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Abstract

Contrary to the common wisdom that asset prices are barely possible to forecast, we
show that that high and low prices of equity shares are largely predictable. We propose
to model them using a simple implementation of a fractional vector autoregressive model
with error correction (FVECM). This model captures two fundamental patterns of high and
low prices: their cointegrating relationship and the long memory of their difference (i.e. the
range), which is a measure of realized volatility. Investment strategies based on FVECM
predictions of high/low US equity prices as exit/entry signals deliver a superior performance
even on a risk-adjusted basis.
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‡Angelo Ranaldo, Swiss National Bank, Research, Börsenstrasse 15, P.O. Box 2800, Zurich, Switzerland. E-
mail: angelo.ranaldo@snb.ch, Phone: Phone: +41 44 6313826, Fax: +41 44 6313901.

§Dipartimento di scienze economiche ’Marco Fanno’, University of Padua, Italy. Tel.: Tel: +39 049/8273848.
Fax: +39 049/8274211. E-mail: paolo.santuccidemagistris@unipd.it.

1



1 Introduction

The common wisdom in the financial literature is that asset prices are barely predictable (e.g.
Fama, 1970, 1991). The rationale for this idea is the Efficient Market Hypothesis (EMH) in
which asset prices evolve according to a random walk process. In this paper, we argue that
this principle does not hold for the so-called ”high” and ”low” prices, i.e. the maximum and
minimum price of an asset during a given period. By focusing on asset price predictability rather
than assessing the EMH paradigm, we address three main questions in this paper: are high and
low prices of equity shares predictable? How can we model them? Do forecasts of high and low
prices provide useful information for asset and risk management?

There are three respects in which high and low prices can provide valuable information for
their predictability. First, they inform people’s thinking. Kahneman and Tversky (1979) show
that when forming estimates, people start with an initial arbitrary value, and then adjust it
in a slow process. In more general terms, behavioral finance studies have shown that agents’
behavior generally depends on reference levels. As in a self-reinforcing mechanism, these forms
of mental accounting and framing plus previous highs and lows typically represent the reference
values for future resistance and support levels.

Second, high and low prices actually shape the decisions of many kinds of market partici-
pants, in particular technical analysts.1 More generally, any investor using a path-dependent
strategy typically tracks the past history of extreme prices. Thus, limit prices in pending stop-
loss orders often match the most extreme prices in a previous representative period. Moreover,
as highlighted in the literature on market microstructure, high and low prices also convey infor-
mation about liquidity provision and the price discovery process.2

Finally, extreme prices are highly informative as a measure of dispersion. The linear differ-
ence between high and low prices is known as the range. Since Feller (1951), there have been
many studies on the range, starting from the contribution of Parkinson (1980) and Garman
and Klass (1980) among many others.3 The literature shows that the range-based estimation of
volatility is highly statistically efficient and robust with respect to many microstructure frictions
(see e.g. Alizadeh, Brandt, and Diebold, 2002).

In order to answer the question of why high and low prices of equity shares are predictable, we
present a simple implementation of a fractional vector autoregressive model with error correction
(hereafter referred to as FVECM ) between high and low prices. The rationale for this modeling
strategy is twofold. First, it captures the cointegrating relationship between high and low
prices, i.e. they may temporarily diverge but they have an embedded convergent path in the
long run. This motivates the error correction mechanism between high and low prices. Second,
the difference between the high and low prices, i.e. the range, displays long memory that can be
well captured by the fractional autoregressive technique. Combining the cointegration between
highs and lows with the long memory of the range naturally leads to model high and low prices
in an FVECM framework.

The long-memory feature of the range is consistent with many empirical studies on the
predictability of the daily range, a proxy of the integrated volatility, see for example Gallant,

1Recently, academics documented that technical analysis strategies may succeed in extracting valuable infor-
mation from typical chartist indicators, such as candlesticks and bar charts based on past high, low, and closing
prices (e.g. Lo, Mamaysky, and Wang, 2000), and that support and resistance levels coincide with liquidity clus-
tering ( Kavajecz and Odders-White (2004)). The widespread use of technical analysis especially for short time
horizons (intraday to one week) is documented in, e.g., Allen and Taylor (1990). Other papers on resistance levels
are Curcio and Goodhart (1992), DeGrauwe and Decupere (1992), and Osler (2000).

2For instance, Menkhoff (1998) shows that high and low prices are very informative when it comes to analyzing
the order flow in foreign exchange markets.

3See also Beckers (1983), Ball and Torous (1984), Rogers and Satchell (1991), Kunitomo (1992), and more
recently Andersen and Bollerslev (1998), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002), Brandt
and Diebold (2006),Christensen and Podolskij (2007), Martens and van Dijk (2007), Christensen, Zhu, and Nielsen
(2009).
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Hsu, and Tauchen (1999) which fits a three-factor model to the daily range series to mimic
the long-memory feature in volatility, or Rossi and Santucci de Magistris (2009) which finds
fractional cointegration between the daily range computed on futures and spot prices. This
evidence allows the predictability of variances to be embedded in a model for the mean dynamic
of extreme prices. The model we propose thus captures the predictability of extreme prices
by means of the predictability of second-order moments, which is a widely accepted fact since
the seminal contribution of Engle (1982) and following the ARCH models literature. We thus
provide an affirmative answer to the first and second questions initially posed: first, there is
compelling evidence of the predictability of high and low prices; second, it suffices to apply a
linear model that captures the fractional cointegration between the past time series of highs and
lows.

To answer our third question, i.e. do forecasts of high and low prices provide useful infor-
mation for asset management, we analyze intraday data of the stocks forming the Dow Jones
Industrial Average index over a sample period of eight years. The sample period is pretty rep-
resentative since it covers calm and liquid markets as well as the recent financial crisis. We
find strong support for the forecasting ability of FVECM, which outperforms any reasonable
benchmark model. We then use the out-of-sample forecasts of high and low prices to implement
some simple trading strategies. The main idea is to use high and low forecasts to determine
entry and exit signals. Overall, the investment strategies based on FVECM predictions deliver
a superior performance even on a risk-adjusted basis.

The present paper is structured as follows. Section 2 discusses the integration and cointe-
gration properties of high and low daily prices in a non-parametric setting. At this stage, our
analysis is purely non-parametric and employs the most recent contributions of the literature
(such as Shimotsu and Phillips (2005), Robinson and Yajima (2002), and Nielsen and Shimotsu
(2007)). Section 3 presents the FVECM that is an econometric specification consistent with the
findings of the previous section, i.e. the fractional cointegration relationship between high and
low prices. After reporting the estimation outputs, Section 4 provides an empirical application
of the model forecast in a framework similar to the technical analysis. Section 5 concludes the
paper.

2 Integration and Cointegration of Daily High and Low Prices

Under the EMH, the daily closing prices embed all the available information. As a result, the best
forecast we could make for the next day’s closing price is today’s closing price. This translates
into the commonly accepted assumption of non-stationarity for the closing prices or, equiva-
lently, the hypothesis that the price evolution is governed by a random walk process (which is
also referred to as an integrated process of order 1, or a unit-root process). Consequently, price
movements are due only to unpredictable shocks.4 Furthermore, the random walk hypothesis is
also theoretically consistent with the assumption that price dynamics are driven by a geometric
Brownian motion, which implies normally distributed daily log-returns. Finally, the EMH im-
plies that the prices are not affected by some short-term dynamics such as autoregressive (AR)
or moving average (MA) patterns.5

However, it is also commonly accepted that daily log-returns strongly deviate from the hy-
pothesis of log-normality, thus casting some doubts on the law of motion hypothesis, in particular
with respect to the distributional assumption. In fact, extreme events are more likely to occur
compared with the Gaussian case, and returns are asymmetric, with a density shifted to the

4In more general terms, if the EMH holds, future prices cannot be predicted using past prices as well as using
past values of some covariates. We do not consider here the effects of the introduction of covariates, but focus on
the informative content of the price sequence. As a result, we focus on the ”weak-form efficiency” as presented in
Fama (1970).

5The short-term dynamic could co-exist with the random walk within an ARIMA structure, where autoregres-
sive (AR) and moving average (MA) terms are coupled with unit root (integrated) components.
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left (negative asymmetry). Many studies analyze market efficiency by testing the stationarity
of daily closing prices or market values at given points of time, see Lim and Brooks (2011).6

Although market efficiency should hold for any price, by their very nature high/low prices
differ from closing prices in two main respects. First, liquidity issues are more relevant for high
and low prices. Intuitively, high (low) prices are more likely to correspond to ask (bid) quotes,
thus transaction costs and other frictions such as price discreteness, the tick size (i.e. the minimal
increments) or stale prices might represent disturbing factors. Second, highs and lows are more
likely to be affected by unexpected shocks such as (unanticipated) public news announcements.
Then, some aspects such as market resiliency and quality of the market infrastructure can be
determinant. In view of these considerations, we pursue a conservative approach by considering
the predictability of highs and lows per se as weak evidence of market inefficiency. A more
rigorous test is the analysis of the economic implications arising from the predictability of highs
and lows. More specifically, we assess whether their prediction provides superior information to
run outperforming trading rules.

We should also stress that this attempt will be limited to the evaluation of the serial cor-
relation properties of those series, without the inclusion of the information content of other
covariates. Our first research question is thus to analyze the stationarity properties of daily
high and daily low prices in order to verify whether the unpredictability hypothesis is valid if
applied separately to the two series. If the unpredictability hypothesis holds true, both high and
low prices should be driven by random walk processes, and should not have relevant short-term
dynamic components (they should not be governed by ARIMA processes). To tackle this issue
we take a purely empirical perspective: at this stage we do not make assumptions either on
the dynamic process governing the evolution of daily high and low, nor on the distribution of
prices, log-prices or returns over high and low. Such a choice does not confine us within the
unrealistic framework of geometric Brownian motions, and, more relevantly, does not prevent us
from testing the previous issues. In fact, when analyzing the non-stationarity of price sequences,
a hypothesis on the distribution of prices, log-prices or returns is generally not required. Given
the absence of distributional hypotheses and of assumptions on the dynamic, we let the data
provide some guidance. We thus start by analyzing the serial correlation and integration prop-
erties of daily high and low prices. Furthermore, given the link between high and low prices and
the integrated volatility presented in the introduction, we also evaluate the serial correlation and
integration of the difference between high and low prices, the range. In the empirical analyses
we focus on the 30 stocks belonging to the Dow Jones Industrial Average index as of end of
December 2010.

We consider the daily high log-price, pH
t = log(PH

t ), and the daily low log-price, pL
t =

log(PL
t ). Our sample data covers the period January 2, 2003 to December 31, 2010, for a total

of 2015 observations. The plots of the daily high and low prices show evidence of a strong
serial correlation, typical of integrated processes, and the Ljung-Box test obviously strongly
rejects the null of no correlation for all lags.7 Therefore, we first test the null hypothesis of
unit root for the daily log-high, log-low and range by means of the Augmented Dickey Fuller
(ADF ) test. In all cases, the ADF tests cannot reject the null of unit root for the daily log-high
and log-low prices.8 TThis result is robust to the inclusion of the constant and trend, as well
as different choices of lag. The outcomes obtained by a standard approach suggest that the
daily high and daily low price sequences are integrated of order 1 or, equivalently, that they
are governed by random walk processes (denoted as I(1) and I(0), respectively). At first glance,
this finding seems to support the efficient market hypothesis. This is further supported by the
absence of a long- and short-range dependence on the first differences of daily high and daily
low log-prices. Moreover, there is clear evidence that daily range is not an I(1) process, but

6To our knowledge, Cheung (2007) represents the only noticeable exception that analyzes high and low prices.
7Results not reported but available on request.
8Using standard testing procedures based on the ADF test, we also verified that the integration order is 1,

given that on differenced series the ADF test always rejects the null of a unit root.
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should be considered an I(0) process. Based on these results, one can postulate that daily high
and daily low prices are cointegrated, since there exists a long-run relation between highs and
lows that is an I(0) process. However, this finding must be supported by proper tests, since
the existence of a cointegrating relation between daily high and daily low potentially allows for
the construction of a dynamic bivariate system which governs the evolution of the two series,
with a possible impact on predictability. These results confirm the findings in Cheung (2007).
Besides the previous result, Andersen and Bollerslev (1997) and Breidt, Crato, and de Lima
(1998), among others, find evidence of long memory (also called long range dependence) in asset
price volatility. This means that shocks affecting the volatility evolution produce substantial
effects for a long time. In this case, volatility is said to be characterized by a fractional degree of
integration, due to the link between the integration order and the memory properties of a time
series, as we will see in the following. In our case, the autocorrelation function, ACF, in Figure
1 seems to suggest that the daily range is also a fractionally integrated process, provided that it
decays at a slow hyperbolic rate. In particular, the ACF decays at a slow hyperbolic rate, which
is not compatible with the I(0) assumption made on the basis of ADF tests. Unfortunately, the
ADF is designated to test for the null of unit root, against the I(0) alternative, and it is also
well known, see Diebold and Rudebusch (1991), that the ADF test has very low power against
fractional alternatives. Therefore, we must investigate the integration order of daily high and
low prices and range in a wider sense, that is in the fractional context. We also stress that the
traditional notion of cointegration is not consistent with the existence of long-memory. In order
to deeply analyze the dynamic features of the series at hand, we resort to more recent and non-
standard tests for evaluating the integration and cointegration orders of our set of time series.
Our study thus generalizes the work of Cheung (2007) since it does not impose the presence of
the most traditional cointegration structure, and it also makes the evaluation consistent with
the findings of long memory in financial data.

We thus investigate the degree of integration of the daily high and low prices, and of their
difference, namely the range, in a fractional or long-memory framework. This means that we
assume that we observe a series, yt ∼ I(d), d ∈ $, for t ≥ 1, is such that

(1 − L)dyt = ut (1)

where ut ∼ I(0) and has a spectral density that is bounded away from zero at the origin.
Differently from the standard setting, the integration order d might assume values over the
real line and is not confined to integer numbers. Note that if d = 1 the process collapses on
a random walk, whereas if d = 0 the process is integrated of order zero, and thus stationary.
The econometrics literature on long-memory processes distinguishes between type I and type II
fractional processes. These processes have been carefully examined and contrasted by Marinucci
and Robinson (1999), and Davidson and Hashimzade (2009). The process yt reported above
is a type II fractionally integrated process, which is the truncated version of the general type
I process, since the initial values, for t = 0,−1,−2, ... are supposed to be known and equal to
the unconditional mean of the process (which is equal to zero)9. In this case, the term (1−L)d

results in the truncated binomial expansion

(1 − L)d =
T−1∑

i=0

Γ(i − d)

Γ(−d)Γ(i + 1)
Li (2)

so that the definition in (1) is valid for all d, see Beran (1994) among others. In particular,
for d < 0, the process is said to be anti-persistent, while for d > 0 it has long memory. When
dealing with high and low prices, our interest refers to the evaluation of the integration order
d for both high and low, as well as of the integration order for the range. Furthermore, if the
daily high and daily low time series have a unit root while the high-low range is a stationary

9In contrast, type I processes assume knowledge of the entire history of yt
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but long-memory process, a further aspect must be clarified. In fact, as already mentioned, the
presence of a stationary linear combination (the high-low range) of two non-stationary series
opens the door to the existence of a cointegrating relation. However, the traditional tests of
cointegration are not consistent with the memory properties of the high-low range. Therefore,
we chose to evaluate the fractional cointegration across the daily high and daily low time series.

In the context of long-memory processes, the term fractional cointegration refers to a gen-
eralization of the concept of cointegration, since it allows linear combinations of I(d) processes
to be I(d − b), with 0 < b ≤ d. The term fractional cointegration underlies the idea of the
existence of a common stochastic trend, that is integrated of order d, while the short period
departures from the long-run equilibrium are integrated of order d−b. Furthermore, b stands for
the fractional order of reduction obtained by the linear combination of I(d) variables, which we
call cointegration gap. We first test for the presence of a unit root in the high and low prices, so
that d = 1, and, as a consequence, the fractional integration order of the range becomes 1−b. In
order to test the null hypothesis of a unit root and of a fractional cointegration relation between
daily high and low prices, we consider a number of approaches and methodologies. First, we
estimate the fractional degree of persistence of the daily high and low prices by means of the
univariate local exact Whittle estimator of Shimotsu and Phillips (2005). Notably, their estima-
tor is based on the type II fractionally integrated process. The univariate local exact Whittle
estimators for high and lows (d̂H and d̂L, respectively) minimizes the following contrast function

Qmd
(di, Gii) =

1

md

md∑

j=1

[
log(Giiλ

−2d
j ) +

1

Gii
Ij

]
i = H, L (3)

which is concentrated with respect to the diagonal element of the 2 × 2 matrix G, under the
hypothesis that the spectral density of Ut = [∆dH pH

t , ∆dLpL
t ] satisfies

fU (λ) ∼ G as λ → 0. (4)

Furthermore, Ij is the coperiodogram at the Fourier frequency λj = 2πj
T of the fractionally

differenced series Ut, while md is the number of frequencies used in the estimation. The matrix
G is estimated as

Ĝ =
1

md

md∑

j=1

Re(Ij) (5)

where Re(Ij) denotes the real part of the coperiodogram. Table 1 reports the exact local Whittle
estimates of dH and dL for all the stocks under analysis. As expected, the fractional orders of
integration are high and generally close to 1. Given the estimates for the integration orders,
we test for equality according to the approach proposed in Nielsen and Shimotsu (2007) that is
robust to the presence of fractional cointegration. The approach resembles that of Robinson and
Yajima (2002), and starts from the fact that the presence or absence of cointegration is not known
when the fractional integration orders are estimated. Therefore, Nielsen and Shimotsu (2007)
propose a test statistic for the equality of integration orders that is informative independently
from the existence of the fractional cointegration. In the bivariate case under study, the test
statistic is

T̂0 = md

(
Sd̂

)′
(

S
1

4
D̂−1(Ĝ * Ĝ)D̂−1S′ + h(T )2

)−1 (
Sd̂

)
(6)

where * denotes the Hadamard product, d̂ = [d̂H , d̂L], S = [1,−1]′, h(T ) = log(T )−k for k > 0,
D = diag(G11, G22). If the variables are not cointegrated, that is the cointegration rank r is
zero, T̂0 → χ2

1, while if r ≥ 1, the variables are cointegrated and T̂0 → 0. A significantly

large value of T̂0, with respect to the null density χ2
1, can be taken as an evidence against the

equality of the integration orders. The estimation of the cointegration rank r is obtained by
calculating the eigenvalues of the matrix Ĝ. Since G does not have full rank when pH

t and pL
t

6



are cointegrated, then G is estimated following the procedure outlined in Nielsen and Shimotsu
(2007, p. 382) which involves a new bandwidth parameter mL. In particular, d̂H and d̂L are
obtained first, using (3) with md as bandwidth. Given d̂, the matrix G is then estimated, using
mL periodogram ordinates in (5), such that mL/md → 0. The table reports the estimates for
md = T 0.6 and mL = T 0.5, while results are robust to all different choices of md and mL.
Let δ̂i be the ith eigenvalue of Ĝ, it is then possible to apply a model selection procedure to
determine r. In particular,

r̂ = arg min
u=0,1

L(u) (7)

where

L(u) = v(T )(2 − u) −
2−u∑

i=1

δ̂i (8)

for some v(T ) > 0 such that

v(T ) +
1

m1/2
L v(T )

→ 0. (9)

The previous tests are concordant in suggesting that the integration order of pH
t and pL

t are
equal and close to unity. This is the case for 26 out of 30 equities of the DJIA index. Furthermore,
Table 1 shows that L(1) < L(0) in all cases considered, and this can be taken as strong evidence
in favor of fractional cointegration between pH

t and pL
t , so that equation 8 is minimized in

correspondence of r = 1. The results reported are relative to the case where v(T ) = m−0.35
L

and remain valid for alternative choices of v(T ) (not reported to save space). Note that, in the
bivariate case, equation 8 is minimized if v(T ) > min(δi), where min(δi) is the smallest eigenvalue
of Ĝ (or alternatively of the estimated correlation matrix P̂ = D̂−1/2ĜD̂−1/2). Provided that
the correlation between pH and pL is approximately 1 in all cases, then P̂ is almost singular and
the smallest eigenvalue of P̂ is very close to 0. Therefore v(T ) ≈ v(T ) − min(δi) > 0 and this
explains why L(1) has a similar value across all the assets considered. As a preliminary data
analysis, we also carry out the univariate Lagrange Multiplier (LM) test of Breitung and Hassler
(2002) to verify the null hypothesis of unit roots against fractional alternatives. Unfortunately,
we cannot use the extension of Nielsen (2005), since the multivariate LM test of fractional
integration order, which is based on the type II fractionally integrated process, always rejects
the null of d = 1, when series are fractionally cointegrated. Therefore, it is impossible to know
if the null has been rejected due to a cointegration relation or because one of the variables is
I(1). Table 1 reports the p−values of the univariate LM tests of Breitung and Hassler (2002)
for pL

t and pH
t . In all cases the null hypothesis cannot be rejected at the 5% significance

level, meaning that the high and low log-prices can be considered unit root processes, so that
[∆pH

t , ∆pH
t ] ∼ I(0). As a further check, provided that the daily range is an estimate of the daily

integrated volatility (Parkinson (1980)), and given several empirical studies showing that the
daily realized range has long-memory, we consider the evaluation of the fractional parameter
of the daily range series. Note that we refer to the range, Rt = pH

t − pL
t , as the rescaled root

square of the Parkinson estimator, that is RG2
t = 0.361 · (pH

t − pL
t )2. The Breitung and Hassler

(2002) test on Rt confirms the results of the Nielsen and Shimotsu (2007) procedure, since the
linear combination pH

t − pL
t significantly reduces the integration order in almost all cases, and

the local exact Whittle estimates of dR are approximately 0.6 − 0.7 in all cases, that is in the
non-stationary region. Furthermore, the LM test for Rt rejects the null of unit root in 28 out of
30 cases at 10% significance level. As expected, the range has a fractional integration order that
is significantly below 1, and in the next section we will show how to incorporate this evidence in
a parametric model which exploits the long-run relationship between daily high and low prices.
These results are in line with the well-known stylized fact that volatility of financial returns
is characterized by long-range dependence, or long memory, see, for instance, Baillie (1996),
Bollerslev and Mikkelsen (1996), Dacorogna, Muller, Nagler, Olsen, and Pictet (1993), Ding,
Granger, and Engle (1993), Granger and Ding (1996), Andersen, Bollerslev, Diebold, and Ebens
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(2001). In a recent contribution, Rossi and Santucci de Magistris (2009) find evidence of long
memory and fractional cointegration between the daily ranges of the spot and futures prices of
the S&P 500 index.

3 Modeling Daily High and Low Prices

As we showed in the previous section, the high and low prices have an embedded convergent path
in the long run, so that they are (fractionally) cointegrated. For intuitive reasons10, we expect
that high and low prices can deviate in the short run from their long-run relation. The concept
of cointegration has been widely studied during the last three decades, since the original paper
by Granger (1981). Most of the analysis has concentrated on the special case where a linear (or
nonlinear) combination of two or more I(1) variables is I(0). Tests for I(1)/I(0) cointegration
are carried out in a regression setup, as proposed by Engle and Granger (1987), or investigate
the rank of the cointegration matrix in a system of equations following the Johansen (1991)
procedure. A similar approach has been followed by Cheung (2007). When a cointegration
relation exists across two variables, the bivariate system can be re-written in a Vector Error
Correction (VEC) form, where the first difference of the cointegrated variables is a function
of the cointegrating relation. Such a model has an interesting economic interpretation since
deviations from the long-run equilibrium (given by the cointegrating relation) give rise to an
adjustment process that influences the future values of the modeled variables. In our framework,
changes in the actual high and low prices that make them inconsistent with the long-run relation
will produce an effect on future high and low prices. However, the long memory must also be
taken into account, differently from what has been considered in Cheung (2007). In a recent
contribution, Johansen (2008) proposes a generalization of the VEC model to the fractional
case. Such an extension allows for a representation (through a so-called Granger representation
theorem) which, in turn, enables us to distinguish between cofractional relations and common
trends. Johansen (2008) suggests studying the fractional cointegration relation in the following
system representation

∆dXt = (1 − ∆b)(∆d−bαβ′Xt − µ) +
K∑

j=1

Γj∆
dLj

bXt + εt (10)

which is based on the new generalized lag operator Lb = 1 − (1 − L)b. In our set-up, the
vector Xt includes the daily high and low log-prices, Xt = (pH

t , pL
t )′, and εt = (εH

t , εL
t )′ is

assumed to be i.i.d. with finite eight moments, mean zero and variance Ω. Furthermore, α =
(αH , αL) is the vector of the loadings, while β = (1, γ) is the cointegration vector. The first
term on the right can be represented as α(1−∆b)∆d−b(pH

t +γpL
t −µ) where the core component

(1 − ∆b)∆d−b(pH
t + γpL

t − µ) defines the cointegration relation. Differently, the element αi in
the vector α measures the single period response of variable i to the shock on the equilibrium
relation. In the following, we restrict the cointegration parameter γ to be equal to −1, so that
the cointegration relation can be interpreted in terms of the high-low range. We note that
in preliminary estimates where this restriction was not imposed, the estimated cointegration
parameter was generally very close to one, and we were not rejecting the null of γ = 1. Moreover,
imposing the condition d = 1 in model (10) implies that, following the definition of Hualde
and Robinson (2010), in the case of strong fractional cointegration, i.e. b > 1/2, the range
would be stationary and integrated of order d − b < 0.5. On the other hand, the case of
weak fractional cointegration, where 0 < b < 1/2 see Hualde and Robinson (2010), leads to
a non-stationary fractionally integrated range. We also introduce a constant term, µ, in the
cointegration relation, which represents the mean value of the range; µ must be positive, provided

10High and low prices can deviate temporarily because of information motives, liquidity factors or other mi-
crostructure effects such as bid-ask spread bounces, price discreteness, trading pressure.
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that pH
t ≥ pL

t by definition. Assuming that the rank of the matrix αβ, the cointegration rank r,
is known already, model (10) is estimated following the procedure outlined in Lasak (2008) and
Johansen and Nielsen (2010a). In particular, model (10) is estimated via a maximum likelihood
technique analogous to that developed by Johansen (1991) for the standard VEC model11.
The asymptotic distribution of the FVECM model estimators is studied in Lasak (2008) and
Johansen and Nielsen (2010b,a), while this estimation procedure has been employed by Rossi
and Santucci de Magistris (2009), which show the finite sample properties of the estimators
through a Monte Carlo simulation. In a recent contribution, Johansen and Nielsen (2011) show
that the asymptotic distribution of all the FVECM model parameters is Gaussian when b < 1/2.
On the other hand, when b > 1/2, the asymptotic distribution of β is mixed Gaussian, while the
estimators of the remaining parameters are Gaussian. On the basis of the results in the previous
section, it seems natural to estimate model (10) on the log high and low prices for the 30 stocks
under analysis. One lag in the generalized autoregressive term is assumed to be sufficient in
all cases for a good description of the short term component. Table 2 reports the estimation
results of model (10) on the 30 series. The estimated parameter b is lower than 0.5 in 27 cases,
meaning that, as expected, daily range is generally non-stationary. In particular, the estimated
degree of long range dependence of daily range implied by the FVECM model is between 0.4611
and 0.7467, meaning that the persistence of the range is very high, while the null hypothesis
d = 1 cannot be rejected in most cases. It is noteworthy to stress that the estimated degree of
long memory of the range which is implied by the FVECM model is very close to the values
obtained with the semiparametric estimators, in Section 2. Moreover, αH and αL are significant
and with the expected signs, so that it is possible to conclude that high and low prices are tied
together by a common long-memory stochastic trend toward which they converge in the long
run at significant rates.

Interestingly, the deviations from the attractor (the long-run relation) have an economic
interpretation in terms of volatility proxy, that is the range. Therefore, a parametric model for
the high-low prices incorporates significant information on the degree of dispersion of the prices.
Hence, we are able to exploit the long-memory feature of the price dispersion in order to obtain
better forecasts of future high and low log-prices based on past values. Figure 1 reports the
high and low log-prices series of IBM and the common stochastic trend constructed from the
estimates of model 10 and the Granger representation theorem for fractional VAR in Johansen
(2008). It is also clear that the common stochastic trend closely follows the dynamics of the
high and low log-prices, provided that they are tied together by a strong cointegration relation.
The deviations from the long run relationship, which is the high-low distance or range, are also
plotted. The range is a highly persistent series characterized by long periods above or below the
unconditional mean. For example, the recent financial crisis in 2008-2009 is characterized by a
larger discrepancy between the high and low prices, that is the result of a higher market risk. In
the next section, we will show a possible trading strategy that can benefit from better forecasts
of daily high-low bands.

4 Forecasting and Trading

Given the estimates of model (10), a natural exercise would be based on the forecasts of the high
and low prices, using them to implement a trading strategy based on the predicted so-called
high-low bands. Our focus is purely illustrative, and we provide a reasonable application of
our modeling approach, thereby extending the study of Cheung (2007) in that direction. In
doing so, we consider an expanding estimation period, which is used to evaluate the model and
produce the one-step-ahead forecasts. We base our analysis on a subset of 20 assets of the Dow
Jones index, for which we dispose of high frequency prices (i.e. one-minute frequency) for a
total of 390 intradaily prices per day. The sample covers the period from January 2, 2003 to

11The VEC is obtained as a special case of the FVECM when d and b are fixed to be equal to 1
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December 31, 2009, for a total of T = 1762 observations. We provide out-of-sample forecasts
for the last 251 sample data points, the year 2009. Therefore, the estimation sample length
includes a minimum of S = 1511 observations and a maximum of S = T − 1 data points. At
each step, model (10) is estimated on the first S observations, and a one-step-ahead forecast of
the high and low prices is obtained; we call these forecasts FC bands. Note that, in order to
guarantee that the predicted high-low bands are robust to the overnight activity, the overnight
return log Ot − log Ct−1 is included in model (10) as an additional explanatory variable (Ot and
Ct−1 are the opening and closing prices, respectively). The introduction of the overnight return
log mimics the regular operating activity of a trader who, using the model, produces the day t
forecasts for high and low, including the opening price of time t in the information set. Given
the bands, the trader uses them within day t regular trading hours. Figure 2 plots the Japanese
candlesticks, based on the observed prices of JPM, with the corresponding predicted high-low
bands. It is clear that the FC bands provide a better out-of-sample fit of the high-low dispersion
with respect to the high-low bands based on a 5-day moving average of high and low, MA5,
which represents a tool often used by technical analysts. Table 3 reports the p-values of the
Diebold and Mariano (1995) test for the out-of -ample forecasts of the high and low log-prices,
obtained using the FV ECM . As competing models we chose the random walk, RW , the 5-day
moving average, MA5, and the 22-day moving average, MA22, which correspond to weekly and
monthly averages respectively.12 We correct the predicted high-low bands of RW , MA5 and
MA22 by adding the difference between the opening price of day t, Ot, and the closing price of
day t− 1, Ct−1. Such a choice realigns those competing forecasts with the information set used
in the FV ECM model where the opening price of time t is taken into account. The Diebold
and Mariano (1995) test for the forecasting superiority of FV ECM is carried out focusing on
the mean squared error (MSE) and on the mean absolute error (MAE) of the forecasts, where
the error of model i at date t is defined as the difference, εi,t, between the observed high in the
period t + 113, and the corresponding forecast provided by model i:

εH
t+1,i = pH

t+1 − p̂H
t+1,i i = FV ECM, RW, MA5, MA22 (11)

Specifically, the interest is on the measure of the relative forecasting performance of the different
model specifications, testing the superiority of model i over FVECM, which is the benchmark,
with a t-test for the null hypothesis of a zero mean in

ε2t+1,FV ECM − ε2t+1,i = ci + νt (12)

|εt+1,FV ECM |− |εt+1,i| = di + ξt

where negative estimates of ci and di indicate support for the FV ECM , provided that all models
are compared to the FV ECM . The Diebold and Mariano (1995) test is the t-statistics for the
nullity of the estimates of ci and di. Overall, Table 3, depicts a situation where the forecast
errors associated with the FVECM are significantly smaller than those of the competing models.
As expected, the p-value of the test for MA5 and MA22 is highly significant in all cases. This
is due to the fact that moving averages are used in practice to identify local trends in the prices
and not for a point estimate of the prices. On the other hand, for what concerns the RW model,
the t-test based on MSE is always negative and the p-value is often lower than 5% for both the
pH

t and pL
t . This result suggests that the fractional cointegration model significantly improves

the forecasts of high and low log prices, with respect to the model that, consistently with the
strong efficiency of the markets, assumes that the best forecast of future prices is the actual
price.

We then implement two simple trading rules that make use of the model outcomes. At
first, we consider a trading rule based on the predicted high-low bands. We define buy and sell

12The alternative specifications all consider separately the high and low prices for the construction of high and
low bands. By contrast, our model provides the high and low forecasts within a unified framework.

13Analogously for the low log-price
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signals comparing the intradaily evolution of the equity price and the high-low bands. If the
price crosses the high band, we interpret it as a buy signal. Conversely, if the price crosses the
low band we have a sell signal, see Murphy (1999). This can be interpreted as a trend-following

strategy, where the upper line is used as a bull -trendline in a uptrend, while the lower line is
used as a bear -trendline in a downtrend. We also implement the contrarian strategy: if the price
crosses the high band, we interpret it as a sell signal. Conversely, if the price crosses the low
band we have a buy signal.

It is therefore possible to carry out a realistic trading strategy based on the high-low bands,
as described above. In particular, the previous rules define the creation of long or short positions.
Those positions created within day t can be closed or maintained in the following days. Once we
enter a new position, two additional bands are created in order to guarantee a desired minimum
level of profit or a maximum acceptable loss. These additional bands, called the stop-loss and
take-profit bands, are proportional to the high-low distance and are created as follows. Suppose
that we have a trend-following strategy, and the predicted upper bound, P̂H

t , is crossed by the
price at a given time t < τ0 < t + 1. In this case, we open a long position and the stop-loss and
take-profit thresholds are created as SLt = P̂H

t − δR̂t and TPt = P̂H
t + δR̂t, respectively, where

δ determines the size of the new bands and R̂t = P̂H
t − P̂L

t is the predicted daily range. If the
price crosses the SLt or TPt in τ0 < τ < t + 1, then the long position is closed. On the other
hand, if an open position is not closed during day t, then it is maintained until t+1. By design,
positions can also be closed at the opening price for two possible reasons: first, during the market
closing period, relevant news might be released with a potentially elevating impact on prices;
second, the FVECM model does not guarantee that the opening price at time t + 1 is inside the
high/low bands of time t+1. Suppose that at time t we have an opened long position in a trend
following strategy. At the beginning of t + 1, the position is closed if Ot+1 < max([P̂L

t+1; SLt])

or if Ot+1 > min([P̂H
t+1; TPt]). Such a choice allows us to avoid too risky strategies which might

be taken in case of large variations of the prices over two consecutive days. If a position is
not closed during the market opening, then P̂L

t+1 and P̂H
t+1 are used as predicted H-L bands for

t + 1. Similarly we can define stop-loss and take-profit bands for the short positions and for the
contrarian strategy. The payoffs of this trading system, based on two couples of high-low bands,
are reported in Table 4. In order to consider a realistic trading strategy, it is assumed that an
initial amount, A0, of 20,000 US dollars can be invested in the strategy. A fixed cost of 5 dollars
is charged on each transaction. During day t, the investor can buy or sell an amount of stocks
that is equal to Nt = [At/Pτ0 ], where [x] indicates the nearest integer less than or equal to x
and τ0 is the time in which the price crosses the bands.

It is immediately evident that the strategies are symmetric, so that when the trend-following

strategy produces a positive payoff, then in most cases the corresponding payoff of the contrarian

strategy is lower than 20000 dollars. We notice in general that, across the strategies considered,
the payoff from the contrarian strategy is generally higher than the payoff obtained with trend

following. This is probably due to the fact that, when the price exceeds a given threshold, there
is a higher probability that it will revert, tending to move toward the initial value, rather than
moving further toward more extreme values. The reverting behavior of the extremes has also
been noted by Cheung (2007).

Relatively to the other bands employed, the FC bands have similar performances in terms
of final outcome. The FC bands provide less frequently the worst performance with respect to
the alternative choices. Moreover, when the contrarian strategy is employed with the FC bands,
we observe 12 and 11 positive outcomes with δ = 0.25 and δ = 0.5. In particular, the strategy
based on the FC bands has good relative performances when the contrarian strategy is applied
with δ = 0.5, which increases the probability of maintaining the position opened until t + 1. In
that case, the FC bands have the best performances in 7 cases. Except for the case of BAC
and JPM , the profits and losses associated with FC are rarely above 3000 dollars (or less than
-3000), so we can conclude that in general it seems that the payoff variability associated with
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FC is lower than the variability associated with the other strategies.
An alternative trading system could be based on a different construction of the bands. Now

we focus on the predictions of the model (10) as a possible way of recovering a forecast of the
range, R̂t. This is automatically obtained by the difference between the predicted high and low
prices. Therefore a range-based strategy can be employed. For MA5 and MA22, these are the
averages of the daily range with different horizons, while RW simply takes the range at time
t−1 as the predicted range at time t. In this case, the daily H-L bands for day t, are centered on
the open price, so that the upper band is equal to Ot +R̂t and Ot−R̂t. Therefore, the size of the
band is 2R̂t. Once the bands have been created, the trend-following (or the contrarian) strategy
could be implemented similarly to as described above, with the corresponding SL and TP bands
which are constructed with δ = 0.5. In this case, the position, eventually opened during day t,
is not maintained until t + 1 and must be closed before (or in correspondence of) the last trade
of day t. Table 5 reports the results of a contrarian strategy based on the daily range bands.
Table 5 reports the value of the investment at the end of the sample, say on December 31, 2009.
In 12 out of 20 cases the strategy based on the range, obtained from model (10), reports positive
profits, while the strategy based on buy and hold, fifth column, has positive profits in 11 out
of 20 cases. With respect to the other strategies, the FC bands perform generally better than
RW and MA5, while having similar performances to MA22. This is due to the fact that MA22

is able to well approximate the long-run dependence of the range series and, in this particular
strategy, the difference in terms of profits is not relevant. This evidence can be well understood
from Figure 3 which plots the forecasts of the range based on different model specifications. It is
clear that RW provides a very noisy forecast of the range, while MA22 is extremely smooth and
it is close to the forecast of the FV ECM that is based on the maximum likelihood estimates
of b, which governs the persistence of the range. Relative to the other strategies, the strategy
based on FV ECM has a lower number of days of trading, that is approximately 40, compared
to RW and MA5, which trade more frequently. Moreover, the variance associated with the
daily payoff of the various strategies is the lowest for the FV ECM in 12 out of 20 cases. The
variance of the buy & hold strategy, B&H, is always greater than the variance of the strategies
based on intradaily trading. Finally, the Sharpe ratio associated with the FC strategy often
takes the highest value. This means that, when the returns of the strategies are adjusted by
their riskiness, the FC strategy outperforms the others. This is probably due to the fact that
the FVECM is able to provide good forecasts of the range, and therefore more precise timing
for investments.

5 Conclusion

The main contribution of this paper is to show that high and low prices of equity shares are
partially predictable and that future extreme prices can be forecast simply by using past high
and low prices that are readily available. Apparently, their predictability is at odds with the
difficulty of forecasting asset returns when prices are taken at a fixed point in time (at closing,
say) and with a long tradition of empirical work (e.g. Fama (1970 and 1991)) supporting the
efficient market hypothesis.

We propose to model high and low prices using a simple implementation of a fractional vector
autoregressive model with error correction (FVECM). This modeling strategy is consistent with
two main stylized patterns documented in this paper: first, high and low prices are cointegrated,
i.e. they may temporarily diverge but they have an embedded convergent path in the long run.
Second, the difference between them, i.e. the range, displays a long persistence that can be well
captured by the fractional autoregressive technique.

The analysis of some simple trading strategies shows that the use of predicted high and
low prices as entry and exit signals improves the investment performance. More specifically,
we find that out-of-sample trading strategies based on FVECM model forecasts outperform any
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reasonable benchmark model, even on a risk-adjusted basis.
Future research might extend our work in many respects. An interesting question to address

is how good predictions of high and low prices can enhance risk analysis and management.
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Figure 2: Japanese CandleStick with predicted high-low bands. Panel a), the red lines are the
high-low band based on model (10). Panel b) the red lines are the high-low bands based on the
5 days moving average. The sample covers the period from November 1, 2010 to December 31,
2010.
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