculator

0.383 0.409 0.476 0.258 0.244 0.136

6 Conclusion

In this paper I presented an experiment in which subjects were asked to play a repeated Cournot game
with incomplete information. The first aim of the experiment was to check what feedback information
subjects are really interested in, and to test how information is linked to the learning model adopted
and in turn to the market outcome.

According to the data I collected, learning appears to be a composite process, in which different
components coexist. The leading element seems to be a sort of belief learning, in which subjects
form expectations about their opponents’ future actions and try to best reply to them. It is also
noticeable that in most of the cases the opponents’ output inputed in the profit calculator – a proxy
for players’expectations – is pretty close to the aggregate opponents’ output observed in the previous
period, meaning that either subjects expected their opponents not to change their strategy much or
that they decided to use the profit calculator only when the opponents’ strategy was stable enough to
let them make predictions about the future.
Second, a considerable amount of look-up time is dedicated to the strategies individually adopted
by competitors. As predicted by Vega-Redondo’s theory, this piece of information generally boosts
competition. Yet, my results suggest that players are not only interested in output produced by
the most successful competitor, but by all of their opponents. These results are confirmed by the
estimates obtained via my modified version of EWA learning model, suggesting that there is no
difference between the weight attached to the profits collected by the most successful opponent and by
the other competitors by subjects assessing the “strength” of a particular strategy. Anyhow, all tests
I have done agree on that imitation is not the main driving force in the observed learning process.
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Third, the “trial and error” learning model which was found to perform quite well in HNO does not
find strong support in my data. Subjects are not interested in their own past history of play, which is
the only piece of information required by this learning rule, and the model often fails to predict even
the direction of change in players’ output.
Fourth, the model I derived from Camerer and Ho’s EWA learning stresses the importance played by
reinforcement learning in this setting: when assessing the strength of a strategy subjects seem to take
into greater consideration their own experience than what they know about other players’ results.

Finally, from an analysis of players’ individual characteristics it emerges that subjects’s specific
training in economics might affect their behavior both in terms of information search pattern and
in terms of actual choices. This aspect deserves further investigation and suggests that it could be
interesting to repeat the experiment with market professionals, in order to see whether their experience
in the field affects their approach to the game.

With my experiment I meant to contribute to the understanding of learning mechanisms in game-
like situations. I also wanted to test experimental devices based on the “Mouselab” technique as
scientific instruments that might be usefully adopted in other experiments on learning and to investi-
gate other interesting situations in which imperfect information of some of the agents plays a crucial
role, or in which reputation is an asset. Examples might be auctions and financial markets, but also
markets where hiding some attributes of the good being sold or the price of its add-ons may enable
the sellers to get profits well above the competitive level.
In situations like those, a better comprehension of the relation between the data and stimuli provided
to economic agents and their choices might help the regulator to set rules of information disclosure
that bring the market outcome toward a more efficient equilibrium.
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A Instructions

Welcome to this experiment about decision making in a market. The experiment is expected to last
for about 1 hour and 15 minutes. You will be paid a minimum of 4efor your participation. On top of
that you can earn up to 20 eif you make good decisions.

We will first read the instructions aloud. Then you will have time to read them on your own. If
you have questions, raise your hand and you will be helped privately. From now on, you are requested
not to communicate with other participants in any way.

Your task. During this experiment, you will be asked to act as the manager of a firm which produces
and sells a given product: your task consists in deciding how many product units to put on the market
in every period.

Your firm has three competitors that sell on the same market a product which is exactly identical
to yours. Your competitors are three among the participants to the experiment taking place today in
this room, but you will not have the opportunity to discover who they are, not even at the end of the
game. Your identity will be kept secret as well.

The experiment consists in 40 consecutive periods. In every period, you will be asked to choose
how many units to produce (between 0 and 30), and the same will be done by your competitors. Your
choices affect both your firm’s profits and the ones of your three competitors.

Every period lasts 30 seconds: if in a period you fail to make your choice within the time limit,
the computer will automatically set the number of units produced by your firm in that period equal
to 0, and your profit in that period will be equal to 0 too.

Price, costs and profits. The market price at which you will be able to sell your product will be
the higher, the smaller the total number of product units your firm and your competitors put on the
market; if the total number of product units sold on the market is sufficiently high, the price will be
equal to zero.
No product unit remains unsold: all the product units you put on the market will be purchased
by consumers at the market price.

To produce, you will have to bear a production cost which will be the higher, the more product
units you put on the market.

Your profit will be equal to the market price times the number of units you sell, minus production
costs.

Earnings and Payment. You will receive an initial endowment of 2000 points. At the end of each
period, your per-period profits or your possible losses will be added to your total profit, which will be
always displayed in the top right corner of the screen. Notice that your total profit cannot become
negative.

At the end of the game, your total profit will be converted in Euros, according to the rate:
1000 points = 1 Euro
The corresponding amount of money will be payed to you in cash, privately, at the end of the session.
Remember that, in addition, you will be payed 4 efor your participation.

Information at your disposal. At the top of your computer screen you will read:

1. the number of periods elapsed since the game began (top left corner)

2. your total profit (top right corner)

3. the number of seconds (top, center) you still have at your disposal to take a decision. Remember
that every period lasts 30 seconds, and if you do not take a decision in time it will be as if you
decided to produce 0 units and in that period your profit will be equal to 0.
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Before choosing how many units to produce, you will have the opportunity to look at some information
on market characteristics and on what happened in the previous periods.

In particular, in every period following the first one, you will be informed about the profits obtained
in the previous period by your firm and by your competitors. Moreover, you will be able to get more
information about:

1. the quantity produced in the previous period by each of your competitors;

2. the quantities produced and the profits obtained by your firm in each of the previous periods:
this information will be displayed both by means of a plot and in a table;

3. the quantity produced on the whole by each of your three competitors in the previous periods:
this information will also be presented both by means of a plot and in a table.

In addition, you will have the opportunity to use a profit calculator, a device you can use to better
understand how the market works. the profit calculator has two functions:

1. evaluate your profit, given the number of units produced by your firm and the number of units
produced on the whole by your competitors.

2. evaluate the maximum profit you could earn – and the number of units your firm should produce
in order to get such profit – given the number of units produced on the whole by your competitors.

Progress of the experiment. When the reading of these instructions is over, you will have the
opportunity to ask for clarifications about the aspects of the experiments which are unclear.

When we have answered all the possible questions you will be asked to complete a test on your
computer, which will allow us to check that you have fully understood the instructions, and you to get
to grips with the software used in this experiment. The answers you give in this test will not affect
your earnings in any way, nor they will influence any other aspect of the experiment. During the test,
you will still have the possibility of asking questions, always raising your hand.

When all the participants have completed their test, the real experiment will begin. The computer
will randomly generate groups of four persons; every participant to the experiment will belong to one
and only one group during the whole experiment. The other three members of the group you belong
to are your competitors, who then remain the same over all the 40 periods of the game.

Every period lasts at most 30 seconds. The maximum length of the game therefore is approximately
20 minutes.

At the end of the fortieth period the game will end, and the points scored by each of the participants
will be converted into Euros.

Before being paid privately, you will be asked to answer a short questionnaire about the experiment,
and you will have to hand back the instructions.

THANK YOU VERY MUCH FOR PARTICIPATING IN THIS EXPERIMENT AND GOOD LUCK!
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B Graphical Interface

Figure 9: Graphical interface

Translation From top to button, left to right. [] indicate a button.

bar at the top: period 13 out of 40, remaining time [sec.]: 13, total profit: 3097

box at the top: how many units do you want to produce in this period? [OK]

first box on the left: Profits in the previous period
your profit: 252
competitor 1: 168
competitor 2: 392
competitor 3: 644

second box on the left: # of units produced in the previous period.
To know the number of units produced in the previous period by one of your competitors, push
the corresponding button. [competitor 1] [competitor 2] [competitor 3]

center-right box: before taking a decision, you can look at the information at your disposal and use
the profit calculator.

bottom-left box: history of play
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# of units you produced and profits you obtained in the previous periods [show]

# of units produced on the whole by your three competitors in the previous periods [show]

bottom-right box: profit calculator
do you want to use the profit calculator? [yes]
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