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1. Introduction

It is well known that the weather may have a criuiogpact on business activities. This
effect is very relevant even at the macroeconoewell In fact, as pointed out by Ku
(2001), the US Department of Commerce estimatdsthieaveather affects nearly 70%
of US companies, and almost 22% of US GDP. McWilBa(2004) shows similar
evidence for the European economy.

In the last ten years the increased interest feiruments allowing to hedge and offset
weather-related risks has contributed to the waatlf a weather derivatives market. In
this new market, financial intermediaries and pgevaompanies exchange derivative
contracts where the underlying asset is a weathated variable (such as the average
daily temperature, wind speed or rainfall). Curkgninost exchanged weather contracts
are linked to temperature values. The financigrditure provides several studies that
outline the general pricing problems of weathenwdgives: see Geman (1999), Cao
and Wei (2000, 2003), Zeng (2000), Alaton, Djehicmel Stillberger (2002), Dischel
(2002), Brix, Jewson and Ziehmann (2002a,b,c), davwand Brix (2005) among an
increasing number of contributions. The most irdgeng aspect is, however, the
development of appropriate methods for forecastingsimulating the underlying
weather variables for the purpose of pricing th&oesited weather derivatives. Some
examples are given by Roustant et al. (2003), Cathpénd Diebold (2005),
Hamisultane (2006a) and Taylor and Buizza (200@t focus on the daily modelling
and forecasting of temperatures.

The development of an appropriate model dependshenempirical properties of
weather variables. Recently, some authors foundeage for the presence of long
memory in temperature series; see Caballero, JewndnBrix (2002), Hamisultane
(2006b), among others. This empirical finding idlve@own and deeply analysed in the
statistical and econometric literature. The fitsidges date back to the beginning of the
1980s with the seminal papers by Granger (19801Y198ranger and Joyeux (1980),
Hosking (1981) and then to the contributions of 8ib\W1992a,b), among others. The
traditional ARFIMA models have been applied in éiffint economic areas, such as
foreign exchange, Cheung (1993), Gil-Alana and T@@02) and Beine and Laurent
(2003), stock markets, Lo (1991), Ding, Granger @&mle (1993), Mills (1993),



Cheung and Lai (1995), output, Diebold and Rudel{d9189), inflation, Hassler and
Wolters (1995), Baillie, Chung and Tieslau (199@) aDoornik and Ooms (2004),
monetary aggregates, Porter-Hudak (1990), inteedss, Iglesias and Phillips (2005)
and Couchman, Gounder and Su (2006), forward premiBaillie and Bollerslev
(1994), electricity prices, Koopman, Ooms and €sor(2007), among others. We also
cite the surveys by Baillie (1996), Bhardway anda8son (2006) and the book by
Beran (1994). There are also some studies relding memory to atmospheric or
physical elements: hydrology, Hosking (1984), cliohagy, Baillie and Chung (2002),
temperature, Smith (1993) and Moreno (2003).

Following this strand of the econometric literatuitee present paper introduces a new
approach for long memory modelling of temperatugges. Temperature series have
been analysed with the ARFIMA-FIGARCH model, sed&lkero and Jewson (2002),
Caballero et al. (2002) and Hamisultane (2006b).t#& moment, the ARFIMA-
FIGARCH specification could be considered the bematk model used by
practitioners to simulate temperature indices dmah tprice weather derivatives based
on the temperature. However, there is some evidématethe memory degree is not
stable over time, Katz (1996), Katz and Parland®@8), and Caballero, Jewson and
Brix (2002). Previous authors also found that thesmg inclusion of this feature may
provide under- or over- estimates of the procesmwee, with corresponding impacts
on derivative pricing. In this paper we proposeaadation of the traditional ARFIMA-
FIGARCH model, allowing for changes over time ire thean and variance memory
coefficients. In particular, we present a model kghihe memory behaviour is season-
specific. Given the relevance of temperature-rdlateather derivatives, we show that
the proposed model provides better fitting with esal temperature-based series in
comparison with the traditional ARFIMA-FIGARCH mddewWe also provide a
simulation-based comparison and a pricing example.

In the following section we present the main praideand pricing approaches in the
weather derivatives market, in order to define modelling framework. Section 3
introduces the Memory Time-Varying ARFIMA-FIGARCH adel and deals with
model estimation, forecast and simulation. The ecgli examples are included in
Section 4 where we provide also the model comparizsed on simulations and an

example on weather derivative pricing. Finally, t88t5 concludes.



2. Weather risks, weather derivatives, pricingissuesand related literature

Usually, the label “weather risk” identifies thadincial exposure that a business may
have to suffer due to events such as heat, coty,srain or wind (Clemmons, 2002).
Among the most weather-sensitive sectors we mdydec energy (subject to excessive
power loads in hot or cold weather), agriculturenstruction (extreme weather
conditions may delay building processes and exremeather events, such as
hurricanes and storms, may also have impacts), fo@ving and entertainment. The
relevant weather risk exposure of many economiwities, and the corresponding need
of hedging or offsetting these risks, has led te pwoliferation of weather-related
insurance contracts and their subsequent infllcapital markets, see Foster (2003) and
Van Lennep et al. (2004). The 2006/2007 annual rtepd the Weather Risk
Management Association (WRMA) indicates that thu®aof the weather derivative
market stood at US$25 billion.

More than 90% of trades done in recent years edeonly to temperature-based
contracts. For this reason, this paper focuses amlgnodelling air temperature indices
to be used for pricing temperature based weathéradiwes contracts. The extension of
our modelling approach to additional weather vdegalmay constitute an interesting
area for future contributions.

Two temperature indices are mainly used: Heatingr&e Days (HDDs) and Cooling
Degree Days (CDDs). The HDD Index is used durirg tleating season (October —
April) and is calculated as a monthly or seasonat ®f daily HDD values, which in

turn are calculated a${DD, = max{ 65F —x (} where x is the average temperature

obtained from daily maximum and minimum temperagufEhe index is evaluated as
the discrepancy from a baseline temperature wisi¢éixéd at 65° Fahrenheit. The CDD
Index is used in warmer months (April-October, wleoling is on) and is calculated

similarly to the HDD, cumulating daily values of aimg degrees, defined as
CDDt:max{xt—GSF,(}). Note that the Fahrenheit degrees are used for US
localizations only, while for Canada and Europesiisl degrees are used with a

baseline temperature of 18°C. Given the colder atlienconditions of Europe and
Canada compared to US localities, the CDD indexsubstituted by the CAT



(Cumulated Average Temperature) index during summenths. The CAT index is

measured by cumulating daily average temperatwestbe contract duration gs

All weather derivatives are priced according to ¢éxpected values of a weather index
at the contract maturity. However, standard modekrbitrage-free pricing, such as the
well-known Black and Scholes (1973), seem to bdeqgaate for a number of reasons,
see Dischel (1998). The most relevant is that tbehastic process governing weather
variables may be very different from the standaebngetric Brownian motion, as
evidenced by Brix, Jewson, Ziehmann (2005) or Casti@nd Diebold (2005) for air
temperature. Some solutions have been proposdu imathematical finance literature:
see Dornier and Querel (2000), Davis (2001), Tokteneu and Valor (2001), Brody,
Syroka and Zervos (2002), Henderson (2002), Jew2062), Benth (2003), Jewson
and Zervos (2003), Benth and Saltyté-Benth (20@Bhong others. The market
incompleteness and the limited liquidity of weatbentracts seriously affect the pricing
with traditional continuous time approaches. Aremative approach is the actuarial
one, which is based on forecasting the distributiboontract outcomes using historical
data and, if available, weather forecasts, seedaoWei (2000, 2003), Zeng (2000),
Davis (2001), Augros and Moreno (2002), Brix, Jemys@iehmann (2002) and
Roustand, Laurent, Bay and Carraro (2003). Theraonprice is then obtained from
such a distribution as a discounted expected vplug some risk loading factor (see
Henderson, 2002). Within the actuarial approacktetare three different methods for
the estimation and forecast of contract value dieissiHistorical Burn Analysis, Index
Modelling and Daily Modelling. Historical Burn Angis evaluates the contract price
by simply using the historical track records of tea indices without any modelling
approach. In contrast, Index Modelling (an extemsod the Burn Analysis) adds a
distributional hypothesis to the historical weatimglices, which is more suitable for the
identification of the tails, and evaluates contsaasing Monte Carlo simulations,
Jewson and Brix (2000). The biggest advantagesotif imethods are their simplicity,
the limited efforts needed for all calculations d@hd possibility of pricing any weather
contracts. However, they also have many drawbdhbky. model the weather index and
not the underlying weather variable (Nelken, 20G0)d, more seriously, they use a

limited number of historical observations for thecimg process (weather indices are



based on an aggregation of the underlying weatheales, as in the case of HDD and
CDD indices for air temperature).

Some of the above drawbacks, especially in thengriof temperature-related contracts,
can be overcome using Daily Modelling (Brix, Jewsdiehmann, 2002). At first, the
amount of data used in estimation is much biggeergthat this approach analyses the
underlying weather variables rather than the weath®dices directly; but
meteorological forecasts related to temperatureegkould be incorporated into the
pricing process easily and quite naturally. Eda#nt this approach tries to identify a
model that is able to replicate the historical roatéogical data. Then, by Monte Carlo
approaches, it simulates the future evolution efuhderlying weather variables, of the
weather indices based on these variables, andeatdhtract payoff distribution. Daily
Modelling could be the preferred solution, cleartpnditional on the correct
specification of the adopted model, Jewson (20Bfwever, even this approach
presents some limitations. In fact, weather vaesbiay present periodic patterns
(associated with weather seasonal evolution) andg lmemory, Alaton et al. (2001),
Caballero et al. (2001), Jewson and Caballero (RO8ile the simple inclusion of a
seasonal pattern (which we may expect for a weatleted variable) generally creates
limited statistical and computational problems, pinesence of long-term correlation in
weather time series greatly increases the complexithe analysis. Traditional models
can be used, taking advantage of several contoibsiti starting from the already
mentioned researches of Granger (1980, 1981) as#ihtp(1981). However, the most
recent findings have shown that long memory mayiesent both in the mean and in
the variances, while variances may also presembgiercomponents, Moreno (2003),
Taylor and Buizza (2006). Finally, the degree aiganemory could vary over time
according to seasonal evolution, Katz (1996), katd Parlange (1998) and Caballero,
Brix and Jewson (2001). The misspecification of themory behaviour of weather-
related variables may have associated impact onptieng process for weather
derivatives, as mentioned by the previously citethars. The main contribution of this
paper is to provide a theoretical model that matcthe empirical evidence for the
presence of time-varying long memory coefficientsthe mean and in the variance.
This new modelling approach is introduced in tHe%ing section.



3. An ARFIMA-FIGARCH mode with time-varying coefficients

We propose to model the average temperature ssiiesa long memory model, the
Time-Varying ARFIMA — Time-Varying FIGARCH (TVARFIM-TVFIGARCH)
model. The main feature of TVARFIMA-TVFIGARCH is dhtime-varying nature of
model coefficients which is associated to a thresktructure over the time index. The

general model isrepresented as follows,

x = u(t)+1, = u(t)+exp( 0.5(1) y (1)
_ ML 2jtmr) | L . 2|t_ﬂj

1(t) a0+iZ:1:ait ;q cos( 365 +|;yI SiN eg 2)
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gt =+ (1)o7 +[1-B (L) -4, (L) (1-L)" |& (6)

where @, (L), ©,(L), B (L) andg,(L) are polynomials in the lag operator of order

p, g, | andm, respectively and whose parameters and structerérae-varying;o? is
the conditional variance following a long memornyGRRCH processy; is the timet
conditional variance mean; the innovatiorzs are independently and identically
distributed according to an unspecified densityhvziero mean and unit variance. Note

that both the ARFIMA and FIGARCH memory coefficisyd; andA;, are time-varying,

as well as all other short memory coefficients,lacted the one in (2) and (3).
The X temperature index is characterised by a stronigdierpattern in the meap!(t)
(equation (2)), associated with the changing seaswer the year, see Jewson and

Caballero (2002). The specification we adopt foBothe standard practice in this
framework, see Campbell and Diebold ( 2005), anathgrs.



The periodic pattern contains two elements: a pwiyal trend (possibly associated
with the global warming effect) and a periodic walgained by the combination of a
set of harmonics.

Following the contributions of Andersen and Bolleys(1997 and 1998), we introduce

a multiplicative periodic componem(t) (equation (3)) which is affecting the variances

of the average temperatupe. Our approach differs from that of Taylor and Eaaiz

(2005) which consider an additive component invagance (see also Koopman et al.,
2007 for a similar additive approach). We prefenwtiplicative model since it does not

require the introduction of parameter constraimsueing positivity of variances. The

specification ofs(t) is identical to that of/(t) and includes a polynomial trend and a

combination of harmonics. Note that these two el@mbave been introduced in order
to capture the observed features of average tetuperadices (periodic behaviors in
both the first and second order moments).

The standardised, series (or filtered from periodic components iram@nd variance)

follows a double long-memory TVARFIMA-TVFIGARCH sicture (equations (4) to
(6)) that tries to match the changing memory bemavobserved in average temperature
values. These equations represent the main cotinbof the current paper. As we
previously observed, the empirical behaviour of thistorical temperature indices

suggests that the memory level may change oveyaae Within this work, we assume

that the memory level changes over sub-periodbef/ear. Define by :{Tl,TZ,...'I'S}

a partition of the year into S sub-periods, which eall ‘seasons’ for simplicity. Note
that S may be different from 4: in the followingptanation we will assume that S=12
and that each element in the partition identifiespacific month of the year. Given a
daily time index, we can assign each point in titm@ne and only one element of the
partition (the sub-periods do not overlap and tt@yer the entire year). We propose the
following structure fort the model parameters:

a tOT, W() tO7F
a=i Trazfaay  wy={"Y OF L):{zt((f))"f‘((f))}
a, tOT, W() T



where we do not impose the restriction of equaleordver the S seasons of the
polynomials in the lag operator. The following cdiwhs are sufficient for ensuring
stationary and invertibility of the mean model: tije memory coefficients are all

positive and lower than < d, <% j=1,2,.s ; ii) the roots ofaR polynomials

are outside the unit circle; iii) the roots of 8IA polynomials are outside the unit
circle.

In order to be covariance stationary all the vareamemory coefficients; should be
positive and lower than 1. Positivity of conditibnaariances may be obtained by
imposing the general restrictions provided by Cdraad Haag (2006) adapted to each
subset ofF.The traditional ARFIMA(p,d,q)-FIGARCH(@,m) model is nested in our
representation under the assumption of time inddgrere of model parameters.

Given that the subsets included in the partitiorrepresent consecutive periods, the
model in (3) could be considered as a special hlmtdsmodel where the thresholds are
associated with the time index.

The memory time-varying model we propose is reldatethe recent contributions of
Haldrup and Nielsen (20064, b). In these two wdinksauthors use an ARFIMA model
where the memory coefficient is driven by a Markdvain. In order to solve the
computational problems of model estimation and rariee, the Markov chain is
assumed to be observable. Our model may be viewedspecial case of the previous
approach where the Markov chain is observable asdcated with the months of the
year. We have not considered the direct Markovchwg extension of our model for
computational reasons, leaving this issue for tutesearch studies.

Finally, our model is also linked to the literatwkPeriodic Long Memory models. In
fact, Hui and Li (1995), Franses and Ooms (1990oms and Franses (2001) and,
Koopman, Ooms and Carnero (2007) proposed Per&iREIMA specifications where
the coefficients are periodic. In their model, tiEservations have a seasonal frequency
(they are half-yearly or quarterly) or are dailyttwa weekly pattern, and the memory
coefficients are half-yearly-, quarterly-, or daythhe-week-specific. In contrast to
previous authors, in our model the memory coefficidoes not change with every
observation but evolves according to a step functigitimately, our specification may
be seen as a special case of a Periodic ARFIMAriedte FIGARCH model fitted on

daily data and with season-specific coefficients (istance we may consider monthly-



specific coefficients, or adapt models with coeéiits associated to the four seasons).
In this case, the period will be the year and thigyctoefficients will be restricted to be
constant over the seasons, given that a full paexieed periodic specification will be
computationally unfeasible.

The model we propose also belongs to the literdtueesing on the joint modelling of
mean and variance with double long memory modslsn 8aillie, Chung and Tieslau
(1996), Beine and Laurent (2003) and Koopman €R807), among others.

3.1 Model implementation and estimation

The model we propose has a complex structure amgdlitdes1+M+P+Q parameters

in 4(t), 1+R+W+H in s(t) and Sxp+g++m+3) in the ARFIMA-FIGARCH

structure. When the number of seasons is equhlttee polynomial orders are set all at
1 and the periodic functions include only a linéand and a single harmonic, the
model has 28 parameters. However, the probabilithaving a larger number of

parameters is elevate due to the need of more exmgfuctures in the periodic

functions and in ARFIMA-FIGARCH polynomials.

We thus suggest estimating the model presenteduatiens (1)-(6) using a multi-step
procedure in order to limit computational and cageeproblems associated to the
number of parameters and to the presence of avangng parameters structure. The
approach we suggest is clearly sub-optimal givanittsuffers from a loss of efficiency

compared to a single-step approach. We proposstitaae the model in the following

stages:

i) Estimate the periodic component in the mean. Mioelel presented in (2) can
be estimated using standard ordinary regresside.tBowever, given that the residuals
of equation (2), the ‘seasonally adjustegl’series, possibly present both autocorrelation
and heteroskedasticity, standard errors need teshienated using the Newey-West
approach. The robust standard errors can be jaistg with information criteria for the
appropriate selection of regressors.

i) Estimate the periodic variance component ofagqun (3) on a transformation

of n,. In fact, the following equivalences hold:

10



In(n?) =4, :In(s(t)2)+ln( ¥) :In( g 1)2)+In( ¥)="¢ )+ (7)
A

We obtain the coefficient estimates by running ioady least squares estimation on the

S

A=s()+y=a+>at+
i=1 j=1

log-transformed ‘seasonally’ adjusted series in B)ven the presence of correlation
and heteroskedasticity in the residuals of theditgquation, the standard errors have to
be estimated using the Newey-West correction. Nwethe estimates at this step may

suffer from estimation errors related to step @jven the estimated parameters, the

periodic variance component could be recoveresi(as= exp( 0.5¢ §( t)) .

iii) Estimate the TVARFIMA-TVFIGARCH model on they, series. At this

stage, we can estimate the parameter time-varymgtsre in (4)-(6) with a Quasi-
Maximum likelihood approach, following the contritans of Sowell (1992a, b),
Baillie, Chung and Tieslau (1996). We thus maxintlse following normal likelihood

function:

L(¥)=K —%i(ln of +;—ij
£=0,(L) o (L)(2-L)" y, )

Y, =(x - (1)) exp(-0.5¢ 5 9)

which depends on second-step filtergdseries (and thus suffers from first-stage and
second-stage estimation error) and whigmrepresents the parameter set (it includes the
parameters of the ARFIMA-FIGARCH model). The polymial ©, (L)'1 @, (L)(1- L)d‘

represents the TVARFIMA filter. In the model implentation we truncated the
infinite long memory expansion to a maximum lagl600 for both mean and variance
components. Note that starting values for the meag-memory coefficients could be
recovered by the Geweke and Porter-Hudak estim@eweke and Porter-Hudak,

1983) used on they, series. In this case, the starting value will béts the same

coefficient for all seasons. After the estimatidnatl model parameters we can also

11



compute the standardised residuas that could be used for standard diagnostic

checking procedures. Finally, we evidence thatroulti-step procedure could be used
to provide reasonable starting values for a sistgg-estimation of the full model.

We stress that the model in (1)-(6) may have a raunob parameters large enough to
make step iii) still computationally complicatedhérefore, two alternative strategies
could be considered: consider the fully time-vagymodel if the number of seasons is
small (with S=4 and all orders set to 1, the patamseto be estimated in step iii) are
28); introduce time-varying parameters only for thest relevant components, keeping
the remaining time-invariant (for instance, introohg a time-varying behaviour only in

the long-memory coefficients — with S=12 and altlers set to 1, the number of
coefficients for the fully time-varying model is &hile with only time-varying long-

memory their number reduces to 29).

3.2 Forecasting, simulating and evaluating avetagmerature models

Within the weather risk management and pricing &arks, one of the most important
aspects is related to the possibility of forecasbn simulating the average temperature
and/or the temperature index. As we discussedatiose2, within the pricing approach
followed in this paper, we may be interested irhlibie temperature forecast and in the
simulation of temperature indices density. In orfdecompute the former quantities, we
first determine average temperature density fotscasd then using these forecasts we
compute temperature indices density forecasts.

Simple model forecasts, for both one and multipdes ahead, can be obtained from the
estimated coefficients using standard recursiomiétae. We report in Appendix A.1
the recursions needed to forecast the TVARFIMA-T¥ARCH model of equations
(1)-(6), distinguishing mean and variance foreca$te forecasts of nested models,
such as the traditional ARFIMA-FIGARCH, can be abtal by straightforward
simplifications.

However, for the temperature indices (CDD, HDD &WT), the main interest is in
determining their predictive density, which in tuwill be used for pricing weather
derivatives. The construction of a forecasted dgrfer temperature-based indices in
the rangeT+1 to T+h may be obtained by simulating the average temyerah the
corresponding range. In Appendix A.2 we reportrémirsion formulae we suggest for

12



the simulation of future paths of average tempeeatalues. The simulation of average
temperatures will require either a hypothesis anitinovation density or the use of a
resampling technique.

Beside the need of model forecast and model siiounlatve also require an approach
for comparing a proposed model with alternativeraditional approaches. The model
comparison may be based on traditional metricsmag use the standard information
criteria, e.g. the one of Akaike and Schwarz, orcould be based on empirical
likelihood ratio tests for nested models (as in ¢benparison of ARFIMA-FIGARCH
model against the TVARFIMA-TVFIGARCH model we pram).

A further comparison could be based on the abdityaverage temperature models to
replicate the moments of historical temperaturecesl such as the HDD. In fact, the
modelling approach we pursue does not directlyyseahese indices; we may therefore
be interested in knowing if the proposed modebig,aon the one hand, to replicate the
historical HDD densities, and on the other handitoulate a temperature index whose
density is consistent with the historical momentshe index. We can achieve this
result by following the approaches proposed by Gzetigand Diebold (2001) and by
Caballero et al. (2002). Notably, both methodssareulation-based. In Appendices A.3
and A.4 we briefly describe these methods, reppttie steps needed to evaluate model
performances. The approach by Caballero et al.AR0@rifies if the model is able to
simulate a temperature index characterised by aityewhose moments are consistent
with the historical observations. In contrast, #pproach proposed by Campbell and
Diebold (2001) checks model correctness of derfsitgcasts by using a probability
transform method.

The previous approaches implement model comparpmtedures from density
simulation and density forecast perspectives. Gitlgat the main interest for the
weather derivative market is in the density forgct® previous methods represent for
us the preferred way of comparing alternative dmation for average temperature
series. However, alternative approaches to modapeoison could use standard point
forecast evaluation criteria. The in-sample andaftgample forecast performances of
the fitted models may be compared using the folhgwindicators: the mean forecast
error, the mean absolute error, the root mean sduiarecast error, and the Theil U

index. Note that these statistics can be applietthécaverage temperature forecasts as

13



well as to the forecasts of the HDD (or similajizes. If the HDD (or similar) indices
are not directly forecasted but simulated, we maymute the previous indices using
the simple expectation (the mean) of the simuladedsity of the indices; (as an
alternative, we could consider the median of theutated indices). Finally, the
evaluation of the average temperature forecastbeaomputed for 1- to h-steps ahead,
in order to evaluate the model’s capability fordelerm horizon forecasts.

In the TVARFIMA-TVFIGARCH model, the memory coeffents are time-varying
over seasons. In order to compare the effectivenietsss model extension compared to
traditional ARFIMA-FIGARCH models we also suggesegenting forecast evaluation
measures computed over seasons. Finally, we measoadditional approaches, the
forecast evaluation based on quantile analysisqs@g by Taylor and Buizza (2004),
and the use of the Diebold-Mariano test (Diebold &tariano, 1995).

We stress that we will not use standard point fasecevaluation criteria in the
following empirical application, because the mairerest of this work is density

forecasting.

4. Estimation, simulation, forecast of temperature indices with time-varying
ARFIMA-FIGARCH

In this section we apply the TVARFIMA-TVFIGARCH melin equations (1)-(6) to
real average temperature time series, comparingitit the traditional ARFIMA-
FIGARCH model both from a standard statistical poifwiew and also from a weather
derivative pricing perspective. The ARFIMA-FIGARCHpecification adopted
correspond to the model in (1)-(6) with the pararsein (4) and (6) time-invariant over
the seasons. We define the seasons as the montins péar because they represent a
reference period in many contracts. In addition,onder to reduce the number of
coefficients and the computational complexity oé tmodel, we allow time variation
only in the memory coefficients and not for the rsimemory AR, MA and GARCH
coefficients. This restricted approach is simitattat in Koopman et al. (2007) that mi
periodic and non-periodic coefficients in a singledel.
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In order to test the empirical performances of fited models, we consider a set of
average air temperature series. We used dailyrioatambservations of four selected
localisations: New York (WMO 72503), Chicago (WM@580), London (WMO
03772) and Berlin (WMO 10384) (in parentheses dre World Meteorological
Organisation codes for each meteorological statiba) all localisations, the data have
been collected in the range 01.01.1979 — 31.01.20@8removed the 2Yof February

in leap years (a standard practice in the weatbgvative literature), obtaining a total
of 10616 observations for each localisation. Histrdata for Berlin were obtained
from Deutscher Wetterdienst (Germany), and for iotitees from the National Oceanic
and Atmospheric Administration (US). Note thattak localisations used in this paper
are associated with a number of weather derivatgtracts regularly traded at the
Chicago Mercantile Exchange.

Furthermore, with the aim of showing the impactiofe-varying memory coefficients
over different periods of the year in the pricingoontracts, we estimated and then
applied models for two different pricing examplésst, we used data from January
1979 up to May 2007 for pricing, at the end of M2BP7, a contract with maturity at
the end of June 2007; secondly, we used a sangitengtin January 1979 and ending
in December 2007, for pricing a contract with meyuat the end of January 2008.

4.1 Model estimation results

Following the estimation approach we outlined icte® 3.1 we first estimated the
deterministic periodic component on the mean of dkerage temperature series. In
specifying the order of the trend and the needenthbiics of equation (2), we adopted
a specific-to-general modelling strategy, startinth a model including linear trend and
one single harmonic. Additional elements were tmeuded using a combination of
the following criteria: coefficients significatiyif minimisation of the BIC criterion, and
analysis of residuals correlation. The final sgeatfons and the corresponding
estimated coefficients are reported in Appendix @b the series ending in May 2007 -
results for the series ending in December 200¥ang similar and hence not reported).
We found that all deterministic mean models presgr significant linear trend
component with positive coefficients. This resuliyrbe read as evidence of the global

warming effect, already noted by other studies swach IPCC, Summary for
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Policymakers (2007). A number of harmonics is pmese all models, without any

particular regularity. Overall, the adjuste@é¥idences the strong relevance of the long-
term trend and of the short-term (yearly) periodianponents. Figure 1 presents the
daily original and fitted data for 1979, highlighgi the adequacy of the proposed

specifications.
[FIGURE 1]

Followed the model in (1)-(6) we estimated a padasmponent in the variances. The
specifications adopted and the estimated coeffisiare included in Appendix A.5 for
series ending in December 2007 (results for semebng in May 2007 not reported).
Figure 2 reports the yearly periodic wave in theiareces for the localisations we

considered.
[FIGURE 2]

After removing the periodic mean and variance comepds, all series show evidence of
long-term correlation in the mean. Figure 3 illagds the correlograms for the series of

interest, while Table 1 reports the Ljung-Box t@stresidual correlations over thg

series in (1), for selected lags.

[TABLE 1]

All series are characterised by a somewhat pensisterelation, which is more evident
in some cases (Berlin and New York). In order tafyef there is a monthly specific

long-term correlation, we computed a monthly vasrabf the autocorrelation function.

We modified the traditional sample estimator of &locorrelation function as follows,

iim_kl(tﬂi)

py ()= =k M= 1(0)) (10)
M;xfl(t[]j) =
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where x is the demeaned series of interest (filtén@d trend and periodic waves)is

a given month ant{.) is an indicator function assuming vallLi& observatiornt belongs

to monthj. This approach allowed for identifying changegansistence across months.
Some examples of the proposed autocorrelation ifumectire shown in Figure 3. These
pictures illustrate the variation in memory levalsross periods and suggest that the
overall correlogram is similar to an ‘average’ bé tmonthly patterns. It clearly appears
from Figure 3 that some months are associated wiglher degrees of memory
(equivalent to higher autocorrelation level andav&o decay toward zero) while others
could be associated with short memory processe$, asl the month of November in
New York.

[FIGURE 3] and [FIGURE 4]

Building on the empirical evidence of changing pence over months, we fitted the
model in equations (4)-(6). As we previously meméd, we associate the seasons to the
months, providing thus a total of 12 memory coéfits for the mean and 12 for the
variances. In order to possibly consider the jpmsence of time-varying long-memory
in mean and variance, non time-varying long-meniomnean and variance, and short-
memory in mean and variance, we fit six differgmeafications combining two mean
model, ARFIMA and TVARFIMA, and three variance mtgJeGARCH, FIGARCH
and TVFIGARCH. To be parsimonious, we restricted 1toall the orders of the
conditional variance models.

We graphically represent in Figure 4 the long mgnumrefficients of the TVARFIMA
specifications. (The entire set of coefficientsddifocalisations is included in the tables
of Appendix A.5 for data available until Decemb@&0Z. Results obtained from series
ending in May 2007 are very similar and hence regorted.) The long memory
coefficients (standard errors in parentheses) obthirom the ARFIMA models are:
Chicago 0 (0.001) (no long memory in the mean);liBe€h.152 (0.038); New York
0.149 (0.021); London 0.109 (0.032).

For New York, Berlin and London, the estimated TVARIA coefficients are neither
all larger nor all smaller than the correspondingRFAMA estimates, showing

convincingly how the memory is time-varying in na&uFurthermore, the number of
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significant coefficients indicates that long memargy not be needed in the case of all
months, and is in general stronger from Decembéviaoch where the corresponding
coefficients are statistically significant in alties (Chicago included). For the Chicago
estimates, we note that the ARFIMA specificatiooides a non-significant memory
coefficient, while the TVARFIMA results suggest tpeesence of time-varying long
memory, especially during winter and summer moniftgs peculiar result may be
evidence that, in some cases, time-varying long ongmay not be clearly indicated or
suggested by the identification approaches of stahchodels (the correlogram of the
Chicago ‘seasonally’ adjusted series may be adsocaith an ARMA model with
persistent AR component, and may be similar to hoitdy memory behaviour). Finally,
we note that the estimated long memory coefficianésconsistent with the (mild) long-
term correlations evidenced in the correlogramsnted in Figure 3.

Figure 5 shows graphically the estimations foruheance long memory coefficients of
the TVARFIMA-TVFIGARCH specifications. All estimatiecoefficients are included
in Appendix A.5. Figure 6 clearly shows the vapatiof the memory coefficients over
time, more evident for Chicago and New York whdtecaefficients were statistically
significant. On the other hand, for Berlin and Londthe memory effect seemed to be
present only for some months, but with no commottepa over the two European
localisations. Notably, these two cities also pded memory coefficients with smaller
values. Comparing the estimated TVARFIMA-TVFIGAR@kemory coefficients with
the TVARFIMA-FIGARCH ones, we note that for ChicagplGARCH memory
coefficient is 0.104 with a standard error of 0.048d New York (FIGARCH memory
coefficient is 0.056 with a standard error of 0),01Be time-varying coefficients
oscillated around the FIGARCH ones. In contrase FHGARCH estimates for the
London TVARFIMA residuals showed no need for longmory. As already argued,
we could interpret this finding as a need for chaggersistence in the conditional
variances, with some occurrences of long memory the year that could be detected
by our modelling approach. Finally, for the Berlgeries, the FIGARCH model
highlighted the presence of long memory which wasficoned by the TVFIGARCH

estimates but for some months only.

[FIGURE 5] and [FIGURE 6]
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In order to verify the need for conditional varianenodels, we computed the
autocorrelations in (10) over the TVARFIMA and ARFA squared residuals. Some
examples are reported in Figure 6 while the Ljuray-Bests are in Table 2.

As evidenced by the previous graphs, the varianicg inemory effect seems to be very
weak or not present at all, in contrast to obs@matby previous authors (see Caballero
et al. 2002). Two arguments may support this figdifirst, the long memory in mean
residual variances could be interpreted as a re$wdt misspecified time-varying long
memory behaviour (in the mean); alternatively, lomgmory in mean residual variances
could be weak, and its identification may be bidsgdhe contemporaneous presence of
a short memory dynamic in the variances. As we olsserve, serial correlation in the
squared filtered mean residuals also shows cragesal variation between months,
with instances of higher autocorrelation valueswedl as cases where there is no
apparent autocorrelation at all. The ACF may akleer some doubts on the need of
adding conditional heteroskedastic components @antbdel. However, the Ljung-Box
test statistics for the squared residuals filtdrech the periodic component (reported in
Table 2), and the ARCH LM tests (not reported), sioggest the presence of
heteroskedasticity. It is also not clear if longmuey behaviour characterizes the

conditional variances.

[TABLE 2]

By comparing ARFIMA/TVARIFMA and FIGARCH/TVFIGARCHmModels we can
verify the advantages of introducing memory timeywsy components. A comparison
between the fitted models could be exploited by meeaf the Schwarz information
criteria BIC=-2LogL+KIn(N) whereLogL is the full model log likelihooK is the total
number of coefficients in a model aitis the sample dimension). Alternatively, we
could use empirical likelihood ratio tests. In fattie models are nested, under the
assumption of equal memory coefficients imposed tbe TVARFIMA versus
ARFIMA, and TVFIGARCH versus FIGARCH; furthermorthe GARCH model is
nested in the TVFIGARCH and FIGARCH specificatiamgler the restriction of zero
memory coefficient(s). Information criteria and argal likelihood ratio tests are
included in Table 3.
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[TABLE 3]

Both indicators clearly suggest that the introduttof time-varying memory in the
mean played an important role, apart from the ca¢®ndon. Following the taxonomy
of Kass and Raftery (1995), the TVARFIMA-GARCH mobdprovided strong
improvements with respect to the ARFIMA-GARCH, witte exclusion of London. In
addition, it seems that long memory in the varianeas not needed (results are similar
for both ARFIMA and TVARFIMA mean specificationd)he LR tests confirm the first
finding (TVARFIMA is relevant), while they are manglly discordant on the role of
variance long memory. In fact, but only for Chicaagal New York, the test rejected, at
the 5% confidence level, the restrictions implylBFIMA-GARCH, when compared
to the ARFIMA-FIGARCH. Similarly, for Chicago, TVARMA-FIGARCH and
TVARFIMA-TVFIGARCH could not be restricted to the VARFIMA-GARCH
specification (with a stronger rejection of the Inaypothesis in the second case).
Finally, TVARFIMA-TVFIGARCH was not rejected in fauar of TVARFIMA-
FIGARCH for Chicago.

In summary, time-varying long memory in the meaavpes relevant improvements
over the traditional model in three cases out & tbur we considered (excluding
London). On the other hand, variance long memoigced were weak and rejected in

all cases other than Chicago, where only LR testsured their inclusion.

4.2 Forecast and simulation exercises

In the previous section we demonstrated the adgastaf time-varying long memory

using standard model comparison tools. Howeverpeemomplete comparison of the
models will require the evaluation of additionalpests: the ability of models to

replicate air temperature evolution; the forecastoerformances of the models; the
comparison of derivative prices based on the twalets In this section we consider
forecasting and simulation aspects, while the foilhg section provides an example
based on weather derivative pricing.

Firstly, we compared the performances of the modelseplicating the processes
governing average air temperature evolution. Thaure has a direct impact on the
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pricing process of weather derivatives, which isdghon a pure Monte Carlo approach
within the daily modelling we pursue.

We followed the method of Caballero et al. (20@#)ich was introduced in section 3.2,
and ran a total dii=29000simulations of monthly average temperature valoegéch
model and for each localisation. The target periwdse set to the months of June 2007
and January 2008. The simulation number allows@§¥=1000 given that the sample
period we use include29 years (for June we us&=28000given that the models were
fitted with data until May 2007). Monthly temperegundices were computed following
the current rules of the CME (see http://rulebooleacom)

Table 4 reports the results for New York; resuttisthe other localisations are included
in Appendix A.6. As previously explained, we chadlsese two specific months in order
to evaluate model abilities in two different seasai the year, where the memory
degree is very different. We also recall that thedets used for the simulation of June
2007 (January 2008) values have been estimated data until the end of May 2007
(December 2007).

[TABLE 4]

The tables depict the historical mean and standaxdation of the January indices
(HDD index) and the June indices (CDD index for ld&lisations and the CAT index
for European ones). The approach of Caballero.ef2802) compared the simulated
mean and standard deviations of the indices, oddairsing the fitted models, with the
historical counterpartsor all models the mean differences are very smad not
significantly different from zero according to theported critical values. As a result,
the models are able to replicate the historicalmwathe index Furthermore, it seems
the differences do not follow any particular pattéetween American and European
localizations, January against June results andltemative mean/variance models.
Moving to the evaluation of the simulated standdediation of the indices, we note
another common pattern: ARFIMA-based simulationoovjgle lower standard
deviations than TVARFIMA-based ones in January, laigtier standard deviations than
TVARFIMA-based models in June. In both periods, TRIFAMA specifications provide

standard deviations closer to the historical mosiemind, in absolute terms, the
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difference between ARFIMA and TVARFIMA is smallen June than in January.
However, if we consider the model evaluation tés€Caballero et al. (2002) we note
that the ARFIMA models provide standard deviatioos consistent with the historical
standard deviation of the temperature indices. étaij the tests reject the null
hypothesis of equal moments at the 5% level for Newk and at the 10% level for
London. For Chicago, the simulated and historitahdard deviations are different only
for ARFIMA-GARCH in January and at the 10% levelhile for Berlin ARFIMA
models provide standard deviations different frdm historical one in all cases. In
addition, the inclusion of long memory in the vacas does not provide any significant
improvement over the standard GARCH model eveowérall, standard deviations are
closer to the historical counterparts.

The choice of January and June may be questiosaide we are picking the months
where the monthly-specific long-memory coefficiest®ow the largest deviation from
the yearly long-memory ones. We clearly chose n®mthere the standard ARFIMA-
FIGARCH model and our modification show evidenceddferent performances. In
other months, the two models are very close oriedmther. However, we believe that
time-varying coefficient models are relevant if yhever perform the standard
approaches in at least one single seasons, whisias we show. Note also, that our
modelling approach need not to be always the peesolution. Differently, we are
supporting our method showing that is some casssgeful.

We also compared models using the simulation agpreaoposed by Campbell and
Diebold (2005), checking if the in-sample simulagoobtained from the models were
able to generate an index density consistent vhiéhttue realisation. This additional
check does not depend on a choice of specific nsdoththe comparison and is thus not
affected by the previously evidenced critic on @aballero et al. (2002) approach. The
model comparison approach of Campbell and Diebd@@0%) is based on the
computation of the tail probabilities of the truelex realisations over the simulated
index density. If the model is able to replicatesample the evolution of an index, the
tail probabilities should be distributed as a umifodensity. Therefore, we may assess
the reliability of a model by testing the distritmit assumption on the empirical talil

values.
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[TABLE 5]

Table 5 reports some selected results for Berlioh [daw York. We observed similar
behaviours for Chicago and London. All models pdevempirical tail probabilities,
approximately uniformly distributed, with an ovéralild preference for TVARFIMA
specifications (the preference for memory time-wragynodels is higher during summer
months when CAT/CDD indices are used, in partictitar European localisations).
These results partially confirm the previous firgdlom the impact of the introduction of
time-varying memory behaviour on average tempegatnodelling (additional results
for all localisations and all models are availdibten authors on request).

Finally, we provide two simple examples as evidefurethe difference between our
modelling strategy and traditional approaches. féigt (Figure 8) reports the Berlin,
January 2008 (New York, June 2007) average temperaalues (dotted lines — left
panels) and the evolution of the realised HDD (Crdlex over the days (dotted lines
— right panels). We also included the median (bioles) and the 1% (outer lines) and
5% (inner lines) obtained from a set of 10000 satiohs produced using ARFIMA-
GARCH (upper panels) and TVARFIMA-GARCH (lower p#s)e models. The
interesting difference is in the width of the siatidn quantiles, (wider for Berlin,
narrower for New York) in the TARFIMA-GARCH case both cases, the simulated
variances are closer to the historical ones, abt®ver more extreme events for Berlin
or to closely follow the mean evolution without @messary variability in the New

York case.

4.3 An example on Pricing weather derivatives

In order to present the practical impact of theppsed modelling strategy, we
developed and applied a weather option pricinggutace. All fitted models (combining
ARFIMA/TVARFIMA in mean with the fitted conditionavariance components) were
used to estimate the premium value of two weath#rgptions (for June 2007 and
January 2008) for all the previous localisationie Tpricing was made at the
hypothetical dates of $1May 2007 for June options and *3December 2007 for
January options. The models used to run the Moatdbo@ricing algorithms (based on
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10000 replications or simulated paths) were esarhatsing data available until the
pricing day and using the simulation schemes desdnn Appendix A.2.
Following real market pricing standards of weathygtions, we increased the derivative
“fair value” obtained from the models by a risk miiem calibrated on the payoff
density. We also set the risk-free rate at 4.0%ap@um and the tick value used in the
pricing conformed to CME rules. We did not inclualey additional elements, such as
transaction costs, in the pricing process. Finallg,fixed the strike prices at the same
level for all models. This implies that the diffateprices provided by the alternative
models will depend on the simulated index mean staddard deviations (at least). In
fact, the simulated paths may induce different $ated index densities. Accordingly,
we decided to price in-the-money put options to destrate more clearly the impact of
the differences in standard deviations. Alterndyiveve could have sterilized the
differences in the mean pricing under each corgrattthe-money options, with the
result of having contract price differences reladety to moments from the second one
onward. Note also that the introduction of a ris&mium is not constant over models
since the simulated index densities may differ. réfage its introduction may not
correspond to a monotonic transformation of thevalues.
The pricing procedure for weather options may barsarised in these few steps:

1) Compute contract “fair value” as the mean payoninftarge number (10000) of

simulated index values for the target maturity;
2) Add a risk premium computed as the 4.5% of the @&¥eentile of simulated
contract payouts;

3) Discount the price one month back using 4.0% p.a.
Table 6 reports the final prices for June 2007 &tuary 2008 put options contracts for
New York (see Appendix A.6. for the other localisas). The price differences shown
by the various model comparison approaches indargee lvariations in option prices,
largely due to different standard deviations (tlsisan expected outcome given the
importance of variances in the pricing of optiomiracts). Some price differences are
very large; for example, differences of more th&do4for January (New York) and -
10% for June (London).

[TABLE 6]
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The previous table shows the impact of modellimgtegy on contract prices. These are
an effect of the under- or over-estimation of sevuiariance in the target months. In fact,
the greatest discrepancy between standard moddisi@mory time-varying approaches
is in the variance of simulated temperature indicestracts, as highlighted in the
previous section. Note that the historical variaotair temperature, in all locations, is
much bigger in January than in June. This factlmaecaptured by the use of a memory
time-varying model. Note that, as in standard ARNWodels, the unconditional
variance can be expressed as a function of all humgdficients. As a result, different
mean specifications could lead to different uncboadal variances of average
temperature models, to different densities of tapee indices, and thus to different
contract prices.

Furthermore, the application of the traditional ARR-FIGARCH model to the
pricing process leads to the use in all months asingle long memory coefficient,
whether or not the empirical evidence (see Figyresuggests some changes in the
autocorrelation structure over time. The misspeaiion of long memory structure
strongly influences contract prices.

Focusing on the two months we used, January and, ua found that in January
contract prices provided by TVARFIMA specificationwere higher than the
corresponding prices obtained from ARFIMA modelsork the practitioner’s point of
view, accepting the existence of a single long mgnparameter for an entire year
would result in an underestimated variance valuelémuary; this obviously translates
into an underestimation of the final premium val@ealogous but contradictory effects
were observed in June, where all options were stierated when standard long
memory specifications were used. We conclude bgssing that the use of memory
time-varying models may provide more accurate griggven that these models are
closer to the real data generating process.

Unfortunately, the contract prices we derived canm® directly compared to actual
market prices for a number of reasons: the corstriaatied at the CME are illiquid and
subject to large price deviations due to the infeq hedging activities of energy
companies (OTC should be preferred but they anemmdly difficult to recover); CME
is considered mainly as a clearing house and nattase market; providers of weather

contracts are limited (about 20 in 2007 and 20€8);final price charged to the client
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may include additional fees and the risk premiuny rba largely increase to cover
additional risk faced by the contract provider @ssvolatility in the weather variables,
uncertainty about the forecast and the model, @isepricing method which is easy to

compute but less accurate).

5. Conclusions

We proposed a modification of the traditional longemory mean and variance
specifications allowing for changes in the memaogfticient over time. In particular,
we allowed the long term correlation to vary in@ckance with a step function defined
for the time index. This extension is supporteddmpirical evidence for changing
degree of memory over months, as observed in awdmgperature series. The use of
temperature values has a significant impact onwibather derivative market since it
represents the main information source for optiand future options (temperature-
based contracts cover about 90% of weather makegdctions).

In our empirical study we show the impact of thegmsed model, focusing on monthly
variations of persistence in the temperature seBg using model comparisons and
pricing approaches currently available in the &tare we evidence that the memory
time-varying component in the mean provides sigaiit improvements both from a
statistical point of view and for the pricing oftagm contracts. In particular, the contract
prices may be more accurately determined.

The model may be clearly applied also to seasoaadtions in the memory level that
could be very relevant in other areas of the siesi®nd econometric literature, as well

as in the weather derivative pricing frameworkppked to different weather variables.
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Table 1. Ljung-Box test on average temperaturesetiter removing trend and periodic
components

Berlin London Chicago New York

L - - - -
a9 Ljung-Box | P-value| Ljung-Box] P-valug Ljung-Box P-ual| Ljung-Box| P-valug

1 11680.80 0.00 10269.14 0.0d 9048.76 0.90 7934(780.00
2 18214.11 0.00 15531.04 0.0d 12178.Y7 0.900 10@63.10.00
3 22142.81 0.00 18392.04 0.0d 13521.87 0.900 1084Q.70.00
4 24659.94 0.00 20106.5] 0.0d 14220.26 0.900 113423.50.00
5 26360.06 0.00 21206.6] 0.0d 14620.12 0.900 11514.00.00
10 30141.58 0.00 23316.4% 0.04 15318.94 .00 1P¥3%. 0.00
20 31335.66 0.00 23826.11 0.04 15785.25 DO 1p322. 0.00

50 | 31980.53 0.00| 24184.69  0.0( 15913.416
100 | 32612.35 0.00 24436.04  0.0( 16021.]75
183 | 32897.958| 0.00( 24606.013 0.0 1622938 .p0 66887 0.00
365 | 33862.798| 0.00| 25353.543 0.0p  17033.555 O 757.293| 0.00
The reported statistics refer to the series entirigecember 2007. Similar results are
obtained for the series ending in May 2007.

.00 12877. 0.00
18951 0.00

0090000
J
o

Table 2. Ljung-Box test on average temperaturesetfter removing trend and periodic
components

Lag Berlin London Chicago New York
Ljung-Box | P-value| Ljung-Box] P-valug Ljung-Box P-ual| Ljung-Box| P-valug
1 18.39 0.00 8.54 0.00 8.94 0.0d 31.67 0.00
2 25.62 0.00 19.52 0.00 16.04 0.0( 44,20 0.p0
3 30.40 0.00 27.37 0.00 34.85 0.0( 44.84 0.p0
4 38.38 0.00 28.16 0.00 42.91 0.0( 49.61 0.p0
5 45.96 0.00 28.52 0.00 46.49 0.0( 55.45 0.p0
10 47.55 0.00 31.30 0.00 74.87 0.0( 66.00 0.p0
20 57.14 0.00 44.85 0.00 105.75 0.0$ 85.37 0.po
50 81.48 0.00 71.34 0.03 147.80 0.0 110.38 (0] 0]0]
100 138.46 0.01 111.01 0.21 240.94 0.00 174.6p 0Joo
183 197.68 0.22 173.10 0.69 308.11 0.00 257.47 0Joo
365 398.43 0.11 358.58 0.58 481.57 0.0p 426.3P 0jo1

The reported statistics refer to the series endinBecember 2007 for TVARFIMA
mean specifications. Similar results are obtairdtie series ending in May 2007 and
for ARFIMA specification.

32



Table 3: Information criteria and likelihood rattests (p-values) on fitted models
(series ending in December 2007, results for M&728re similar and not reported

Mean | Variance | Berlin ‘ London | Chicago ‘ New York|
Information criteria (BIC)
GARCH 24480.30 23502.38 25197.73 24839.37
ARFIMA FIGARCH 24489.51 23511.64 25200.76 24843.62
TVFIGARCH 24551.29 23597.34 25282.95 24929.53
GARCH 24422 54 23529.92 25190.68 24818.66
TVARFIMA FIGARCH 24431.81 23539.18 25193.95 2482421
TVFIGARCH 24490.32 23622.76 25273.06 24908.59
Likelihood ratio test against ARFIMA-GARCH (P-vajue
ARFIMA FIGARCH 0.80969 0.94957 0.01250 0.02506
TVFIGARCH 0.19107 0.18031 0.01078 0.04968
GARCH <0.00001 <0.00001 <0.00001 <0.00001
TVARFIMA FIGARCH <0.00001 <0.00001 <0.00001 <0.00001
TVFIGARCH <0.00001 <0.00001 <0.00001 <0.00001]
Likelihood ratio test against corresponding ARFIMpecification (P-value)
GARCH <0.00001 <0.00001 <0.00001 <0.00001
TVARFIMA FIGARCH <0.00001 <0.00001 <0.00001 <0.00001
TVFIGARCH <0.00001 <0.00001 <0.00001 <0.00001]
Likelihood ratio test against TVARFIMA-GARCH (P-vad)
TVAREIMA FIGARCH 0.94957 0.94957 0.01434 0.05487
TVFIGARCH 0.07502 0.10513 0.00418 0.04637
Likelihood ratio test against TVARFIMA-FIGARCH (Palue)
TVARFIMA |TVFIGARCH |  0.04806 |  0.07364 | 0.01866 | 0.09139

Bold values identify preferred specifications.
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Table 4: simulation based model comparison follg\@aballero et al. (2002) for New York

Period June 2007 January 2008
Mean ARFIMA TVARFIMA ARFIMA | TVARFIMA
Variance | GARCH | FIGARCH | TVFIGARCH| GARCH | FIGARCH| TVFIGARCH GABH | FIGARCH | TVFIGARCH GARCH FIGARCH| TVFIGARCH
Historical 198.12 198.12 198.12 198.12 198.12 1®8.1 1022.89| 1022.89 1022.89 1022.89  1022/89 1022.89
Simulated 199.69 200.49 202.51 196.35 198,06 197.331016.51| 1017.42 1017.58 1019.32 101753 1018.74
Difference 1.58 2.37 4.39 -1.76 -0.05 -0.78 -6.37/ 5.47 -5.31 -3.56 -5.36 -4.15
= 0.005% -30.89 -32.64 -32.67 -22.5Y -22.17 -24.1f 8.19 -51.72 -51.96 -71.91 -67.04 -74.53
3] 0.025% -22.04 -24.98 -24.63 -18.00 -18.26 -16.99p 0.13 -41.31 -40.12 -49.66 -52.60 -51.35
. 0.05% -19.61 -21.27 -20.43 -14.85% -14.96 -14.20 .883| -35.56 -34.59 -42.72 -45.10 -45.25
0.95% 19.75 20.27 20.03 15.27 15.01 15.62 33.f5 7730 36.97 43.33 46.49 47.41
0.975% 22.87 24.10 25.37 17.63 17.24 17.30 3971 .3837 41.86 51.57 58.99 56.21
0.995% 32.99 33.76 33.24 23.04 21.33 23.47 49.74 .6348 59.52 70.93 77.20 70.53
< | Historical 45.03 45.03 45.03 45.03 45.08 45.03 185 145.78 145.78 145.78 145.78 145.78
2 | Simulated 64.54 65.92 66.63 48.04 49.86 48.96 $10.2113.52 114.36 143.57 148.36 148.07
-§ Difference | 19.51 20.89 21.60 3.01 4.83 3.93 -35.53 -32.26 -31.42 -2.22 2.57 2.29
2 0.005% -21.57 -21.19 -22.38 -15.4y -17.50 -16.44  6.03 -37.86 -41.95 -52.94 -48.0( -50.58
) 0.025% -17.95 -16.86 -18.16 -12.52 -13.18 -13.24  7.42 -30.64 -32.08 -37.72 -38.2( -40.87
8 0.05% -14.56 -14.41 -15.17 -11.16 -11.36 -11.25 923 -25.94 -25.80 -31.97 -34.04 -32.77
g 0.95% 13.81 13.85 15.35 11.21 12.01 11.14 2419 1124 23.73 32.48 32.53 32.97
n 0.975% 17.36 16.67 18.43 13.04 14.59 135 3151 .6928 28.57 37.40 40.20 38.06
0.995% 25.16 25.78 26.71 16.64 18.55 17.6$ 38.42 .1636 37.70 48.24 52.05 48.88
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Table 5: simulation based model comparison follgMrampbell and Diebold (2005) for selected loctlses and models

Models/Index

c CDD/CAT indices HDD indices
% Mean ARFIMA TVARFIMA ARFIMA TVARFIMA
- Variance GARCH TVFIGARCH GARCH TVFIGARCH| GARCH TVFIGARCH| GARCH TVFIGARCH
Kolmogorov (D+) 0.122 0.286 0.533 0.766 0.388 0.281| 0.520 0.503
Kolmogorov (D-) 0.028 0.100 0.225 0.327 0.321 0.352 0.170 0.287
Kolmogorov (D) 0.057 0.200 0.445 0.632 0.621 0.549 0.338 0.560
- Kuiper (V) 0.001 0.024 0.241 0.661 0.224 0.159 0.163 0.292
% Cramer-von Mises (W2) 0.054 0.114 0.521 0.749 0.388 0.338 0.376 0.416
- Watson (U2) 0.000 0.004 0.260 0.639 0.198 0.132 0.160 0.212
Anderson-Darling (A2)| 0.029 0.081 0.497 0.741 0.374 0.244 0.356 0.385
Q(5) 0.281 0.253 0.080 0.100 0.683 0.737 0.606 .62
Q"2(5) 0.640 0.555 0.245 0.297 0.347 0.232 0.712 6770.
Kolmogorov (D+) 0.161 0.232 0.131 0.204 0.816 0.515| 0.651 0.530
Kolmogorov (D-) 0.218 0.113 0.442 0.259 0.408 0.410| 0.364 0.297
Kolmogorov (D) 0.321 0.226 0.262 0.404 0.762 0.764| 0.694 0.579
% Kuiper (V) 0.030 0.019 0.084 0.058 0.832 0.465 0.568 0.332
;‘ Cramer-von Mises (W2 0.182 0.137 0.439 0.403 0.889 0.824 0.669 0.686
2 Watson (U2) 0.015 0.007 0.142 0.113 0.847 0.702 0.428 0.428
Anderson-Darling (A2) 0.167 0.121 0.506 0.436 0.955 0.921 0.700 0.719
Q(5) 0.778 0.777 0.972 0.953 0.845 0.864 0.838 .81
Q"2(5) 0.546 0.464 0.407 0.384 0.354 0.305 0.462 469.
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Table 6: Put options prices obtained from the dififé models — New York
Model ARFIMA TVARFIMA
GARCH | FIGARCH | TVFIGARCH GARCH | FIGARCH | TVFIGARCH

June 2007: Real Index Value 270.5 — Strike Prid@-3Realized Payoff 590 — Historical Index Mean
198.12 — Historical Index Standard Deviation 45.03

Contract Price 772.598 | 763.073 | 785.572 | 859.965 3a3. | 879.283
Simulated Index

Minimum 58.746 63.289 60.781 91.297 87.813 76.866
1% quantile 144.995 129.341 144.326 158.594 144973  146.249
Mean 289.816 292.766 292.489 272.748 273.659 292.71
99% quantile 460.265 474.896 484.247 407.366 475.62 414.835
Maximum 555.619 630.520 659.690 601.626 526.592 3BEL
Standard Dev. 69.672 72.541 75.261 53.998 56.05% .3936

January 2008: Real Index Value 850.5 — Strike Poi@— Realized Payoff 990 — Historical Index
Mean 1022.89 — Historical Index Standard Deviafids.78

Contract Price 865.659 | 876.431 | 940.657 | 1241.408 6328 | 1315.492
Simulated Index

Minimum 464.530 454.392 399.205 277.517 305.674 )
1% quantile 633.662 664.119 630.799 580.002 571.595  564.782
Mean 914.735 917.325 913.433 905.79D 905.125 903.88
99% quantile 1168.780 1181.719 1173.796 1240.237 41.094 1237.341
Maximum 1362.774 1413.408 1370.494 1486.687 1496.93 1530.385
Standard Dev. 108.621 112.481 115.187 139.989 903.3 144.851

Contract prices and payoffs are in United Statelaio
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Appendix A.1.: recursionsfor model forecasts

In the forecast of the average temperature we rdaegeisted in both the mean
forecast and in its standard error; we provide n@ouns for computing both quantities.
Furthermore, we distinguish between one-step-aheddong-term forecasts.

One step ahead forecast of the average tempenaiese made at time T for

time T+1 can be obtained as follow. Denotefy, . (%) the h-step-ahead forecast

conditional to the information set at time T foetiseasonally adjusted’ series (average
temperature series), then:

i) apply the estimated TVARFIMA filterg, (L) to the in-sample estimated

‘seasonally adjusted’ serigg

R B )

O(L) (L) (2-L)" =gy (L) =1- Y P,y U
. = (A.1.1)

9T+1|T = z(j}T+1,j ’yT+l—j
j=1

where the time-varying memory coefficients dependiel time index (it may be thus
different from the memory coefficient at time T)daih makes the fiIteu/?T+l(L) time-.

Note that byB we denote the truncation lag on the long-memopaasgion.

i) add the periodic mean component

)

A ) ow I 2j(T+Ym) &. . [A(T+Ym
X = yT+1|-r+a0+Zai(T+l) +251 CO{%J-FZV' SI{ﬁJ
i=1 J

(A.1.2)

Differently, for h-steps-ahead forecasts of therage temperature mean we may use
the following recursions:
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B
I) 9T+h|T = ZwT+h, j9T+ T (A13)
j=1

oM A 2i(T+h)7) & . (2(T+h)x
||) XT+h|T yT+|1T a, Zai(T-'- h) +25100{%J+ZVI Slr( ( 365) ]

(A.1.4)

Note thaty;,, ,; has to be replaced by, ,, the true value, if +h- j<T.

Differently, the one- and h-step-ahead forecasth®faverage temperature variance can

be obtained as follows (similarly to the previougiations 0“'T2+th denotes a forecast

made conditionally to the information set attime T

i) compute the forecast 05T2+h|T using the TVFIGARCH filter5T+h(L), the in-sample

estimated variances and standardised residyasd the forecasted values if needed

1-B(L ) P(L)(1-L)"" =&, (L)
0%y =0+ B(L) 8%, | 1-B(L) = (L) (2-L)™ | ., (A.L5)

P4

z h J[T+Z£T+h ],7T+h—]

j=1

Note that if T+h-j>T then ’7T2+h—,- will be replaced by 5T2+h_”T given that
Et_l[nf] =0} where the subscript denotes the conditional esgiect with respect to

the information set at time t-1. Furthermodg, v has to be replaces WitﬁlTZ+h_j, the

estimated in-sample values, T+ h—- j<T. In addition, the TVFIGARCH filter is

time-dependent given that the memory coefficienine-dependent.

i) compute the forecast of the periodic componenthe variances, and denote it as

SI'+h|T
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) ) R | W 2]T+h7T H~.2|T+h7T
8o :a0+;ai(T+ h +>9, co{%}fzm S"{%} (A.1.6)

j=1 1=1

§‘r+h|T = exp( V5, HT)
iii) compute the overall standard deviation®s,;0+,, ;-

As a result the forecasted HDD index for period Tah be computed as follow:

P h

HDDrn =Y max( 18- %,y .9. (A.1.7)
i=1

In a similar way, we may compute the h-steps-alHeeetasted values for CDD and
CAT indices.

Appendix A.2.: recursions for model smulation

We suggest the following simulating recursions $anulating h-steps ahead

values of the average temperature:

i) generate h values of the standardised resid4alsz, ., ... Z,, from a given density;

i) simulate ,,, =05,,2,,, 1=1,2,.h by computing the TVFIGARCH component as
in equation (A.1.5) but replacingy;,,_,; with 67, 2, whenT +h- j>T and with

Az ; (in-sample residuals) wheh+h- j<T;

iii) simulate &;,, =§,,/%,,, i=1,2,.h where§,,, is computed as in equation (A.1.6);
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iv) simulate y;,, i=12,.h as in equation (A.1.3) replacing,,,; with ¥, (note

that it may represent both in-sample seasonallysaeljl values or seasonally adjusted

simulated values);
v) simulateX.,;, i=12,.h using equation (A.1.4).

Steps i) to v) can be used to simulate one possdaézation of the average
temperature. From this realization we may computgvan temperature index. By
repeating many times steps i) to v) we will obtailarge number of temperature indices
which we may use for estimating the density overititerval T+1 to T+h.

In order to provide results consistent with thesample realisation of the
underlying process governing the average tempexratioe density used in step i) should
be as close as possible to the true one. In gewerahay fix a density by checking the

distribution of the in-sample residuals. We may decide to use, say, a normal density

or a more leptokurtic one like the Student denditpwever, in order to avoid any
possible effect coming from a misspecificationtod tinderlying density, and given that
the time series of average temperature are geyeyaile long, we suggest simulating
the innovations in i) by resampling with replacetrfeom the in-sample residua.
Finally, the previous recursions can be used taulsita entire paths of an average
temperature index without any link to the historiealues. In this last case, given the
presence of long-memory, the simulation of a sesfelength T could benefit for the
inclusion of a presample (that is, the simulatedesewill have an overall length of
M+T observations, where only the last T will bedjse

Appendix A.3. Model comparison following Caballero et al. (2002)
In Caballero et al. (2002), the evaluation of maudbllows these steps:
1) compute the historical HDD (or similar) indictes a given period of length, say the

month of January (the period can be tailored todtwetract duration or maturity of
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interest; it can be the entire year, a specific tinar a specific season) over the entire
sample and compute their mean and standard devi@hat is, the set of moments of
interest); assume that the number of historical Hixddues isM (continuing the

previous example, HDD for January, in the availaa@eple we have M values if the
sample length covers abdutyears) and denote hy,, and g,, the historical moments

of the HDD index under evaluation;

i) simulate a large number of seri@é§, under modelv and compute from each series
one value of the HDD index using lastbservations (series should be simulated taking
into account the periodic patterns in order that ldstT observations have the same
periodic pattern of the evaluation horizon of thBIMHindex — as an example, if the
period of interest is the month of January, thé Tasbservation of each simulated series
should be referred to the simulated average teriyeraf an hypothetical month of
January); compute the mean and the variances oNteenulated HDD values and

denote them by, and g, ;

iii) group theN simulated values of the HDD index inbe=N/M groups of dimensioM
and computed for each group the mean and the warigne dimension of each group is

equal to the historical observations of the HDDexidwhich we denote by; s and

o 5, withi=1,2,...D;

Iv) if D is large, we can use the simulated values to e@abnfidence interval for the

discrepancies between the overall mean of simulatiq, and theD meansy ¢ ; these

confidence interval will take into account the séingperror and will allow testing the
hypothesis that/y, — 4, =A is large, which can be associated to a model not

completely able to replicate the historical mearhef HDD index (a similar approach

can be used for the variance); the two sidétl confidence interval can be chosen

analysing the differenceg, - 1 o =A; and we may denote it a{s&(%),A(l—%)};
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note that differently from Caballero et al. (2009 do not assume symmetry of the

density;

v) modela will be rejected ifAD{A[%),A[l—%)}.

In other words, the model comparison approach sed@n a bootstrap-like test,
where simulated series can be computed followieg&tursions presented in appendix
A.2. Given two alternative models, we may prefex time that has the lower rejection

rate for all moments of interest.

Appendix A.4. Model evaluation following Campbell and Diebold (2001)
In this alternative method, the model comparisgoregch follows these steps:

1) assume that the interesting contract maturityhéend-of-the-month one (we can use
end-of-the-year or end-of-the-season); then, witthia available sample (and also
within the forecast evaluation sample, if available have a set d¥ ‘maturity’ dates
for the contractg=1,2,...M; using data up to maturifyl (which we assume is the end
of a given month) we simulate many possible pastefithe average temperature index
for maturity j+1 (wherel is the length of the following maturity period, nfionths,
length very over time) using the recursions presgrnh Appendix A.2; given the
simulated average temperature paths we determenenttex of interest, the HDD (or

any other temperature-based index);

i) given the simulated HDD values, we determireedensity, and its simulated CDF,
which we denote biypp(.);

iii) denote by HDD,, ; the realised historical value of the HDD index foe period

g

betweerj-1 andj, then we can compute[ x< HDD,,; | = F,o, [ HDD,_,; |, where we
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assume that the historical value of the HDD indax been extracted from the simulated

density;

iv) iterate steps i) to iii) for all possible ped® within the sample (and within the

forecast evaluation sample, if available); we abtaienK values ofF, [HDDJ._LJ. ];

if the model we are using is able to simulate biaor correct HDD densities, then the

values of Fo, [ HDD,,; | for j=1,2..M should be approximately distributed as a

Uniform random variable between 0 and 1, and we tb@m graph the density of

Fiiop | HDD,

j-Lj

] and test the distributional hypothesis both fa ith-sample and out-

of-sample ability of the model.

Given two models, we may prefer the one witk,g, [HDD]‘_M] density closer to the

Uniform(0,1).

Appendix A.5. Estimated coefficients

In this appendix we include the tables reportirgdétimated coefficients of the models
we fit on average temperature series. Note we tepermresults for the model estimated
using series ending in December 2007. The resoitsdries ending in May 2007 are

very similar and not reported for brevity. They d@nrequested to the authors.
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Table A.5.1. Estimated coefficients for periodicane&eomponent
Berlin London Chicago New York
a 9.139 10.353 48.403 54.424
0 0.208 0.146 0.425 0.314
1.32E-4 1.73E-4 2.59E-4 2.34E-4
a; 3.41E-5 2.28E-5 6.84E-5 5.38E-5
3 -9.254 -6.347 -23.486 -20.383
1 0.167 0.108 0.326 0.248
5 -1.307
2 0.285
0.344
% 0.154
5 0.300 0.204
5 0.144 0.101
-2.852 2.754 -8.335 -8.811
h 0.136 0.094 0.252 0.194
0.345 0.676
Ve 0.152 0.103
-0.894 -0.765
Vs 0.293 0.227
0.523
Yo 0.248
R? 0.756 0.748 0.796 0.829

The table reports the final specification of theigadic mean component defined in
equation (2). The estimated coefficients (top vaked standard errors (bottom value)
are referred to the series starting in January %P ending in December 2007. The
last row reports the adjusted R-squared of theessgon.
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Table A.5.2. Estimated coefficients for periodicigsace component

Berlin London | Chicago| New Yor}
a 0.220 2.177 1.862
0 0.023 0.025 0.025
0.089 0.406
9
0.030 0.036
0.136 0.411
9,
0.033 0.036
0.111 0.160 0.192
h 0.032 0.035 0.034
-0.129 -0.200 -0.140
V2 0.031 0.035 0.036
0.117 0.085
Vs
0.036 0.035

The table reports the estimated coefficients (tajue) and standard errors (bottom
value) of the periodic variance component iderdifan the residuals of TVARFIMA
models for series ending in December 2007. Thetsirel of the periodic component is
identical for ARFIMA residuals and for data ending May 2007. Estimated
coefficients are similar to the one reported above.
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Table A.5.3. Estimated coefficients for mean models

-~

Berlin London New York Chicago

ARFIMA TVARFIMA | ARFIMA TVARFIMA | ARFIMA TVARFIMA | ARFIMA TVARFIMA

d, 0.240 0.198 0.227 0.164
0.070 0.048 0.030 0.032

d, 0.209 0.202 0.150 0.152
0.067 0.045 0.032 0.033

d, 0.129 0.094 0.099 0.105
0.058 0.039 0.022 0.040

d, 0.146 0.095 0.042 0.037
0.083 0.056 0.028 0.040

d 0.098 0.144 0.102 0.050
0.064 0.055 0.025 0.019

de 0.083 0.087 0.050 0.014
0.152 0.079 0.109 0.067 0.149 0.020 0.000 0.014

0.038 0.098 0.033 0.119 0.021 0.120 0.001 0.062

o 0.068 0.043 0.023 0.020
ds 0.070 0.111 0.125 0.083
0.120 0.037 0.031 0.024

d 0.055 0.020 0.109 0.034
0.066 0.018 0.032 0.026

due 0.096 0.091 0.143 0.015
0.075 0.039 0.029 0.035

iy 0.123 0.129 0.128 0.041
0.069 0.054 0.030 0.033

i, 0.234 0.213 0.198 0.164
0.075 0.051 0.028 0.034
0.811 0.821 0.614 0.590 0.322 0.333 1.424 0.90
1 0.040 0.068 0.033 0.039 0.033 0.024 0.047 0.06
-0.190 -0.197 -0.463 -0.176

2 0.018 0.023 0.033 0.033

0.066 0.068
s 0.012 0.014

-0.122 -0.124 -0.360 -0.364 0.548 0.122
O 0.015 0.016 0.018 0.017 0.046 0.054
0.299 0.178

b 0.015 0.022

The table reports the estimated coefficients (tajue) and standard errors (bottom
value) for the mean models estimated using ‘sedlyoadjusted’ average temperature
series ending in December 2007. Results for dadangrin May 2007 are similar and
not reported.
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Table A.5.4. Estimated coefficients for conditiomatiance models.

CHICAGO NEW YORK LONDON BERLIN
T 5 T 5 T 5 T 5
5 O X 5 O 4 5 O 4 5 O X
% x § 4 x 5 4 x 5 4 x 5
< ) O < ) O < ) = < 0 T
) = L ) = L ) = L ) = L
~ ~ ~ ~
0.263 1.328 1.169 0.650 2.270 2.471 1.200 1.198 071)30.947 2.441 1.03¢
“ 10064 0313 0318 0274 0205 0153 0410 0227 8%0/50.235 0.200 1.114
0.004 0.324 0.411 0.785 0.081 0.0835 0.600 0.642 550/50.701 0.020 0.634
Bl oolo 0120 0121 0080 0006 0013 0132 0076 0DR0.067 0004 0.404
4 0.119 0.056 0.015 0.051
0.026 0.013 0.010 0.055
" 0.099 0.066 0.009 0.042
0.023 0.014 0.008 0.053
4 0.146 0.079 0.011 0.037
0.035 0.017 0.007 0.054
d 0.132 0.057 0.019 0.028
0.025 0.014 0.009 0.052
a 0.092 0.043 0.021 0.018
0.022 0.012 0.011 0.042
4 0.088 0.049 0.021 0.000
0.104 0.021 0.056 0.012 0.000 0.010 0.052 0.059
0.018 0.106 0.014 0.050 0.009 0.020 0.012 0.019
o 0.024 0.012 0.010 0.038
4 0.093 0.048 0.000 0.017
0.023 0.013 0.013 0.051
N 0.109 0.045 0.005 0.028
0.025 0.013 0.007 0.071
g 0.106 0.031 0.008 0.035
10 0.024 0.009 0.012 0.056
g 0.084 0.043 0.031 0.022
H 0.021 0.011 0.011 0.051
" 0.112 0.044 0.029 0.031
0.029 0.010 0.011 0.049
o | 0028 0.248 0.329 0.042 0.085 0.040 0.601 0.610 780/50.038 0.009  0.65(
(0 | 0.005 0.115 0.114 0.010 0.014 0.020 0.075 0.075 020]20.007 0.014 0.427

The table reports the estimated coefficients (tajue) and standard errors (bottom
value) for the GARCH-type models fitted on TVARFIMAsiduals after removing the
periodic variance component. The estimates areregfd¢o series ending in December
2007. Last coefficient i for long-memory specifications amdor GARCH models.
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Appendix A.6.: contract pricesfor Chicago, Berlin and London

Table A.6.1.: simulation based model comparisolovahg Caballero et al. (2002) for Chicago

Period June 2007 January 2008
Mean ARFIMA TVARFIMA ARFIMA TVARFIMA
Variance | GARCH | FIGARCH | TVFIGARCH| GARCH | FIGARCH| TVFIGARCH  GABH FIGARCH | TVFIGARCH| GARCH FIGARCH | TVFIGARCH
Historical | 133.598| 133.594§ 133.598 133.598  133.598133.598 1323.957 1323.957  1323.957  1323.957 1323(951323.957
Simulated | 132.142 139.184 134.336 126.305 130.41827.152 1324.139 1323.425  1326.430 1324.816 1324|15[326.588
Difference | -1.456 5.586 0.738 -7.293 -3.180 -6.446 0.182 -0.531 2.473 0.859 0.200 2.631
< 0.005% -30.994| -31.921 -29.687 -24.703  -22.532 5@b. -59.968 -74.414 -72.570 -78.593 -84.856 -90.081
3] 0.025% -21.634| -23.88( -24.091 -18.409  -17.965 9QO. -48.077 -53.698 -58.324 -57.818 -67.783 -71.571
= 0.05% -18.790| -21.144 -19.840 -15.663  -15.701 46.4| -40.420 -46.081 -46.195 -47.439 -55.080 -56.131
0.95% 19.307 21.826 20.061 15.501 17.440 17.424  3481.| 44.619 43.158 53.574 55.653 58.318
0.975% 22.926 26.602 24.530 18.801 21.981 21.476 .8627 52.612 52.580 63.612 70.00% 65.956
0.995% 32.067 34.260 31.645 24.013 28.636 28.938 .9867 64.559 67.054 78.764 84.066 84.48p
< | Historical | 54.692 54.692 54.692 54.692 54.692 52.69 175.382 175.382 175.382 175.382 175.382 175.382
2 | Simulated | 64.973 69.304 65.744 51.335 53.952 51.815139.345 147.905 150.373 172.941 182.902 187.315
-g Difference| 10.281 14.612 11.053 -3.35) -0.739 2.87 -36.037 -27.477 -25.009 -2.442 7.520 11.933
3 0.005% -22.121| -25.644 -22.833 -18.304  -19.711  288. -49.811 -50.723 -48.146 -60.500 -61.072 -58.510
) 0.025% -18.537| -18.988 -19.011 -14.387  -14.439 623. -37.663 -39.826 -37.243 -46.859 -49.635 -51.319
8 0.05% -16.245| -16.840 -16.202 -11.931  -12.914 32.4| -30.932 -35.082 -31.776 -39.998 -43.597 -41.646
E 0.95% 15.431 16.481 16.837 11.733 13.725 11.633  9728.| 34.215 31.821 37.947 44.239 41.290
n 0.975% 18.732 20.225 19.973 15.265 16.0[79 15.021 .4834 40.234 38.806 45.200 50.921 55.596
0.995% 26.126 26.843 27.596 19.662 20.794 22.152 .2880 56.698 50.466 61.939 71.005% 68.454
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Table A.6.2.: simulation based model comparisolovahg Caballero et al. (2002) for Berlin

Period June 2007 January 2008
Mean ARFIMA TVARFIMA ARFIMA TVARFIMA
Variance | GARCH | FIGARCH | TVFIGARCH GARCH FIGARCH| TVFIGARCH GABH | FIGARCH | TVFIGARCH| GARCH FIGARCH| TVFIGARCH
Historical | 490.633| 490.633 490.633 490.633  490.633490.633 563.234| 563.234 563.234 563.234  563.234 .2383
Simulated | 500.115§ 500.62 500.55¢ 499.8p6  500.814 00.559 558.073| 558.014 558.12% 558.027  558.888 2887.
Difference 9.482 9.991 9.925 9.172 10.181 9.936 165. -5.220 -5.109 -5.208 -4.346 -6.001
= 0.005% -33.347| -31.324 -32.655 -24.719 -25.917  4@3. | -29.837 | -31.797 -32.438 -43.286 -47.957 -47.162
9] 0.025% -23.837| -25.475 -23.241 -18.697 -20.357 508. | -22.311| -23.324 -24.434 -32.62D -32.611 -36.641
= 0.05% -20.447| -21.43(Q -19.031 -16.114 -17.007 A%.4| -19.422 | -19.422 -20.115 -28.394 -28.159 -27.683
0.95% 21.209 20.913 19.960 16.366 16.595 15.696 6089.| 18.749 21.170 28.473 29.09p 29.627
0.975% 24.285 25.602 22.579 20.291 20.323 19.108 .1223| 22.050 24.373 34.270 33.58p 36.25Y7
0.995% 34.796 34.011 30.114 26.645 27.023 22.862 .9329 | 32.448 31.111 43.533 42.668B 46.13p
< | Historical 39.676 39.676 39.676 39.67¢ 39.676 3®.67 100.328| 100.328 100.328 100.328  100.328 100.328
2 | Simulated 66.188 68.641 62.116 52.83p 54.3p6 49.161 64.087 65.247 68.775 87.735 89.808 93.765
-§ Difference | 26.512 28.965 22.440 13.160 14.649 9.485 | -36.241 | -35.081 -31.553 -12.593 -10.520 -6.563
s 0.005% -23.155| -25.785 -20.141 -17.712 -19.367 0MZ. | -21.293| -22.727 -24.711 -29.561 -32.470 -31.714
) 0.025% -18.154| -18.964 -15.996 -14.144 -14.444  488. | -16.920 | -18.238 -19.466 -22.718 -24.067 -24.410
8 0.05% -15.430| -16.682 -13.510 -12.770 -12.251 -19.4| -15.193 | -15.549 -16.106 -19.461 -20.612 -21.618
E 0.95% 14.460 16.029 13.443 11.797 12.556 11.139 67¥4.| 14.933 14.470 18.950 19.519 20.738
n 0.975% 18.117 18.370 16.472 14.342 14.485 13.291 .3647 | 18.707 18.121 23.847 23.995 26.082
0.995% 24.619 23.827 22.715 19.499 17.787 16.982 .2921| 23.561 23.299 33.553 33.77p 36.063

54



Table A.6.3.: simulation based model comparisolovahg Caballero et al. (2002) for London

Period June 2007 January 2008
Mean ARFIMA TVARFIMA ARFIMA TVARFIMA
Variance | GARCH | FIGARCH | TVFIGARCH| GARCH | FIGARCH| TVFIGARCH  GABH FIGARCH | TVFIGARCH| GARCH FIGARCH| TVFIGARCH
Historical | 457.50 457.50 457.50 457.50 429. 429.62 429.62 429.62
Simulated | 458.38 458.46 458.5 458.35 435.5 435.49 435.93 435.85
Difference 0.89 0.97 1.04 0.85 5.91 5.8 6.31 6.23
= 0.005% -17.14 -20.46 -15.43 -18.51 -20.79 - - -18.76 -27.38 -24.92
9] 0.025% -14.42 -14.85 -12.43 -13.27 -15.86 - - -15.03 -20.19 -21.55
= 0.05% -11.92 -11.86 -10.12 -11.17 -13.12 - - -11.90 -17.39 -17.90
0.95% 11.81 11.36 10.24 11.06 12.97 852. 17.20 16.05
0.975% 14.25 13.13 11.50 12.62 15.3% 575 19.52 19.18
0.995% 19.82 17.19 15.92 16.23 21.12 .302 24.62 27.00
< | Historical 29.10 29.10 29.10 29.10 50.58 - - 50.58 50.58 50.58
2 | Simulated 37.85 39.28 33.90 34.56 42.82 42.99 54.60 55.70
-§ Difference | 8.75 10.18 4.80 5.46 -7.76 -7.59 4.02 5.12
s 0.005% -13.84 -12.97 -13.16 -12.84 -14.82 - - -13.16 -18.88 -19.28
) 0.025% -9.76 -9.76 -9.41 -9.10 -11.26 1147 -15.20 -15.12
8 0.05% -8.71 -8.67 -7.94 -7.89 -9.67 68. -12.71 -13.45
E 0.95% 7.85 8.78 7.27 7.57 9.67 9.56 801. 12.04
n 0.975% 9.58 10.66 8.71 9.26 10.91 11.49 15.01 14.26
0.995% 12.64 12.87 11.49 11.82 16.73 146 17.98 19.23

London values for FIGARCH specifications are ngiored

FIGARCH model collapses on a GARCH model.

since the estimations suggested a zero nyetoefficient. In this case, the
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Table A.6.4.: Put options prices obtained fromdtiterent models — Chicago

Model

ARFIMA

TVARFIMA

GARCH |

FIGARCH |

TVFIGARCH

GARCH |

FIGARCH |

TVFIGARCH

June 2007: Real Index Value 209.5 — Strike Prid@-2Realized Payoff 10 — Historical Index Mean

133.598 — Historical Index Standard Deviation 52.69

Contract Price 789.52p 778.564 793.707 856.223 4878, 828.164
Simulated Index

Minimum 13.016 6.034 4.21p 6.393 26.563 19.2
1% quantile 52.203 46.994 53.498 64.963 70.306 g8l
Mean 207.318 210.80p 206.3381 188.492 192.829 191
99% quantile 441.023 456.017 433.435 362.821 316.66 361.941
Maximum 670.782 753.0883 727.223 594.371 641.346 A
Standard Dev. 82.61p 86.260 82.132 62.825 65/544 7163

January 2008: Real Index Value 1288 — Strike PIR®0 — Realized Payoff 240 — Historical Index

Mean 1323.957 — Historical Index Standard Deviafi@g6.382

\"A}

Contract Price 2419.71B 2495.343 2527.482  2570/801 2650.613] 2762.404
Simulated Index

Minimum 584.370 495.12% 582.073 439.780 429.078 7]
1% quantile 863.486 843.011 861.1p3 842.511 827|886 779.662
Mean 1213.733 1214.146 1213.264  1219.126 1219455 215.810
99% quantile 1530.724 1556.003 1556.479  1603/171 24061 1651.19(
Maximum 1711.616 1716.279 1895.9Y5  1820.686 1871/42 2079.869
Standard Dev. 136.456 146.489 149.394 164723 184.6 181.674

Contract prices and payoffs are in United Statelaio
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Table A.6.5.: Put options prices obtained fromdiferent models - Berlin

Model

ARFIMA

TVARFIMA

GARCH |

FIGARCH |

TVFIGARCH

GARCH |

FIGARCH |

TVFIGARCH

June 2007: Real Index Value 577.85 — Strike Prix@-6 Realized Payoff 443 — Historical Index Med
490.633 — Historical Index Standard Deviation 38.67

Contract Price 1346.134 1364.850 1334.122 | 1372.745 1370.583 | 1344.208
Simulated Index

Minimum 257.798 281.908 270.543 347.194 308.881 )
1% quantile 392.417 396.349 409.842 419.466 424112 428.165
Mean 546.244 545.051 545.479 541.12B 541.135 581.27
99% quantile 694.574 698.015 687.603 664.019 685.56 653.995
Maximum 790.937 824.318 819.134 772.098 762.563 .8B06
Standard Dev. 62.662 62.425 58.886 52.280 52.206 1048

January 2008: Real Index Value 441.15 — StrikeePs5 — Realized Payoff 1677 — Historical Index
Mean 563.234 — Historical Index Standard Deviafi60.328

Contract Price 656.433 | 654.160 | 691.470 | 801.030 9798. | 838.351
Simulated Index

Minimum 267.938 183.743 263.267 152.758 200.939 s
1% quantile 360.941 374.947 362.721 324.745 335.030  333.828
Mean 519.436 520.046 520.060 522.635 522.945 522.54
99% quantile 670.115 672.916 681.469 724.675 724.53 732.276
Maximum 757.857 804.854 826.140 1002.092 962.926 9.192
Standard Dev. 63.610 64.149 67.884 83.658 83.209 .8086

Contract prices and payoffs are in British Pounds
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Table A.6.6.: Put options prices obtained fromdtiterent models - London

Model

ARFIMA

TVARFIMA

GARCH | FIGARCH

TVFIGARCH

GARCH |

FIGARCH |

TVFIGARCH

June 2007: Real Index Value 496.08 — Strike Prid@-5Realized Payoff 278.4 — Historical Index

Mean 457.5 — Historical Index Standard DeviatiorllP9

Contract Price 337.846 - ] 363.285 | 295.350L -] 328.
Simulated Index
Minimum 340.851 273.240 381.446 372.549
1% quantile 416.995 417.277 423.047 418.576
Mean 511.723 510.892 511.955 510.896
99% quantile 601.807 607.124 592.485 592.80
Maximum 681.093 678.332 639.353 667.103
Standard Dev. 38.232 - 40.137 33.714 35.252
1054.2 — Historical Ind¢

January 2008: Real Index Value 322

.29 — StrikeeP3it5 — Realized Payoff

Mean 457.5 — Historical Index Standard DeviatiorilR9

eX

Contract Price 395.073 | — ] 407.235 | 478.431 - | 293.
Simulated Index

Minimum 121.444 177.290 81.282 109.993
1% quantile 264.795 269.447 259.192 243.107
Mean 375.047 374.723 376.575 378.016
99% quantile 470.795 476.844 494.999 50@.15
Maximum 576.477 546.663 579.412 648.743
Standard Dev. 42.568 43.361 52.918§ 53.690

Contract prices and payoffs are in British Pounds
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