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Abstract

This paper proposes structured parametrizations for multivariate volatility models,

which use spatial weight matrices induced by economic proximity. These structured spec-

i�cations aim at solving the curse of dimensionality problem, which limits feasibility of

model-estimation to small cross-sections for unstructured models. Structured parame-

trizations possess the following four desirable properties: i) they are �exible, allowing for

covariance spill-over; ii) they are parsimonious, being characterized by a number of para-

meters that grows only linearly with the cross-section dimension; iii) model parameters

have a direct economic interpretation that re�ects the chosen notion of economic classi�-

cation; iv) model-estimation computations are faster than for unstructured speci�cations.

We give examples of structured speci�cations for multivariate GARCH models as well as

for Stochastic- and Realized-Volatility models. The paper also discusses how to construct

spatial weight matrices that are time-varying and possibly derived from a set of covariates.
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1 Introduction

Multivariate volatility models (MVM) are used for asset pricing, portfolio selection, option

pricing, hedging and risk management, see e.g. Bauwens et al. (2006). MVM include mul-

tivariate GARCH speci�cations (MGARCH, see the reviews in McAleer 2005, Bauwens et

al. 2006, Silvennoinen and Teräsvirta 2008 and the glossary in Bollerslev 2008), Multivariate

Stochastic Volatility models (MSV, see e.g. Asai, McAleer and Yu 2006), and Multivariate

Realized Covariance models (MRV, see e.g. McAleer and Medeiros 2008).

A major challenge in MVM is the rapid increase of number of parameters as the cross-

sectional dimension increases. Large cross-sections would be of interest in typical applications

of MVM; this contrasts with the empirical practice, where these models are estimated in

just a handful of dimensions or � only for very restrictive speci�cations � in medium-sized

cross-sections.

In unrestricted MVM, the number of parameters grows faster than the cross-sectional

dimension; this implies that parameters eventually outnumber observations in large cross-

sections, a situation where model-estimation becomes unfeasible. This problem is similar to

the deterioration of the rate of convergence for nonparametric estimators in higher dimensions,

see e.g. Linton (2008), and we refer to it as the �curse of dimensionality�problem for MVM.1

In this paper we discuss �structured��i.e. restricted �MVM speci�cations which provide

a possible solution to this problem. The structure we consider is formalized through spatial

concepts, where proximity is induced by economic common factors, through the de�nition of

weight matrices. Several approaches for the de�nition of weight matrices are given, which

translate (possibly time-varying) past information into proximity coe¢ cients.

The contributions of this paper consist in introducing spatial concepts and tools in the

speci�cations of MVM. Spatial models originated as a way to model the joint covariance

structure of data coming from di¤erent geographical areas, in a single time period. These

ideas are applied here for the modeling of conditional covariance matrices over time. This

restricts the number of parameters, while also retaining a simple interpretation for coe¢ cients.

Many empirical studies assume diagonal parameter matrices in MVM. These speci�cations

do not allow for covariance spill-overs and feedbacks, which are aspects of major interest. On

the contrary, the structured speci�cations proposed in this paper allow for covariance spill-

overs and feedbacks from neighbors. For instance neighbors can be de�ned as stocks from the

same sector; this allows to interpret coe¢ cients as representing sectorial e¤ects. In this sense

the present speci�cations re�ect a factor structure, associated e.g. with the classi�cation into

sectors.

Structured speci�cations di¤er from factor volatility models. In the latter, factors are not

identi�ed, while in the former they are associated to a precise proximity structure derived

from economic rationale.2 Structured speci�cations are hence easier to interpret, because
1Note that for nonparametric estimation the rate of convergence of estimators becomes slower in higher

dimensions, while maintaining consistency. For MVM, instead, the curse of dimensionality is more extreme,

because estimation simply becomes unfeasible in large cross-sections.
2 In statistical factor analysis, the literature distinguishes between exploratory analysis, where no identifying
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factors are de�ned a-priori.

Silvennoinen and Teräsvirta (2008, section 2) provide a list of desiderata for an ideal

MGARCH speci�cation, which applies to MVM more in general. The ideal speci�cation

should be:

1. scalable, i.e. estimation should be feasible for increasingly large cross-sections;

2. �exible enough to allow for covariance spill-overs and feedbacks;

3. interpretable;

4. the estimated conditional covariance matrices should be positive de�nite (p.d.) by con-

struction;

5. it would be nice if the resulting Gaussian likelihood function was easily optimized numeri-

cally ; in particular this requires that the calculation of the inverse and of the determinant

of the conditional covariance matrix are fast and numerically stable.

Most of the structured speci�cations have a moderate number of parameters, which often

grows linearly with the cross-section dimension n. This means that the number of parameters

grows approximately as cn where c is a given positive number. If one �xes the time-series

dimension T , increasing the cross-section dimension nmakes the ratio of number of parameters

to observations converge to a positive fraction cn=Tn = c=T < 1, unlike models plagued by

the curse of dimensionality. This makes these models scalable.

Thanks to the fact that proximity is derived from economic rationale, the corresponding

parameters have a direct economic interpretation. It is also found that if an unrestricted

MVM delivers p.d. covariances, then structured restrictions will not change this property.

On the contrary, if positive de�niteness is not guaranteed, structured speci�cations may help

to obtain p.d. conditional covariance matrices.3 Hence structured restrictions help also in

association with the desideratum of positive de�niteness.

Finally, structured speci�cations usually make the calculation of the inverse and of the

determinant of the conditional covariance matrix easier than in the unrestricted case. In

several cases these operations can be performed without the use of matrix inversion rou-

tines, hence speeding up computations massively.4 For some structured speci�cations, the

likelihood calculations can be further separated into separate blocks, hence simplifying the

computational complexity.5 Overall, structured speci�cations appear to satisfy most �if not

all �the optimality criteria put forward by Silvennoinen and Teräsvirta (2008).

assumption is made, and con�rmatory analysis, where factor loadings are restricted on the basis of a-priori

restrictions. Most factor models in MVM are of exploratory nature, and hence leave factor identi�cation

unspeci�ed.
3This is the case in CCC speci�cations when the unrestricted estimation of the correlation matrix is not

feasible, see Subsection 5.7.
4See Subsections 2.4, 5.12.
5This is for instance the case in spatial GO-GARCH speci�cations, see Subsection 5.6.
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Spatial statistics has a long tradition in modeling unconditional variance matrices, see e.g.

Cressie (1993) and references therein. Recently, Bera and Simlai (2004) and Yan (2006) have

considered a spatial cross-section model with a form of heteroskedasticity analogous to ARCH

and to stochastic volatility models respectively. In this paper we present a complementary

type of spatial volatility model; namely, we introduce spatial speci�cations within well known

time-series models of second moments.

Important recent applications of spatial models in economics can be found in the literature

on regional income growth (Riviera-Batiz and Romer 1991), in microeconomics of product

di¤usion (Brock and Durlauf, 2001), in the analysis of interaction of policy makers in public

economics (Brueckner, 2003).

Spatial econometrics has steadily developed over the years, see e.g. Anselin (1988, 2002)

and reference therein. Spatial models are used to account for error dependence in regression

models, see e.g. Lee (2002), as well as to model individual heterogeneity in panels, see Baltagi

et al. (2007), McAleer, Medeiros and Slottje (2008), Pesaran and Tosetti (2008). Despite

the wide use of spatial models for unconditional covariance structures, their use in modeling

conditional covariances discussed in this paper is novel.

Spatial models are associated with the notion of distance between units. The concept of

proximity originated as a geographic concept; coming into economics, it has been associated

with economic distance (Conley and Ligon 2002, Pesaran et al. 2004) and social proximity

(Conley and Topa 2002). Huse (2006) and Gall et al. (2004) report applications of spatial

models to the term structure of interest rates (or forward rates), where distance is in terms

of maturity.

The simplest notion of proximity is, however, the one inherited from lattice models. Case

(1991), for instance, considered this simple notion of proximity, and classi�ed units into groups,

considering units as neighbors if they belong to the same group. We apply this notion to an

example of n stock returns, where neighbors are de�ned as stocks from the same sector.

The de�nition of neighbors is then extended to more general situations, also allowing for the

presence of covariates.

As most of the literature, we consider (quasi-) likelihood-based inference. We discuss when

this type of inference can be decomposed into subsystem estimation procedures with no loss

of information, see Subsection 5.12, where the latter usually involve faster computations. As-

ymptotic properties of estimators and tests of unrestricted MGARCH processes are discussed

in Ling and McAleer (2004), Comte and Lieberman (2003); a complete discussion of how this

theory can be adapted to the present class of models is beyond the scope of the paper, and it

will be pursued elsewhere.

Many variations of structured MVM speci�cations exist, and in general the best speci�-

cation depends on the given application. In order to illustrate how general spatial tools are,

we present several structured speci�cations for major MVM model classes. We �nd that most

models allow a structured speci�cation, although some model classes are more amenable to

structured speci�cation than others.
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Because there are many possible variations of the same model class, we consider only the

simplest representative model from the class. For instance when dealing with Multivariate

GARCH (MGARCH) models, we discuss the MGARCH(1,1) model, and observe that ex-

tensions for the general MGARCH(p; q) case are very similar to the leading case. The same

principle is also employed with respect to asymmetric e¤ects of innovations and other standard

variations in ARCH models.

The rest of the paper is organized as follows. Section 2 reviews some basic spatial models;

Section 3 introduces weight matrices for asset returns. The setup of MVM models is discussed

in Section 4. MGARCH models are discussed in Section 5, and other MVM in Section 6. A

discussion on how to de�ne more general, and possibly time-varying, weight matrices is re-

ported in Section 7. Section 8 reports concluding remarks. The Appendix contains de�nitions

and properties of weight and spatial matrices.

2 Spatial covariance models

In this section we review simple spatial processes and their interpretation in terms of weight

matrices and the associated neighboring structure. For a more detailed introduction we refer

to Cressie (1993) and references therein.

2.1 SAR processes

Consider realizations on m random variables ui, where each i corresponds to one of m units.

We assume that ui are mean zero, E(ui) = 0 where E(�) denotes the expectation operator,
and that there exist a proximity structure on the units, represented by the weights wij which

take a positive value if units i and j are (di¤erent) neighbors (i 6= j), and value 0 otherwise.
The simplest example of spatial process is given by the Spatial AutoRegressive process of

order 1, SAR(1), given by

ui = �
mX
j=1

wijuj + "i (1)

where wij � 0 are proximity weights and "i are errors. The vector " := ("1 : � � � : "m)0 has
expectation 0 and positive de�nite covariance matrix V ; sometimes it is also assumed to be

Gaussian. Usually V := diag(v) where v is an m�1 vector of positive elements, v > 0 and we
indicate by diag(v) is the m�m diagonal matrix with the elements of v on the main diagonal.

Often a scalar speci�cation is employed, i.e. v = �21m, where 1m is an m� 1 vector with all
elements equal to 1 and �2 > 0.

Eq. (1) postulates that ui is in�uenced by measurements on (�rst order) neighbors, whose

measurements are picked out by the wij weights; "i is the error in the equation. The coe¢ cient

� represents the spatial AR parameter, which is usually restricted to be the same for all i; we

call this the �homogeneity assumption�, and it can be relaxed, see Subsection 2.3 below.

Collecting the vector of ui random variables in the vector u := (u1 : � � � : um)0 and de�ning

4



the weight matrix W := (wij), the SAR(1) process can be written as

u = �Wu+ " (2)

The matrix W is n � n, it has 0 across the main diagonal6, and row i of matrix W , w0i :=
(wi1 : � � � : wim) has positive elements corresponding to the �rst order neighbors of unit i.
Note that w0iu is proportional to a (possibly weighted) average of measurements on �rst-order

neighbors of unit i. The matrix W is called �weight matrix�in the following; here we assume

weight matrices to be normalized across the rows,
Pm
j=1wij = 1, see the Appendix for a

discussion of this normalization. Possible ways to construct weight matrices W are presented

in Section 7 below.

A similar expression holds for SAR(2) processes, by de�ning two weight matrices W1 and

W2, whose elements in row i de�ne the �rst order and second order neighbors, respectively, of

unit i. The resulting SAR(2) model can be written as u = �1W1u+ �2W2u+ ". The general

form of a SAR(p) model is

u =

pX
h=1

�hWhu+ " (3)

where each Wh is a weight matrix associated with neighbors of order h, each of which has AR

parameter �h.

2.2 Covariance structure and spatial matrices

SAR processes in eq. (2) and (3) are used to model the covariance structure of u; in particular

one can solve the equations for u by computing
�
I �

Pp
h=1 �hWh

�
u = ", from which

M := V(u) = S�1V S�10; (4)

S = I �
pX
h=1

�hWh; (5)

where V(�) is the variance operator. Note that the Gaussian hypothesis is not required to
obtain (4).

The covariance structure (4) implied by the SAR model can be quite articulate, despite

being generated by just a few coe¢ cients; for the SAR(1) case, one typically has one �

parameter and one variance parameter �2 in V = �2I.

2.3 Heterogeneous SAR processes

One generalization of the SAR(1) process is obtained by assuming a di¤erent AR coe¢ cient

� in (1) for each unit; this results in

ui = �i

mX
j=1

wijuj + "i;

6Matrices with 0s across the diagonal are sometimes called �hollow�matrices.
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where �i indicates the AR coe¢ cient � for unit i. In matrix notation:

u = diag(�)Wu+ " (6)

where � := (�1 : � � � : �m)0 is the m � 1 vector of AR coe¢ cients. The corresponding

generalized SAR(p) process is

u =

pX
h=1

�hWhu+ " (7)

where �h := diag(�h), �h := (�h1 : � � � : �hm)0 and �hi is the AR(h) coe¢ cient for unit i. This
implies a covariance structure of the type (4) with

S := S0 +

pX
h=1

ShWh: (8)

with S0 = In, Sh := ��h. We call (8) the �heterogeneous�speci�cation. We call a matrix S
of the form (8) a spatial matrix ; in the Appendix we give a formal de�nition and properties

of spatial matrices.

The coe¢ cients �hi that appear in (7) are not necessarily all distinct. One possibility

that all �hi in �
h are equal, reducing the associated process to the case of the standard SAR;

this case is called the �homogeneous� speci�cation. We also consider the case in which �hi
is equal to �hj for all j that are �rst-order neighbors to unit i. We call the corresponding

speci�cation the �group-homogeneous�case. Note that the heterogeneous speci�cation nests

the group-homogeneous one, which in turn nests the homogeneous one.

2.4 Computation of the inverse and the determinant

It is interesting to observe that the inverse of the covariance matrix M implied by a (general-

ized) SAR process, see eq. (4), can be computed without using matrix-inversion routines. In

fact

M�1 = SV �1S0; V �1 = diag(1m:=v); (9)

where a:=b indicates element-wise division, 1m:=v = (1=v1 : � � � : 1=vm)0. Hence the inverse of
M is computed by the following steps:

1. compute S = I �
Pp
h=1�hWh, which is a linear function of the parameters in �h;

2. compute V �1 = diag(1m:=v), which just involves elementwise division;

3. perform the matrix multiplication SV �1S0 to obtain M�1.

The computation of this inverse is hence fast and feasible also for large cross-sections; see

also Subsection 4.3 below.

The same remarks apply to the inversion of the correlation matrix R corresponding to M .

Let dg(M) be the m�1 vector containing the diagonal elements inM , and let R = cor(M) be
the correlation matrix obtained by standardizing M , i.e. R = cor(M) := D

� 1
2

M MD
� 1
2

M , where

DM := diag(dgM). One �nds

R�1 = D
1
2
MM

�1D
1
2
M

6



where D
1
2
M = diag(dgM)

1
2 is a diagonal matrix with element i on the main diagonal equal to

p
Mii, the square root of the diagonal elements of M . Hence inversion of R is only slightly

more time-consuming than the inversion of M ; it consists of adding the following �nal step

to the inversion of M :

4. multiply all elements in row i by
p
Mii and all elements in column j by

p
Mjj to obtain

R�1 = D
1
2
MM

�1D
1
2
M .

Computation of the determinant of the matrixM or R is similarly simpli�ed by the struc-

ture M = S�1V S�10. One �nds detM = detV= (detS)2. The computation of detS depends

on the weight matrices Wh; we report some examples of these computations in Subsections

4.3 and 5.6 below.

2.5 Other spatial processes

In this subsection we brie�y describe two other spatial processes, the Spatial Moving Average

(SMA) process and the Conditionally AutoRegressive (CAR) process. These models are

introduced to demonstrate the central role of spatial matrices also for these alternative spatial

processes.

The SMA(1) process corresponds to u = "+�W", which implies V(u) = (I + �W )V (I + �W )0.
For generic SMA(p) processes one has

� := V(u) = SV S0; S := I �
pX
h=1

�hWh;

which is similar to (4) except that the spatial matrix S appears in the expression of � in place

of S�1 . Note that the inversion of � now involves also the inversion of S, ��1 = S0�1V �1S�1.

For some speci�cations of the weight matrices Wh this can be obtained analytically, but this

is not true in general.

A CAR(1) process under normality implies the following covariance structure

V(u) = (I � �W )�1 L

where L is diagonal and such that L�1W is symmetric. Note the role of the spatial matrix

I � �W also for this process.

SMA and CAR processes are similar in nature to SAR processes7; for simplicity in the

following we will concentrate attention on SAR as a leading example of spatial processes.

2.6 Time series analogues to SAR

In the rest of the paper we use the notions of spatial matrices in order to obtain structured

speci�cation for MVM when u has a time subscript t. In particular we employ (4) as a way

7For a discussion of relative merits of CAR(1) versus SAR(1) processes see Martellosio (2008), section 2.1.
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to specify covariance matrices (or the implied correlation matrices). This corresponds to the

following analogues of the generalized SAR process in (7):

ut =

 
pX
h=1

�hWh

!
ut + "t:

where �h = diag(�h). Here the AR matrix is a spatial matrix, with zeros on the main diagonal.

Moreover, we also use the following, di¤erent time-analogue of the generalized SAR process

ut =

 
pX
h=0

�hWh

!
ut�1 + "t

whereW0 := In. Note that the resulting AR-parameters S :=
Pp
h=0�hWh are spatial matrices

of the type (8), with diagonal elements (possibly di¤erent from 0) which represent diagonal

e¤ects of the own lags.

3 Spatial proximity for asset returns

In this section we give examples of possible weight matrices W to be used in the context

of MVM. As a leading example, we consider a set of 12 stock returns over a single time-

period, u := (u1 : � � � : u12)0. Because there is a single time period, we do not indicate the
time subscript t in u. We return to the full notation in Section 4. We assume that the

(conditional) mean of u is 0 and that we wish to model the covariance structure of u as a

SAR process.

The following subsections discuss the de�nition of weight matrices W when distances are

de�ned on the basis of groups, where groups are induced by a (single in Subsection 3.1 or

composite in Subsection 3.2) classi�cation criterion. Extensions to higher order neighbors are

discussed in the Subsection 3.3. The classi�cation criteria are indicated by the letters F , G,

H.

3.1 A single classi�cation criterion

Assume that the 12 assets can be classi�ed on the basis of a single classi�cation criterion,

called F . In this example we take F to represent each stock�s sector; for simplicity we let F

assume only two values, such as �goods�and �services�, which we label as 1 and 2 respectively.

We record in Fi the level of the factor in unit i, which is 1 for �goods�and 2 for �services�.

Assume that 6 stocks belong to sector 1 and the other 6 to sector 2, and that the �rst 6 in

u correspond to the �rst group. We next discuss how to obtain the corresponding WF weight

matrix that de�nes the �rst-order neighbors as members of the same group. i.e. stocks from

the same sector.

The �rst-order neighbors of stock 1 are given by stocks 2 to 6, and hence the �rst row of

WF is given by the row vector 15(0 : 1
0
5 : 0

0
6), where 0s and 1s are s�1 vectors with all elements

equal to 0 or 1 respectively. Similarly the second row of WF is given by 1
5(1 : 0 : 1

0
4 : 0

0
6) etc.
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For stock number 7, one �nds that the corresponding row of WF is given by 1
5(0

0
7 : 1

0
5), for

number 8 it is 15(0
0
6 : 1 : 0 : 1

0
4) etc.

Grouping these rows together one obtains

WF = diag(J6; J6); Js :=
1

s� 1
�
1s1

0
s � Is

�
where diag(A;B) is a block-diagonal matrix with the A and B on the main diagonal. Note

that, if the two groups have di¤erent number of stocks, n1 and n2 say, the diagonal blocks

become Jn1 and Jn2 , W
F = diag(Jn1 ; Jn2).

This example can be directly extended to the case of n assets, u := (u1 : � � � : un)0,
classi�ed according to a classi�cation scheme F with k classes, labeled 1; : : : ; k.8 Speci�cally,

let nh be the number of assets belonging to class h, with n =
Pk1
h=1 nh. Assume, without loss

of generality, that the �rst n1 assets in the vector u refer to the stocks in class 1, the second

group of n2 to class 2 and so forth. It is simple to verify that the associated weight matrix of

�rst-order neighbors is of the type

WF = diag(Jn1 ; : : : ; Jnk1 ): (10)

The speci�cation of the WF matrix can be obtained in general terms as follows. Let

wij := (W
F )ij ; one has

wFij =
w�ijPn
j=1w

�
ij

; w�ij := 1 (Fi = Fj ; i 6= j) ; (11)

where 1(condition) is the indicator function that takes value 1 if the condition is true and

value 0 otherwise. The format (11) illustrates that wij are normalized weights along each row,

and that wij 6= 0 when Fi = Fj and i 6= j.

3.2 More than one classi�cation criterion

In this subsection we discuss how to construct weight matrices in case more than one classi�-

cation criterion is present. The idea is that one can apply the same principles and techniques

that apply in ANalysis Of VAriance, ANOVA, see e.g. Wichura (2006).

Consider again the 12 asset example and a second classi�cation criterion G, which can be

taken to be capitalization size. Assume also that G has three levels, �large�, �medium�and

�small�, labeled 1, 2, 3 respectively. The factor level of unit i is indicated as Gi. Assume in

the example that Gi = 1 for stocks numbered i =1, 2, 7, 8, Gi = 2 for i = 3, 4, 9, 10 and

Gi = 3 for i =5, 6, 11, 12, see Table 1.

If G were the only classi�cation criterion, the previous subsection indicates how to con-

struct the �rst-order-neighbors weight matrix. Speci�cally, let u� = Pu be a re-ordering

of the elements in u which moves all elements i with in Gi = 1 as the �rst group in u�,

the elements with Gi = 2 as the second group in u� and the ones with Gi = 3 as the �-

nal group in u�. Note that the matrix P is a permutation matrix and that for instance,

u� := (u1 : u2 : u7 : u8 : u3 : u4 : u9 : u10 : u5 : u6 : u11 : u12)0.

8Obviously, these classes form a classi�cation scheme if they are disjoint and they cover all possible cases.
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G = 1 2 3

F = 1 1,2 3,4 5,6

2 7,8 9,10 11,12

Table 1: The table contains label-numbers of stocks in the example with 12 assets returns,

with a classi�cation induced by two factors F and G.

Then, the weight matrix for u� is W �
2 = diag(J4; J4; J4) and it is simple to see that the

corresponding weight matrix for u is

WG = PW �0
2 P = Pdiag(J4; J4; J4)P

0; (12)

which has the same structure as for the case of F , except for the presence of the permutation

matrix P .

One possible combination of the factors F and G can be obtained by considering a spatial

matrix S = �FW
F + �GW

G, where WF is de�ned in (10) and WG in (12). Here the e¤ect

of both factors are additive. This gives a simple way to combine the e¤ects of the two

classi�cation factors F and G.

A more general combination of factors F and G can be obtained by considering each cell in

the Table 1 as a group; this allows to measure interactions between the two factors. Speci�cally

let H be the classi�cation obtained by considering the Cartesian product of elements in F and

G, i.e. level h of the factor H corresponds to the pair (i; j) for (F;G); with h = (k1 � 1) i+ j,
where k1 (k2) is the number of distinct values of F (G). The combined factor H presents

k1 � k2 intensities, and one can de�ne a weight matrix corresponding to it, labeled WH , as

detailed above. Speci�cally for the 12-returns example, one �nds

WH = diag(J2; J2; J2; J2; J2; J2):

This can be directly extended to the case of several factors, where we note that more re-

�ned classi�cations obviously imply fewer units per group. A discussion on the number of

classi�cation factors is reported in the Subsection 3.3.

3.3 Second order neighbors and the number of factors

The above discussion focused on �rst-order neighbors. In this subsection we discuss higher-

order neighbors and the choice of number of classi�cation factors.

Higher-order neighbors can be included in the speci�cation of spatial matrices S by adding

a corresponding weight matrix. For a factor F corresponding to �industry�, one may de�ne

second order neighbors as members of other industries in the same sector, for instance. This

corresponds to matrices WF
1 and WF

2 , and the discussion in the previous subsections applies.

Note that for some order, some unit j may have no neighbors, which results in a 0 row in the

corresponding W matrix. For some even higher order, one may have that all units have no

neighbor, and this gives a maximum for the neighboring order.

10



Assume that a weight matrix W has row i equal to 0; the corresponding coe¢ cient � is

potentially (generically) identi�ed in the homogeneous case (5). In the heterogeneous case

(8) the parameters �hi is not identi�ed. This shows that identi�cation of the �
h vectors in (8)

requires care.

We next discuss the choice of classi�cation factors. Too many factors may induce cells in

the Cartesian product that have 1 unit; this would result in a 0 row for the associated weight

matrix, which contradicts the assumption that all row sums to 1, W1 = 1. This re�ects the

idea that spatial models are meaningful if each unit has at least one neighbor. However, zero

rows can be accommodated in products like diag(�)W by choosing the corresponding elements

in � to equal 0, see the Appendix.

A di¤erent limitation to the speci�cation of the spatial matrix S in (8) is given by the

fact that an unrestricted S has m2 entries, and the spatial speci�cation is meant to reduce

this number. If for instance, the distinct elements in � are identi�ed, this means that there

are at most m(m+ 1)=2 identi�able coe¢ cients in S and V . This means that the number of

di¤erent coe¢ cients �hi in (8) must be (greatly) less that this upper limit.

We �nally observe that identi�cation problems in S = S1W1+S2W2 arise when (a subset of

the rows of) two weight matricesW1 andW2 are identical, a situation which corresponds to the

case where neighbors implied by the corresponding factors are identical. Take for simplicity

S1 = diag((�11
0
6 : �21

0
6)
0), S2 = diag((�31

0
6 : �41

0
6)
0) and assume that (I6 : 0)W1 = (I6 : 0)W2,

i.e. that the �rst block of 6 rows in W1 and W2 are equal. Then

(I6 : 0)S = (�1 + �3) (I6 : 0)W1

depends on �1 + �3, and one cannot identify �1 and �3 separately.

The discussion of this identi�cation problem is di¢ cult in general terms, because it depends

on the speci�c set of weight matrices W ; this should be checked on a case-by-case basis. In

general, it is wise to consider only a small set of classi�cation factors, as well as to try to

minimize the number of di¤erent parameters in the heterogenous parametrization. In the

following exposition, we adopt a single classi�cation criterion for simplicity.

4 Spatial MVM setup

In this section we discuss the de�nition of weight matrices and spatial matrices for MVM.

We consider the case of a single proximity criteria and �rst-order neighbors. Extensions to

higher-order models can be carried out along the lines of the previous section, and they are

not discussed here.

4.1 Conditional covariances

In the following, we consider a set of returns yt := (y1;t : � � � : yn;t)0 on n assets, classi�ed into
k groups with the use of some economic or �nancial classi�cation criterion. The assets within

each group are taken as �rst-order neighbors. The k sets have dimension n1, n2, : : : , nk with

11



Pk
i=1 = n, and the assets are ordered according to these groups; in other words y1;t; : : : ; yn1;t

refer to assets in �rst group, yn1+1;t; : : : ; yn1+n2;t refer to assets in the second group, and so

on.

We let Ft indicate the information set up to and including time t, which is generated by
the random variables in zt := (y0t : x

0
t)
0 where xt contains additional random variables that are

observed at time t. We assume that the conditional mean of yt is some parametric function

of zt�1, �t(zt�1) := Et�1(yt) := E(ytjFt�1). We concentrate attention to deviations from the

conditional mean ut := yt � �t(zt�1), with Et�1(ut) = 0; interest lies in the prediction of

�t := Vt�1(ut) = Et�1(utu0t):

4.2 Weight matrices

Before discussing MVM models, we �rst describe the prototype weight matrices encountered

in this context. The weight matrix corresponding to the classi�cation of the elements in yt or

ut is given by

Wn := diag(Jn1 ; : : : ; Jnk1 ); (13)

see (10). Here Wn is n� n.
When considering vec (�t) or vec (utu0t), element number h in these vectors corresponds

to a pair of units (i; j), where h = (i� 1)n+ j and vec is the column-stacking operator. Note
that (�t)ij is the conditional covariance between assets i and j. The same elements appear in

vech (�t), where vech stacks the elements on and below the main diagonal; we describe the

weight matrices for vec (�t) and show how to adapt these results for vech (�t) speci�cations.

In order to construct weight matrices for the elements in vec (�t), one needs to de�ne �rst-

order neighbors for pairs (i; j) and (l;m), say. Let (i; j) correspond to element h = (i�1)n+j
in vec (�t) and (l;m) correspond to element v = (l�1)n+m. One can de�ne a weight matrix
that classi�es as �rst order neighbors of element h, corresponding to the pair (i; j), all elements

v, corresponding to the pair (l;m) for which (Fi = Fl; Fj = Fm), i.e. for which the sectors

coincide. Moreover one wishes to exclude from v the pairs for which i = l or j = m, i.e. where

one of the stocks is repeated.

In other words, when modeling the conditional covariance (�t)ij = Et�1(uiuj) of excess
returns on assets i and j, �rst order neighbors correspond to all other asset pairs (l;m) where

the �rst asset l is in the same sector of asset i and the second asset m is in the same sector

as asset j, without counting pairs where i = l or j = m.

This results in a weight matrix with (h; v) element whv of the form

whv =
w�hvPn2

v=1w
�
hv

; w�hv := 1(Fi = Fl; Fj = Fm; i 6= l; j 6= m); (14)

where we have used an expression similar to (11). We label the resulting matrix as Wn2;3.

An alternative weight matrix is obtained by replacing w�hv in (14) with the following

alternative choices:

w
�(1)
hv := 1 (Fi = Fl; i 6= l; j = m) ; w

�(2)
hv := 1 (Fj = Fm; i = l; j 6= m) : (15)
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We label the associated weight matrices asWn2;1 andWn2;2 respectively. For the weight matrix

Wn2;1, the �rst order neighbors of (i; j) correspond to pairs (i;m) with j and m indicating

distinct assets from the same sector. For the weight matrix Wn2;2, the �rst order neighbors

of (i; j) correspond to pairs (l; j) with i and l indicating distinct assets from the same sector.

Wn2;j , j = 1; 2; 3 are representative matrices of the class of weight matrices of dimension

n2. In the example which follow, in order to simplify exposition we use a single weight matrix,

labeled Wn2 , which can be taken to be one the matrices Wn2;j , j = 1; 2; 3.

It may be of interest to note the following property; all proofs are placed in the Appendix.

Proposition 1 In the previous notation

Wn2;1 = In 
Wn; Wn2;2 =Wn 
 In; Wn2;3 =Wn 
Wn:

The proposition shows that these matrices have a Kronecker product structure; Proposi-

tion 4 in the Appendix discusses necessary and su¢ cient conditions on H, K in a product

H 
K to ensure that H 
K is a weight matrix.

4.3 Spatial matrices

In this subsection we consider spatial matrices S generated by the weight matrices W = Wn

or Wn2 described earlier; they take of the form

S = S0 + S1W; Sj = diag(s
j); j = 0; 1: (16)

The heterogeneous speci�cation is obtained when the elements in sj are all unrestricted;

the group-homogeneous case corresponds to assuming sji = �
j
Fi
, where �j1; : : : ; �

j
k are group-

speci�c coe¢ cients. Finally the homogeneous case is obtained by imposing �jl = �
j
m, l;m =

1; : : : ; k.

We also use spatial speci�cations to model an n� n correlation matrices R; in particular
one can assume that R is the correlation matrix corresponding to a covariance matrix of a

SAR process, see eq. (4); in other words we assume

R = cor(S�1V S�10); V = diag(v) (17)

and where S is parametrized as in (16) with W = Wn. Correlation matrices constructed in

this way are positive de�nite (provided V is) and all parameter values are valid for elements

in sj .

We now present an example on the computation of detS which is required in the calculation

of detM , see Subsection 2.4. Here W is assumed to be of the form (13) and sj in (16) is

partitioned conformably into sj = ((sj1)
0 : � � � : (sjk)0)0 where each s

j
h is nh � 1, h = 1; : : : ; k.

We �nd

detS =
kY
h=1

det
�
diag(s0h) + diag(s

1
h)Jnh

�
which shows that the computational problem of �nding the determinant of an n � n matrix
is decomposed in k smaller tasks of �nding the determinant of nh � nh matrices diag(s0h) +
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diag(s0h)Jnh . This decomposition can be useful also when one wishes to decompose the esti-

mation of the complete systems into subsystems, see the example in Subsection 5.6 below.

Moreover, for the group-homogeneous case one has further simpli�cations. In fact when

sjh = �
j
h1nh , j = 0; 1 each of the terms det(diag(s

0
h) + diag(s

0
h)Jni) reduces further as follows:

'(�0h; �
1
h; nh) := det

�
diag(s0h) + diag(s

1
h)Jnh

�
= det

�
�0hInh + �

1
hJnh

�
= det (ch0Ph0 + ch1Ph1) =

�
�0h � �1h

� �
�0h � (nh � 1)�1�1h

�nh�1 ;
where Ph1 := n

�1
h 1nh1

0
nh
and Ph0 := Inh � Ph1 are orthogonal projection matrices of rank 1

and nh � 1 respectively and ch0 = �0h � (nh � 1)�1�1h, ch1 = �0h � �1h. Here have used well-
known results on eigenvalues of linear combinations of projectors, see Magnus (1982, Lemma

2.1.ii); see also Magnus and Müris (2008) for a recent application of these properties in the

speci�cation of covariance matrices for panel data models.9

We illustrate the e¤ects of this decomposition in Subsection 5.6 below.

5 Multivariate GARCH models

In this section we review some of the most common MGARCH models; we show how spatial

concepts can be used to control the number of parameters. We use the weight matrices

introduced in the previous section. In the following we do not comment on restrictions on

parameters that guarantee second-order stationarity for conciseness.

The reference pseudo log-likelihood is a Gaussian one, proportional to logL =
PT
t=1 `t

with

�2`t = log det�t + u0t��1t ut:

Here we discuss some popular MGARCH speci�cations, including the VEC and BEKK, GO-

GARCH, CCC, DCC, VCC models. We discuss them in turn, starting from the simplest

models. Here we do not attempt to obtain a complete list of applications, but rather to show

the potential of applications of structured speci�cation in MGARCH models. An example

of likelihood decomposition is given in Subsection 5.12 and a �nal Subsection comments on

some other MGARCH models where structured speci�cation are more di¢ cult to de�ne.

5.1 BEKK

We consider the following representative BEKK speci�cation, see Engle and Kroner (1995):

�t = C +Aut�1u
0
t�1A

0 +B�t�1B
0; (18)

where C is an n � n positive de�nite matrix, A, B are unrestricted n � n matrices; A, B
and C are the parameter matrices to be estimated. See also McAleer et al. (2008) for

a motivation of the BEKK speci�cation based on random coe¢ cient autoregressions. This

9Obviously, a similar simpli�cation applies for the homogeneous speci�cation when all elements of S0 and

S1 are identical, �
j
h = �j , j = 0; 1, but this would give cross-subsystem restrictions among the parameters,

hence violating the condition that parameters are variation-free.
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n a b c d e f g

1000n 2:5n2 0:5n4 6n b=a c=a d=a

10 1�104 250 5�103 60 0.025 0.5 0.006

50 5�104 6250 3125�103 300 0.125 62.5 0.006

100 1�105 25�103 5�107 600 0.25 500 0.006

500 5�105 625�103 3125�107 3�103 1.25 62500 0.006

1000 1�106 25�105 5�1011 6�103 2.5 5�105 0.006

2000 2�106 1�107 8�1012 12�103 5 4�106 0.006

Table 2: Ratio of number of parameters to observations. Entries report number of observa-

tions, number of parameters, or their ratio. n: cross-section dimension; column a: number of

data points for time series with T = 1000; b; c; d: order of the number of parameters O(n2),

O(n4), O(n); e; f; g: ratio of number of parameters to sample size for b; c; d; if >1, model is

not estimable (more parameters than observations).

speci�cation ensures positive de�niteness of �t. The total number of coe¢ cients in (18) is

0:5n (n+ 1)+2n2 = 2:5n2+O(n) = O
�
n2
�
. This number grows proportionally to the square

of n, and it becomes unfeasible for estimation in large cross-sections, see columns b and e in

Table 2.

In order to economize on parameters, the diagonal-BEKK speci�cation restricts A =

diag(a) and B = diag(b), a := (a1 : � � � : an)0, b = (b1 : � � � : bn)0, and the number of
parameters reduces to 0:5n (n+ 1) + 2n = 0:5n2 +O(n) = O

�
n2
�
, which however still grows

as n2 due to the estimation of C.

Note that the diagonal speci�cation does not allow covariance spill-overs; in fact

(�t)ij = Cij + aiajui;t�1uj;t�1 + bibj (�t�1)ij ;

so that each conditional covariance (�t)ij depends on its own past, with innovations stemming

only from the the corresponding pair (ui;t�1; uj;t�1). Hence no covariance spill-overs are

possible, and this prevents some needed �exibility.

An even more restricted speci�cation is a scalar one, where a = �1n, b = �1n which

reduces the number of parameters in A and B but does not a¤ect the rate of increase with

n, which is still 0:5n2 + O(n) = O
�
n2
�
due to the estimation of C. Note that covariance

targeting, see e.g. Caporin and McAleer (2008), does not change the number of parameters.

5.2 Structured BEKK

A structured BEKK speci�cation can be obtained by setting C = S�1V S�10 and assuming

A, B and S to be spatial matrices of the type (8), i.e.

A = A0 +A1Wn; B = B0 +B1Wn; S = I � S1Wn; (19)

where Aj := diag(aj), Bj := diag(bj), j = 0; 1, S1 := diag(s1), V := diag(v) are all diagonal

n� n matrices. The number of parameters is 6n = O(n), which grows linearly with n and it
is estimable for large cross-sections, see columns d and g in Table 2.
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The structured BEKK speci�cation still delivers p.d. matrices provided A, B, S are of

full rank. Despite a moderate number of parameters, and unlike the diagonal BEKK, the

structured BEKK speci�cation allows for covariance spill-overs. In fact consider the i-th

element in

vt := Aut�1 = A0ut�1 +A1Wnut�1 = diag(a
0)ut�1 + diag(a

1)Wnut�1;

and observe that vit contains two terms: the �rst one (a0iui;t�1) contains the own-lag uit term,

while the second one contains a1iw
0
iut�1, a term that delivers the spatial e¤ect from �rst order

neighbors. Here w0i is the i-th row of Wn and w0iut�1 is the average of ut�1 for stocks in

the same sector; hence w0iui;t�1 represents spill-overs from other stocks in the sector of unit

i. Thus the term Aut�1u0t�1A
0 contains both diagonal e¤ects and spill-over e¤ects from the

same sector.

A similar interpretation applies to the B�t�1B0 term in (18). In fact let ei be the i-th

column of In; then�
B�t�1B

0�
ij

=
�
b0i e

0
i + b

1
iw

0
i

�
�t�1

�
b0jej + b

1
jwj
�
=

= b0i b
0
j (�t�1)ij + b

0
jb
1
i

�
w0i�t�1ej

�
+ b0i b

1
j

�
e0i�t�1wj

�
+ b1i b

1
j

�
w0i�t�1wj

�
:

The four terms on the r.h.s. have the following interpretation. The �rst term contains the last

value of the conditional covariance (�t�1)ij ; the second term contains w0i�t�1ej which is the

conditional covariance of the average from sector Fi (excluding asset i) with asset j at time

t� 1; the third term is similar to the second one, interchanging i and j and �nally w0i�t�1wj

is the conditional covariance of the average from sectors Fi and Fj (excluding asset i and j).

This breakdown clari�es covariance feedback from assets in sectors Fi and Fj onto (�t)ij ; the

�rst term represents a diagonal e¤ect, and the last three are feedback e¤ects from the same

sector.

Overall, structured speci�cations allow to model spill-overs through the innovations and

feedback through past conditional covariances from assets belonging to the same sectors. This

shows the �exibility of the structured speci�cation, which can accommodate these e¤ects

without parameter proliferation.

Restricted structured speci�cations can be obtained by considering the group-homogeneous

speci�cation, the homogeneous speci�cation or zero-restrictions on a subset of the parameters

in aj , bj , sj , j = 0; 1. One option is to restrict b1 = 0, so as to allow covariance spill-overs

only through the term Aut�1u0t�1A
0. Another option is to restrict b1 = �1m, so as to have a

homogeneity for the covariance spill-overs from the term B�t�1B0. An intermediate option is

obtained by assuming group-homogeneity for b1. Similar arguments can be applied to restric-

tions on b0, a1, a0. Obviously, many sub-models can be constructed by combining restrictions

of this type to a selection of aj , bj , sj , j = 0; 1.

5.3 VEC

Consider the representative VEC speci�cation, given by

vec�t = vecC +Avec
�
ut�1u

0
t�1
�
+Bvec�t�1 (20)
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where C is an n�n positive de�nite matrix, and A and B are n2�n2 parameter matrices, see
Bollerslev, Engle and Wooldridge (1988) and Engle and Kroner (1995). The VEC speci�cation

does not guarantee that �t is positive de�nite.

Because of symmetry in �t and utu0t, the system (20) can be summarized by using the vech

operator and the transformations rules vec (�t) = Dnvech (�t) and Lnvec (�t) = vech (�t),

see Magnus and Neudecker (2007) section 3.8. Dn is the n2 � 1
2n(n + 1) duplication matrix

and Ln is the 1
2n(n+ 1)� n

2 elimination matrix that extracts the un-repeated elements, see

Magnus (1988). The VEC speci�cation can be expressed in terms of vech as follows:

vech�t = vechC +A
�vech

�
ut�1u

0
t�1
�
+B�vech�t�1 (21)

A� = LnADn B� = LnBDn; A = DnA
�Ln; B = DnB

�Ln (22)

C is a positive de�nite n� n matrix, and A� and B� are 1
2n(n+ 1)�

1
2n(n+ 1) unrestricted

parameter matrices. This implies that the number of free parameters in A (respectively B)

is equal to the number of elements in A� (respectively B�), i.e.
�
1
2n(n+ 1)

�2
. This gives

1
2n(n + 1) parameters in C and 2

�
1
2n(n+ 1)

�2
= 1

2n
4 + O(n3) = O

�
n4
�
parameters in A

and B. Even with relatively small values of n, model estimation becomes soon unfeasible, see

columns c and f in Table 2.

In order to restrict the number of parameters, one popular option is to assume a diagonal

speci�cation for the matrices A� and B�; this gives 3
2n (n+ 1) = 1:5n2 + O(n) = O

�
n2
�

coe¢ cients, a number that still increases with the square of n, see columns b and e in Table 2.

Hence also the diagonal-VEC is not estimable on large cross-sections. Moreover it also excludes

covariance spill-overs, just as the diagonal-BEKK speci�cation, hence also falling short of the

requirement of �exibility.

5.4 Structured VEC

A structured VEC speci�cation can be obtained by setting C = S�1V S�10 and assuming A,

B in (22) and S to be spatial matrices of the type (8), i.e.

A = A0 +A1Wn2 ; B = B0 +B1Wn2 ; S = I � S1Wn; (23)

where Aj := diag(aj), Bj := diag(bj), i = 0; 1, S1 := diag(s1), V := diag(v). Here Wn is

de�ned in (13) and Wn2 is de�ned in (14); Aj and Bj are diagonal n
2 � n2 matrices, while

Si are n � n. The number of unrestricted coe¢ cients in aj and bj are 1
2n(n + 1), because of

the duplication in (22). The number of parameters in (23) for the heterogenous speci�cation

is 2n(n + 1) + 2n = 2n2 + O(n) = O(n2), which grows like n2. Hence the heterogeneous

structured-VEC speci�cation, while improving the growth rate of number of parameters from

O(n4) to O(n2), is still over-parametrized, in the sense that its estimation becomes unfeasible

for large cross-sections, see columns b and e in Table 2.

When all coe¢ cients in Aj and Bj are restricted to be group-homogeneous, the number

of parameters in aj and bj becomes k, so that the total number of parameters for the group-

homogeneous speci�cation (23) decreases to 4k + 2n = 2n + O(1) = O(n), which is linear
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in n. If the structured speci�cation is restricted to be completely homogeneous, then the

order of the number of parameters is reduced to 4 + 2n = 2n+O(1) = O(n), which is of the

same order as the group-homogeneous speci�cation. Thus both the group-homogeneous and

the homogeneous speci�cations are estimable on large cross-sections, see columns d and g in

Table 2.

Just like the structured-BEKK speci�cation, the structured-VEC speci�cation allows for

covariance spill-overs, both in the homogeneous and heterogeneous cases. As for structured-

BEKK speci�cations, the parameter matrices A0 and B0 represent �diagonal e¤ects�while A1

and B1 contain the coe¢ cients linking each covariance to covariances of assets belonging to

the same groups. In the last case, A1 includes the spill-over e¤ects of innovations of other

assets, while B1 represents the feedback e¤ects from variances and covariances of �rst order

neighbors.

While imposing a homogeneous ARCH or GARCH dynamic across all assets may be

deemed too restrictive, the assumption of equal ARCH/GARCH dynamics for assets grouped

on the basis of economic or �nancial criteria may be reasonable. The use of groups in the

parametrization of the conditional variances has already been used by Billio et al. (2005),

Billio and Caporin (2007), Asai et al. (2008) and Bonato et al. (2008).

As evidenced in Engle and Kroner (1995), the BEKK speci�cation is a special case of the

VEC speci�cation. Here we show that this nesting remains true for the structured-BEKK

and structured-VEC speci�cations, for an appropriate choice of the weight matrices. In fact,

taking vec of equation (18), one �nds

vec�t = vecC + (A
A) vec
�
ut�1u

0
t�1
�
+ (B 
B) vec�t�1;

where we used vec (ABC) = (C 0 
A) vecB. The matrices A
A andB
B are spatial matrices
of the type (8) with respect to the set of weight matrices W := fWn2;j ; j = 1; 2; 3g see Propo-
sition 1 in Subsection 4.2 and Proposition 6 in the Appendix. Hence the structured-BEKK

speci�cation is nested within a structured-VEC speci�cation corresponding to an extension

of (23).

5.5 GO-GARCH

We consider the GO-GARCH speci�cation proposed by van der Veide (2002) as an extension

of the Orthogonal GARCH of Alexander (2001); the covariance matrix �t is decomposed into

�t = XVtX
0; Vt = diag(vt) (24)

where X is an n�n nonsingular matrix; the dynamics of the conditional variances vt is de�ned
as univariate GARCH processes of the type vit = (1��i��i)+�iu2it�1+�ivit�1, or, in matrix
notation,

vt = c+A (ut�1 � ut�1) +Bvt�1: (25)

Here � is Hadamard�s element-wise product and ut�1 � ut�1 contains the squares of the
elements in ut�1; moreover c = (I � A � B)1n is a variance-targeting vector of constants,
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A := diag (a), B := diag (b), a = (�1 : � � � : �n)0, b = (�1 : � � � : �n)0. a, b are n�1 unrestricted
parameter vectors to be estimated along with X.

This speci�cation ensures positive de�niteness of �t when elements in a and b are non-

negative. The total number of coe¢ cients is n2 + 2n = n2 + O(n) = O
�
n2
�
. This number

grows proportionally to the square of n, and it becomes unfeasible for estimation in large

cross-sections, see columns b and e in Table 2.

5.6 Structured GO-GARCH

A structured GO-GARCH speci�cation can be obtained by assuming that the conditional

covariance matrix (24) to be an instance of a SAR covariance structure �t = S�1VtS�10, see

eq. (4), i.e. X = S�1 in (24). This assumption corresponds to a SAR process of the form

ut = �Wnut + "t

where Vt�1 ("t) = Vt = diag(vt). Here S = I � �Wn, � = diag(�). The SAR equations

can be interpreted as showing the contemporaneous e¤ect exerted on unit i from �rst order

neighbors. The shocks "t represent structural shocks, in the sense of uncorrelated ones, with

dynamics in the conditional variances governed by (25).10

The matrices A, B in (25) and S can be assumed to be of the type (8). This gives

A = A0 +A1Wn; B = B0 +B1Wn; S = In � �Wn; (26)

where Aj := diag(aj), Bj := diag(bj), i = 0; 1 and � := diag(�). Here Wn is de�ned in (13).

The vector c may be left unrestricted or in can be constrained for variance targeting. The

parameters in aj and bj can be restricted to be nonnegative, in order to guarantee positive

conditional variances in (25). The interpretation of parameters is similar to that of the VEC

model: the coe¢ cients in A1 and B1 represent, respectively, the spill-over and feedback e¤ects

of �rst-order neighbors. They are restricted to 0 in the original GO-GARCH speci�cation.

The number of unrestricted coe¢ cients in aj , bj , �, c is 6n = O(n), which is linear in

n. Group-homogeneous speci�cations can be employed to reduce the number of parame-

ters. Hence structured-CCC speci�cations can be estimated also for large cross-sections, see

columns d and g in Table 2.

The inversion of �t is simple for structured-GO-GARCH speci�cations, because ��1t =

S0V �1t S where V �1t = diag (1n:=vt), see Subsection 2.4. Analogously one �nds log det�t =

log detVt � 2 log detS where log detVt =
Pk
i=1 log vit and detS can be calculated as in Sub-

section 4.3. In Subsection 5.12 below we show how the computations can be further reduced

in case of a group-homogeneous speci�cation. Hence structured-GO-GARCH speci�cations

appear to satisfy also the requirement of fast computations of the ideal speci�cation.

10The sources of innovations in the GARCH dynamics could be alternatively taken to be "t�1� "t�1 instead
of ut�1 � ut�1 in (25).
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5.7 CCC

The CCC speci�cation by Bollerslev (1990) and Ling and McAleer (2003), decomposes the

covariance matrix as

�t = DtRtDt Dt = diag (ht) (27)

where ht is a n � 1 vector of conditional standard deviations and Rt is a correlation matrix.
Rt = R is assumed to be time-invariant and the dynamics of the conditional variances vt :=

ht � ht is assumed to be of the form

vt = c+A (ut�1 � ut�1) +Bvt�1 (28)

where c is a n � 1 vector (of positive constants) and A and B are square n � n unrestricted
parameter matrices. R is a positive de�nite matrix with ones along the main diagonal (i.e.

a correlation matrix). This gives n parameters in c and 2n2 parameters in A and B and
1
2n(n� 1) parameters in R. The total number of parameters is hence 2:5n

2 +O(n) = O(n2).

The original CCC speci�cation proposed by Bollerslev (1990) restricts A and B to be

diagonal, reducing the number of coe¢ cients in (28) to 3n+ 1
2n(n�1) = 0:5n

2+O(n) = O(n2),

which is still of the same order of magnitude in n. Hence model estimation is feasible only for

small to moderately-sized cross-sections, see columns b and e in Table 2.11

5.8 Structured CCC

A structured CCC speci�cation can be obtained by assuming A, B in (28) to be spatial

matrices of the type (8) and R = cor(S�1V S�10); to be a correlation matrix of the type (17),

i.e.

A = A0 +A1Wn; B = B0 +B1Wn; S = In � �Wn; (29)

where Aj := diag(aj), Bj := diag(bj), i = 0; 1, � := diag(�), V := diag(v). Here Wn is

de�ned in (13).

This speci�cation can be described in terms of a SAR process as follows. De�ne u�t = Gtut,

where Gt = diag (gt) is any Ft�1-measurable, square scale matrix of full rank, so that u�t and
ut have the same conditional correlation matrix. Assume that u�t follows a SAR process of

the form

u�t = �Wnu
�
t + "t

where V := Vt�1 ("t) = diag(v). This implies that Vt�1 (u�t ) = S�1V S�10, S := I ��Wn and

hence R = cor(S�1V S�10) is the conditional correlation matrix both for ut and u�t . The SAR

equations can be interpreted as showing the contemporaneous e¤ect exerted on u�t from �rst

order neighbors Wnu
�
t . The shocks "t represent structural shocks, in the sense of uncorrelated

ones, assumed to have time-invariant second moments.

The parameters in aj and bj can be restricted to be nonnegative, in order to guarantee

positive conditional standard deviations in (28). The interpretation of parameters is similar

11 In order to obtain a positive de�nite estimator of R one simply needs T > n. However for T � n small,
there is a large variance of the estimated correlation matrix, rendering correlations highly unstable.
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to that of the VEC model: the coe¢ cients in A1 and B1 represent, respectively, the spill-over

and feedback e¤ects of �rst-order neighbors.

The number of unrestricted coe¢ cients in aj , bj , �, v are 6n = O(n), which is linear

in n. Group-homogeneous speci�cations can be employed to reduce the number of parame-

ters. Hence structured-CCC speci�cations can be estimated also for large cross-sections, see

columns d and g in Table 2.

The inversion of �t is simple for structured-CCC speci�cation, because ��1t = D�1t R
�1
t D

�1
t

where D�1t = diag (1n:=ht) and R�1t = R�1 is computed as detailed in Section 2.4. Hence

the structured-CCC speci�cation satis�es the requirement of fast computations of the ideal

speci�cation in the Introduction.

Similar structured speci�cations can be entertained for the Double Smooth Transition

Conditional Correlation of Silvennoinen and Teräsvirta (2007), which generalizes CCC by

allowing R to smoothly change between two values.

5.9 DCC

We here describe the DCC model of Engle (2002); see also Ding and Engle (2001), Cappiello,

Engle and Sheppard (2006), Pelletier (2006), Aielli (2008) for extensions and modi�cations.

As in the CCC class, the conditional covariance is decomposed as in (27) and the conditional

correlation matrix Rt is assumed to be the correlation matrix of a n � n process Qt, Rt =
cor (Qt), with dynamics

Qt = (1� �� �)R+ �u}t�1u
}0
t�1 + �Qt�1 (30)

where u}t := diag(dg(Qt))
1
2D�1t ut, see Aielli (2008). R is a positive de�nite matrix with ones

along the main diagonal (i.e. a correlation matrix) with 1
2n(n � 1) parameters. � and � are

scalar parameters, giving a total number of parameters of 0:5n2 � 0:5n+ 2 = 0:5n2 +O(n) =
O(n2). Hence model estimation is feasible only for small to moderately-sized cross-sections,

see columns b and e in Table 2.

A less restrictive parameterization for the correlation dynamics is the Generalized DCC

in Engle (2002) with dynamics

Qt = R�
�
1n1

0
n �A} �B}

�
+A} � u}t�1u

}0
t�1 +B

} �Qt�1 (31)

where A} and B} are symmetric matrices, each one containing 1
2n(n+1) free elements. Both

speci�cations (30) and (31) guarantee Qt to be p.d. provided A}, B} and R are positive

(semi-)de�nite, thanks to properties of Hadamard products, see e.g. Styan (1973), Theorem

3.1. The total number of parameters is hence n(n+ 1) + 1
2n(n� 1) = 1:5n

2 +O(n) = O(n2),

i.e. of the same order as (30).

5.10 Structured DCC

A structured DCC speci�cation can be obtained as a restriction to a generalization of (31).

Consider the vec of eq. (31), which reads

vec Qt = vec R+Avec
�
u}t�1u

}0
t�1 �R

�
+Bvec (Qt�1 �R) (32)
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where A := diag(vec A}), B := diag(vec B}), where we have used the property vec (a� b) =
diag(vec a)vec (b). Because of symmetry, just as in the VEC-speci�cation in Subsection 5.3,

this can be cast in a vech form as follows:

vech Qt = vech R+A
�vech

�
u}t�1u

}0
t�1 �R

�
+B�vech (Qt�1 �R) ; (33)

where A, B and A�, B� are restricted as in (22).

The A, B matrices in (32) �or the A�, B� matrices in (33) �are assumed to be diagonal;

this implies that no conditional correlation spill-over of feedback e¤ects are allowed in the

dynamic equation of Qt. Such e¤ects can be included by de-restricting A, B, A�, B� to be

possibly non-diagonal; in this case we refer to the DCC model as VEC-DCC.

A structured speci�cation can be obtained as a special case of the VEC-DCC model, by

assuming A, B in (32) (respectively A�, B� in (33)) to be spatial matrices of the type (8) and

R = cor(S�1V S�10); to be a correlation matrix of the type (17)

A = A0 +A1Wn2 ; B = B0 +B1Wn2 ; S = In � �Wn; (34)

where Aj := diag(aj), Bj := diag(bj), j = 0; 1, � := diag(�), V := diag(v). The number of

unrestricted coe¢ cients in aj , bj , �, v are 2n(n + 1) + 2n = 2n2 + O(n) = O(n2), which is

quadratic in n and hence unfeasible for estimation on large cross-sections. Group-homogeneous

speci�cations reduce the number of parameters, especially the ones in aj and bj ; a group-

homogeneous speci�cations for aj and bj gives 4k parameters, implying a total number of

parameters equal to 4k+2n = 2n+O(1) = O(n), which is linear in the number of parameters.12

This speci�cation allows for correlation spill-overs and it is estimable also on large cross-

sections, see columns d and g in Table 2.

5.11 Modi�cations of DCC and structured speci�cations

Tse and Tsui (2002) introduced a close alternative to DCC, called Varying Conditional Cor-

relation, VCC. As in the CCC and DCC classes, the conditional covariance is decomposed as

in (27) and the conditional correlation matrix Rt is assumed to be generated by the dynamics

Rt = (1� �� �)R+ �	t�1 + �Rt�1 (35)

(	t)ij :=

LX
l=1

u�i;t�lu
�
j;t�l; u�i;t�l :=

u}i;t�lPL
j=1 u

}
i;t�j

where 	t�1 can be considered as a local sample correlation. The model provides positive

de�nite Rt matrices if L �M . The number of parameters is identical as in the case of (simple,
generalized or VEC) DCC. The introduction of structured speci�cations in the VCC model

is identical to the DCC case; it just amounts to substitute Rt for Qt and 	t for u
}
t u

}0
t in (33)

and (32) above. It also gives the same number of parameters in the structured speci�cation.

12Here and elsewhere we assume that the number of classes k does not grow with the cross-section dimension

n.

22



Cappiello, Engle and Sheppard (2006) introduced a generalized DCC model where the

evolution of Qt is governed by a BEKK or quadratic type equation

Qt =
�
R�ARA0 �BRB0

�
+Au}t�1u

}0
t�1A

0 +BQt�1B
0 (36)

where the matrices A and B can be restricted or unrestricted. Again Qt is positive de�nite

if the constant term is positive de�nite. For unrestricted A, B, R, the number of parameters

is 3
2n(n + 1) = 1:5n2 + O(n) = O(n2), and hence the model cannot be estimated on large

cross-sections. Again here one can consider structured A, B, R of the type (29); under these

restrictions the number of parameters is 6n = O(n), which is linear in n, hence rendering the

model estimable also on large cross-sections.

A similar generalization of the VCC model of Tse and Tsui (2002) is

Rt =
�
R�ARA0 �BRB0

�
+A	t�1A

0 +BRt�1B
0: (37)

where an analogous structured speci�cation can be de�ned. In all the dynamic correlation

models the parameter interpretation is similar to the one reported for the structured-BEKK

models.

Recently, Engle and Kelly (2008) have introduced a model of dynamic equi-correlation,

where W = Jn, Rt = I � �tW and �t is taken to be the average of distinct, o¤-diagonal

elements of cor(Qt). In light of the above, Rt is seen to be an example of spatial matrix of

type (5).

5.12 An example of Likelihood decomposition

We here provide an example of how certain structured speci�cations imply a decomposition

of the joint likelihood into components, each one corresponding to a group of assets. The

example is based on the structured GO-GARCH speci�cation of Subsection 5.6.

We consider the group-homogeneous GO-GARCH speci�cation, with � =
�
�11

0
n1 : � � � : �k1

0
nk

�0,
where �i are scalar parameters. We partition ut := (u

0
1;t : � � � : u0k;t)0 in sub-vectors uit of di-

mension ni � 1, each one corresponding to a sector, and partition also vt := (v01;t : � � � : v0k;t)0,
c, aj = (�j11

0
n1 : � � � : �

j
k1
0
nk
)0, bj = (�j11

0
n1 : � � � : �

j
k1
0
nk
)0, j = 0; 1 conformably, where �ji and

�ji are scalar parameters. Note that vi;t := (vi;t;1 : � � � : vi;t;ni)0 is a ni � 1 vector. We collect
parameters in �i := (�i : �

0
i : �

1
i : �

0
i : �

1
i )
0, � := (�01 : � � � : �0k)0 and assume for simplicity that

there are no parameters in the conditional mean, i.e. �t is known.

Form Subsection 4.3 one has log detS =
Pk
i=1 log ('(1; �i; ni)); moreover

u0t�
�1
t ut =

kX
i=1

u�0itdiag (1ni :=vit)u
�
it; u�it := (Ini � �iJni)uit:

This implies that the log-likelihood function `t can be decomposed into k blocks, `t =
Pk
i=1 `it,

where

�2`it :=
niX
j=1

log vi;t;j � 2 log ('(1; �i; ni)) + u�0itdiag (1ni :=vit)u�it:
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A similar decomposition applies to the dynamics of the variances vit. In fact, one can rewrite

(25) as a set of autonomous dynamic equations

vi;t = ci +
�
�0i Ini + �

1
i Jni

�
(ui;t�1 � ui;t�1) +

�
�0i Ini + �

1
i Jni

�
vi;t�1;

where ci = (1�
�
�0i + �

0
i

�
�
�
�1i + �

1
i

�
)1ni , i = 1; : : : ; k.

When the parameters �i and �j , i; j = 1; : : : ; k, i 6= j, are variation independent, likelihood-
maximization for the group-homogeneous GO-GARCH speci�cation � can be decomposed in

a set of k optimizations, each one concerning one �i and corresponding to a group uit. This

property may be of interest in large cross-sections.

5.13 MGARCH with less-straightforward structured speci�cation

Structured speci�cations are not easy to devise for some MGARCH models, such as for factor-,

exponential- and orthogonal- MGARCH.

In fact, factor models do not constrain the type of factor, and the spatial idea as the

source of co-movement does not strictly apply. Exponential MGARCH models, Chiu et al.

(1996), Kawakatsu (2005), do not have a clear interpretation of parameters in the dynamic

equation of conditional covariances. Hence imposing a spatial structure �while straightforward

�does not appear to lead to a direct interpretation of parameters, hence falling short of the

interpretability criterion. Finally Orthogonal MGARCH models would require to restrict

spatial matrices to be orthogonal; while some spatial matrices satisfy this requirement, this

is not a general property. We have hence decided not to discuss them here.

6 Other MVM models

In this section we discuss how structured speci�cations can be applied to other MVM models,

outside the class of MGARCH. We discuss Multivariate Stochastic Volatility (MSV) and

Multivariate Realized Volatility (MRV) in the next two subsections. Here the likelihood

function changes form according to each model, and hence we limit the discussion to the

number of parameters.

6.1 Stochastic Volatility

We consider the basic MSV model of Harvey et al. (1994), and refer to Asai, McAleer and

Yu (2006) for a more complete review. The model consists of

ut = �
1
2
t "t; �t = XVtX

0; Vt = exp(diag(vt)); (38)

vt = �+ b� vt�1 + �t; (39)

where b, �, vt, "t and �t are n � 1 vectors and X is an n � n matrix of full rank. The
stochastic vectors "t and �t are independent and jointly normal, they have 0 expectations and

V ("t) = R", V (�t) = ��; R" is a correlation matrix.
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The parameter are X, b, �, R" and ��; if no restriction applies to these parameters, the

total count is n2 + 2n + 1
2n(n � 1) +

1
2n(n + 1) = 2n2 + O(n) = O(n2), which grows as n2.

This contributes to make these models non-estimable on medium-to-large cross-sections.

We consider a generalization of (39) that allows for variance spill-over; more precisely

vt = �+Bvt�1 + �t; (40)

where B is an n�n matrix. When B is unrestricted, the parameter count grows, but remains
of the same O(n2) order of magnitude.

Structured speci�cation can be obtained assuming �t in (38) to be an instance of a SAR

covariance structure �t = S�1VtS�10, see eq. (4), i.e. X = S�1 in (38), where S = I � �Wn,

� = diag(�). The correlation matrix R" and the covariance matrix �� can also be modelled

as resulting from SAR processes, setting

�� = S
�1
� V�S

�10
� ; R" = cor(S

�1
" V"S

�10
" )

where Sj = I � diag(�j)Wn, Vj = diag(vj), j = �; ". Finally the B matrix can be taken to be

a spatial matrix of the type B0 +B1Wn, with Bj = diag(bj), j = 0; 1.

The parameters of the structured-MSV speci�cation are �j , vj , for j = �; ", �, � and b
j

for j = 0; 1, which, if left unrestricted, give a total number of parameters equal to 8n = O(n)

which is linear in n. This makes the structured-MSV speci�cation potentially more amenable

to estimation also on large cross-sections. Again the interpretation of the parameters in the

spatial matrices is analogous to the case described for the structured-BEKK speci�cation.

6.2 Models for realized volatility

Multivariate Realized Volatility models (MRV) describe the dynamics of realized volatility.13

As a representative of this class, we consider the Wishart-based model proposed by Gourieroux

(2006), Gourieroux, Jasiak and Sufana (2008). In this model class, one assumes to observe a

p.d. n� n process Yt, measurable with respect to the �ltration Ft. Conditionally on Ft�1, Yt
is assumed to be noncentral Wishart with m degrees of freedom and conditional expectation

equal to

Et�1 (Yt) = AYt�1A0 +m� (41)

A is interpreted as an AR parameter matrix, � is a p.d. matrix and m > n � 1 is a real
parameter, see Gourieroux, Jasiak and Sufana (2008). The number of parameters in (41), if

A and � are unrestricted, is n2 + 1
2n(n+ 1) + 1 = 1:5n

2 +O(n) = O(n2).

Structured speci�cations can be introduced assuming that the parameter matrix A belongs

to the class of spatial matrices; moreover, � can be assumed to be the covariance matrix of a

SAR model, i.e.

� = S�1V S�10; S = In � �Wn; A = A0 +A1Wn;

13Realized Volatility (RV) is also an estimator of some underlying continuous time process, see McAleer and

Medeiros (2008) for a review. Here we are interested in the direct modeling of RV.
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where Aj := diag(aj), j = 0; 1, � = diag(�), V = diag(v): The number of unrestricted

coe¢ cients in a0, a1, �, v is 4n = O(n), which is linear in n and hence feasible for estimation

also on large cross-sections.

The Wishart model is similar to a BEKK model without a ARCH term; as a result,

parameter interpretation is close to that reported for the structured-BEKK speci�cation.

Wishart densities have also been used in Factor models, see for instance Philipov and Glickman

(2006); see also Bauer and Vorkink (2007), Chiriac and Voev (2008).

Similar structured speci�cation can be devised for the dynamics of Vector Multiplicative

Error Models (MEM) of Cipollini, Engle and Gallo (2006).

7 Extensions

The previous sections show the importance of weight matrices W in structured MVM spec-

i�cations. The �rst observation is that weight matrices W only need to be measurable with

respect to Ft�1, the information set available at time t� 1. Hence weight matrices W can be

both time-varying and stochastic.

In the rest of this section we extend the discussion on how to de�ne weight matrices, using

results in graph theory (Subsection 7.1), exploiting covariates (Subsection 7.2) or requiring

invariance (Subsection 7.3). We present results only for one generic weight matrix Wt, using

the example of n assets.

7.1 Graph theory

Weight matrices can be obtained as a by-product of the de�nition of a simple graph on the

assets; see e.g. Bondy and Murty (1976) for an introduction to graphs. Each of the n assets

represents a vertex of a graph; edges between pairs of vertices represent connections among

assets.14 Edges may be directed or undirected; if undirected, the adjacency matrix associated

with the graph is symmetric.

The construction of edges for a single classi�cation criterion of assets (like industrial sec-

tors) corresponds to undirected edges for asset i pointing to assets j from the same sector.

Note that the concept of directed edges allows more �exibility in this context, and allows to

have some in�uence from i to j but not vice-versa. The construction of edges may re�ect a

number of other characteristics in addition to the fact that i and j correspond to assets in

the same sector.

Once a (directed or undirected) graph has been de�ned for a given t (consisting of vertices

and edges), one can consider the adjacency matrix A with element aij equal to 1 if there is

an edge from i to j and 0 otherwise. A weight matrix can then be constructed by setting

W �
t := A0 and row-normalizing W �

t into Wt. The transposition is needed here in order to

respect the source-destination convention in adjacency matrices; for instance, row 1 of A0

14When only one edge connects two vertices the graph is called simple.
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contains a 1 in column j for which there is a vertex from j to 1. Obviously, the transposition

is immaterial for undirected graphs.

Graph theory may hence be used to construct weight matrices in a more general form

that the one presented in Section 3 for classi�cation criteria, which are a special case. For

more discussion of the links between graphs and spatial models, see Martellosio (2008) and

reference therein.

7.2 Covariates

In this subsection we discuss how one can convert information on covariates xt�1 (contained

in Ft�1) into an aggregate proximity weight matrix Wt. This allows to associate Wt to �rm-

speci�c time-varying covariates such as market value, book value, momentum, earnings/price,

cash-�ow/price, dividend yield, short- and long-term reversals.

Let xi;t be a q � 1 vector of indicators available at time t concerning assets i, which are
measurable with respect to Ft. For simplicity we assume that each entry in xi;t is non-negative
and it is normalized to be on a scale from 0 to 1. Next de�ne x := q�

1
b kxi;t�1 � xj;t�1kb,

where kakb :=
�Pq

i=1 jaij
b
�1=b

; take here for simplicity b = 1. Next de�ne the un-normalized

weight matrix W �
t := (w

�
i;j;t) with weights

w�i;j;t := (1� �i;j) f(sx); f(y) := exp (�yr) ; r > 0; (42)

where �i;j is Kronecker�s index, which takes value 1 for i = j, and r, s are positive constants.

For instance r = 16, s = 10. The normalized weight matrix Wt := (wi;j;t) is obtained by

row-normalization of W �, wi;j;t := w�i;j;t=
�Pn

j=1w
�
i;j;t

�
.

The choice of values for r and s is linked to the following interpretation of (42):

1. x is an average of the distance between xi;t�1 and xj;t�1;

2. y := sx re-scales the aggregate indicator on a [0; s] scale; for s = 10 one has one has

0 � y � 1 when 0 � x � 1
10 ; changing s dilates the scale; s = 20 gives values of 0 � y � 1

for 0 � x � 1
20 ;

3. the function exp (�yr) maps [0; s] to (0; 1] in a monotonic decreasing way; values of
0 < y � 1 are mapped into values close to 1 and values 1 < y are mapped into

values close to 0; the higher the exponent r, the more this map smoothly approximates

1(0 � y � 1), where 1(�) is the indicator function.

Note that in step 1, b could be chosen > 1 or that x could be replaced by any other

mean value, like the median, or by other weighted averages. The choice of s determines the

�threshold�of the indicator function in point 3; s = 10 sets the threshold at the 0.1 point in

the x scale, s = 20 sets it at 0.05 etc. For any given value of s, higher values of r deliver a

function exp (�yr) that resembles more closely 1(0 � y � 1). Small values of r instead give
a function exp (�yr) with steep decrease in the proximity of 0. Hence the choice of r and s
establishes with range of x values gives weights w�i;j;t close to 1.
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We note that this de�nition of weight matrix reduces to the one associated with a clas-

si�cation criterion F when xi;t := Fi, for any choice of s > 0, r � 0. Hence (42) provides a
generalized on how to de�ne weight matrices.

The choice f(y) := exp (�yr) in (42) has the disadvantage of producing positive real
numbers for w�i;j;t for all values of x, even when x is very far from 0. This implies that each

row in W is full and products like Wu should be computed including all elements, unlike

when W is sparse. A di¤erent choice that prevents this phenomenon is to replace exp (�yr)
with exp (�yr) 1(y < c) say, that sets all weights equal to 0 for y = sx � c. When for instance
s = 8, one can set c = 2, because exp

�
�28

�
is of the order 1:5� 10111, a very small number.

Values of r and s in (42) can be �xed in advance; alternatively, they could be included

as parameters to be estimated. When using the model in prediction, one could assume that

Wt is �xed at the last available value, or that it changes according to scenarios designed to

re�ect possible evolutions in the market. Note that in principle, the number of indicators q

could also change over time.

This discussion shows that any discrete or continuous, time-varying or time-constant co-

variate can be used to de�ne weight matrices.

7.3 Invariance

Invariance is often used to construct parsimonious models in multivariate analysis; see for

instance Andersson (1975) for the theory of invariant covariance models for the multivariate

normal distribution. Invariance arguments can be used to restrict the set of possible MVM

structures, which includes the de�nition of the weight matrix Wt. In this subsection we

illustrate this through an example with a single classi�cation criterion F associated to assets�

sectors. We consider a homogeneous structured GO-GARCH speci�cation, see Subsection 5.6.

Assume that one wishes to impose invariance of the process with respect to the trans-

formation ut y Put, where P is any matrix that permutes columns i and j, where i and j

correspond to assets from the same sector; we call this situation P -invariance. For instance,

for assets 1 and 2, P = (e2 : e1 : e3 : � � � : en), where ei is the i-th column of the identity
matrix. Note that P is symmetric orthogonal, P = P 0 = P�1.

P -invariance implies that �t = P�tP , where �t = (I � �Wt)
�1 Vt (I � �Wt)

�10. One

su¢ cient condition for P -invariance is to assume that Wt and Vt are satisfy Wt = PWtP and

Vt = PVtP , because

P�tP = (I � �PWtP )
�1 PVtP (I � �PWtP )

�10 = (I � �Wt)
�1 Vt (I � �Wt)

�10 = �t:

The conditions Wt = PWtP and Vt = PVtP imply that wij;t = wji;t and vi;t = vj;t, when

i and j are from the same sector. The requirement wij;t = wji;t implies that the weight

matrix Wt is of the form (10). Recall also that vt = c + A(ut�1 � ut�1) + Bvt�1, and hence
Pvt = Pc+ PAP (P (ut�1 � ut�1)) + PBPvt�1. This implies that Pvt = vt if and only if

Pc = c; PAP = A; PBP = B (43)
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For a homogeneous structured speci�cation one has A = a0I + a1Wt, B = b0I + b1Wt, for

scalar aj , bj , j = 0; 1; one �nds

PAP = a0I + a1PWtP = a
0I + a1Wt = A

by the invariance of the weight matrix PWtP = Wt. Similarly for B = b0I + b1Wt one has

PBP = B. Hence the only additional restriction in (43) is that Pc = c, i.e. the intercept in

the GARCH equation is identical for stocks in the same sector.

This example shows that, imposing a certain type of invariance, one obtains a speci�c

type of weight matrix. Di¤erent choices of P give rise to di¤erent weight matrices.

8 Conclusions

In this paper we have shown how structured speci�cation can be de�ned in a number of

MVM models, using weight matrices to condense information. Structured speci�cations form

an interesting class for volatility models, because they provide both �exible and parsimonious

models, allowing for variance spill-over and being characterized by a number of parameters

that grows linearly with the cross-section dimension. Moreover structured speci�cations pa-

rameters have a direct economic interpretation that re�ects the chosen notion of economic

proximity. Finally, structured speci�cations can help in speeding up computations for model

estimation.
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A Appendix

A.1 Spatial and weight matrices

Here we provide de�nitions of weight matrices and spatial matrices, along with some of their

properties. Note that Wij = 0 need not imply Wji = 0, i.e. that neighborhood relations need

not be symmetric. We concentrate attention to row-normalized weight matricesW , which are

de�ned as a subset of the set of stochastic matrices.

The normalization of W to have row sums equal to 1 is not restrictive in the class of

heterogeneous SAR processes in (6) below. In fact let W be un-normalized and observe

that W � := diag(1:=W1n)W is the corresponding normalized weight matrix; next note that

diag(�)W in (6) can be rewritten as diag(��)W � with �� = ��W1n. Hence one can assume
W to be normalized for heterogeneous SAR processes.

The heterogeneous speci�cation also allows to accommodate the case where one unit has

no neighbors, i.e. a subset of the rows in diag(�)W is equal to 0. This can be accomplished

either by setting the corresponding rows in W to be zero or by setting the corresponding

element in � to 0, and setting one non-diagonal element equal to 1 in each corresponding row

of W . We prefer the latter option, which allows to maintain the hypothesis that all rows of

W have some nonzero element.

For homogenous SAR processes, the row-normalization of W can be restrictive. In case

all row sums are equal to a constant c (a situation which excludes the possibility of a subset

of rows to be equal to 0) then �W can be rewritten as ��W � with �� = �c and W � := c�1W .

In this case the normalization can be adsorbed into the AR coe¢ cient ��. There are however

situations where one may be interested in non-normalizedW matrices, see Martellosio (2008).

In this appendix we use the following notation: R, R+ , R0+ are the set of all, positive and
nonnegative real numbers; An�m indicates the set of all matrices of dimensions n�m whose

entries belong to the set A; An := An�1; 1n indicates the n � 1 vector with all entries equal
to 1, In indicates the identity matrix of order n. We use the vec and the Kronecker product


 operators as in Magnus and Neudecker (1988) and de�ne diag(x), where x is n� 1, as the
square diagonal matrix with x on the main diagonal. Element i; j of matrix A is indicated as

(A)ij .

De�nition 2 (Weight matrices) The class of stochastic matrices Pn is de�ned as the class
of square matrices of order n with nonnegative real entries, such that all rows sum to 1,

Pn := fP 2 Rn�n0+ : P1n = 1ng. The class of weight matrices Wn is the subset of Pn,
Wn � Pn, of matrices with 0 diagonal entries, Wn := fW 2 Pn : (W )ii = 0; i = 1; : : : ; ng.

An example of weight matrix is the matrix Jn := (n� 1)�1 (1n10n � In) 2 Wn. The

de�nition of CAR processes requires 0 entries on the diagonal of W ; this restriction also

makes sense in SAR processes, see Martellosio (2008) Appendix A.15

15Martellosio (2008) also assumes that W is an irreducible matrix, which corresponds to assuming that any
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A.2 Properties

The class Wn is a subset of the stochastic matrices Pn, from which it inherits several simple

properties. Some of these properties are listed in the following 2 propositions.

Proposition 3 (Convex combinations and products) Let An indicate eitherWn or Pn,
and let Wi 2 An, i = 1; : : : ; k. Then the following properties hold:

1.
Pk
i=1 ciWi 2 An for 0 � ci � 1,

Pk
i=1 ci = 1 both for An = Wn;Pn (Wn and Pn are

closed under convex combinations);

2.
Qk
i=1Wi 2 An only for An = Pn (only Pn is closed under matrix multiplication).

We next analyze properties of Kronecker products of stochastic matrices in the following

Proposition 4. A motivation for this interest is given by the observation that when xjt, j = 1; 2,

are independent Markov Chains (MC) with n discrete states and transition probabilities given

by the stochastic matrices Pj 2 Pn, then (x1t; x2t) is still a MC with n2 discrete states and
transition probabilities given by the entries in P1 
 P2, when the ordered pairs (l;m) are
placed in lexicographic order. This observation suggests that P1 
 P2 2 Pn2 and the next
proposition discusses to what extent this is true also for Wn2 � Pn2 .

Proposition 4 (Kronecker products) Let An indicate either Wn or Pn, and let W1;W2 2
An. Moreover let H, K denote generic n� n matrices. Then the following holds:

1. the Kronecker product of two matrices in Wn and Pn generates elements of the same
class but with dimension n2, i.e. W1 
W2 2 An2 both for An2 =Wn2 ;Pn2;

2. moreover W1 
W2 2 Wn2 for W1 2 Wn, W2 2 Pn or W1 2 Pn, W2 2 Wn.

3. Conversely, H
K 2 Pn2 implies H = cW1 and K = 1
cW2, c 2 Rnf0g, andW1;W2 2 Pn

(i.e. if a matrix with Kronecker-product structure is stochastic, then its two matrix fac-

tors are proportional to stochastic matrices, with reciprocal constants of proportionality);

4. moreover H
K 2 Wn2 implies H = cW1 and K = 1
cW2 and either W1 2 Pn, W2 2 Wn

or W1 2 Wn, W2 2 Pn (i.e. if a matrix with Kronecker-product structure is a weight
matrix, then in addition to 3., one of the two matrix factors has zeros on the main

diagonal).

In the following we concentrate attention on the class Wn. We next de�ne the class of

spatial matrices Sn as (a generalization of) the class containing linear combinations of the
identity and weight matrices fWigki=1 with Wi 2 Wn. We indicate a given set of weight

matrices by W:=fWigki=1.

vertex in the graph with adjacency matrix corresponding to W has a path to any other vertex.
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De�nition 5 (Spatial matrices) The class of spatial matrices Sn := Sn (W) with respect
to a given set of weight matrices W:=fWigki=1 with Wi 2 Wn;W0 := In is de�ned as follows:

Sn := fA 2 Rn�n : A =
kX
i=0

AiWi; Ai = diag(ai); ai 2 Rng:

One can de�ne the subset of Sn corresponding to vectors ai with identical entries, ai = �i1n
with �i 2 R, called the �homogeneous�spatial matrix class, indicated as SHn , SHn � Sn.

We note that if A 2 Sn then I �A 2 Sn and vice versa. One has

Proposition 6 Let I := f0; 1; : : : ; kg; if A;B 2 Sn (W), then

A
B 2 Sn2 (W�)

where W� := fW �
hgmh=1, W �

h 2 Wn2 with W
�
h :=Wi
Wj, (i; j) = I2nf(0; 0)g, h := (k+1)i+j,

m := (k + 1)2 � 1.

This proposition is the key in proving that a structured BEKK is a special case of a

structured VEC speci�cation.

A.3 Proofs

Proof. Proposition 1. Element w�hv in (14) is equal to 1 (Fi = Fl; i 6= l) 1 (Fj = Fm; j 6= m)
and

n2X
v=1

w�hv =
nX
l=1

nX
m=1

1 (Fi = Fl; i 6= l) 1 (Fj = Fm; j 6= m)

=
nX
l=1

1 (Fi = Fl; i 6= l)
nX

m=1

1 (Fj = Fm; j 6= m) = (ni � 1) (nj � 1) :

Hence

whv =
w�hvPn2

v=1w
�
hv

=
1

(ni � 1)
1 (Fi = Fl; i 6= l)

1

(nj � 1)
1 (Fj = Fm; j 6= m) :

On the other hand (Wn 
Wn)hv = w
}
ilw

}
jm where w}ij := (W )ij ; hence, using (11), one sees

that whv = w
}
ilw

}
jm.

Proof. of Proposition 3. The �rst two statements are well known for stochastic matri-

ces, see e.g. Seneta (1981, Chapter 4). Here we report proofs for both An = Wn;Pn for
completeness.

1.
Pk
i=1 ciWi 2 Rn�n0+ and

Pk
i=1 ciWi1n =

Pk
i=1 ci1n =

�Pk
i=1 ci

�
1n = 1n where the �rst

equality holds by Wi 2 W�
n, and the last one by

Pk
i=1 ci = 1. Hence Wi 2 Pn8i impliesPk

i=1 ciWi 2 Pn. If Wi 2 Wn8i, i.e. all Wi have 0 elements on the diagonal, so doesPk
i=1 ciWi, so that Wi 2 Wn8i implies

Pk
i=1 ciWi 2 Wn.
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2. Hk :=
Qk
i=1Wi 2 Rn�n0+ . Note that Hk = Hk�1Wk and that H1 = W1 2 Pn by

hypothesis. Next proceed by induction and assume that Hi 2 Pn, and �nd Hi+11n =
HiWi+11n = Hi1n = 1n. This shows that Wi 2 Pn8i implies

Qk
i=1Wi 2 Pn. Note that

if Wi 2 Wn8i, i.e. all Wi have 0 elements on the diagonal, this does not imply thatQk
i=1Wi 2 Wn, so that this property does not hold for Wn.

Proof. of Proposition 4

1. W1 
W2 2 Rn
2�n2
0+ . Moreover (W1 
W2) 1n2 = vec (W21n1

0
nW

0
1) = vec (1n1

0
n) = 1n2

and hence W1 
W2 2 Pn2 .

2. If W1 or W2 2 Wn, i.e. they have 0 elements on the main diagonal, so does W1 
W2;

hence W1 or W2 2 Wn implies W1 
W2 2 Wn.

3. If H 
K 2 Pn2 , then (H 
K) 1n2 = vec (W21n1
0
nW

0
1) = vec (1n1

0
n) = 1n2 and hence

H1n1
0
nK

0 = 1n1
0
n; (44)

which implies H1n;K1n 2 col(1n), i.e. H1n = 1ncH , K1n = 1ncK . This shows that
1
cH
H =: W1 and 1

cK
K =: W2 are stochastic matrices, W1;W2 2 Pn. Substituting back

in (44) one also �nds cHcK = 1.

4. If H 
 K 2 Wn2 , then H 
 K 2 Pn2 and 3. applies. Moreover, the elements on the
main diagonal of dg (H 
K) = 0, which implies dg (H) 
 dg (K) = 0; the latter can

hold only if either dg (K) or dg (K) equals 0, i.e. W1 or W2 2 Wn.

Proof. of proposition 6. Let A =
Pk
i=0AiWi and B =

Pk
i=0BiWi be the representations

of A and B in terms of the set of weight matrices W:=fWigki=1. One has

A
B =
kX

i;j=0

AiWi 
BjWj =

kX
i;j=0

(Ai 
Bj) (Wi 
Wj) =

mX
h=0

ChW
�
h (45)

where Ch := Ai 
 Bj and W �
h := Wi 
Wj for h = (k + 1)i + j. By Proposition 3.2 one has

W �
h 2 Wn2 unless h = 0, for which W

�
0 =W0
W0 = In
 In = In2 . Hence W� := fW �

hgmh=1 is
a set of weight matrices in Wn2 . This proves the statement by 3.1 if Ai = �iIn and Bi = �iIn

are scalar matrices.

In order to prove the statement for generic Ai, Bi, let Ai =: diag(ai), Bi =: diag(bi) and

denote ch := ai 
 bj 2 Rn
2
. Note that

Ch := Ai 
Bj = diag(ai)
 diag(bj) = diag(ai 
 bj) =: diag(ch)

and hence (45) is a representation conformable with De�nition 5. This completes the proof.

36


