

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Scienze Economiche "Marco Fanno"

ON THE PREDICTABILITY OF STOCK PRICES: A CASE FOR HIGH AND LOW PRICES

MASSIMILIANO CAPORIN University of Padova

> ANGELO RANALDO Swiss National Bank

PAOLO SANTUCCI DE MAGISTRIS University of Padova

June 2011

On the Predictability of Stock Prices: a Case for High and Low Prices*

Massimiliano Caporin [†] Angelo Ranaldo[‡] Paolo Santucci de Magistris [§]

Abstract

Contrary to the common wisdom that asset prices are barely possible to forecast, we show that that high and low prices of equity shares are largely predictable. We propose to model them using a simple implementation of a fractional vector autoregressive model with error correction (FVECM). This model captures two fundamental patterns of high and low prices: their cointegrating relationship and the long memory of their difference (i.e. the range), which is a measure of realized volatility. Investment strategies based on FVECM predictions of high/low US equity prices as exit/entry signals deliver a superior performance even on a risk-adjusted basis.

Keywords. high and low prices; predictability of asset prices; range; fractional cointegration; exit/entry trading signals; chart/technical analysis.

JEL Classifications: G11; G17; C53; C58.

^{*}The views expressed herein are those of the authors and not necessarily those of the Swiss National Bank, which does not accept any responsibility for the contents and opinions expressed in this paper. We are very grateful to Adrian Trapletti and Guido Hächler for their support. I also thank Emmanuel Acar, Tim Bollerslev, Fulvio Corsi, Freddy Delbaen and Andreas Fischer for their comments. All errors remain our responsibility.

[†]Dipartimento di scienze economiche 'Marco Fanno', Via del Santo 22, Padua, Italy, Tel: +39 049/8274258. Fax: +39 049/8274211. Email: massimiliano.caporin@unipd.it.

[‡]Angelo Ranaldo, Swiss National Bank, Research, Börsenstrasse 15, P.O. Box 2800, Zurich, Switzerland. E-mail: angelo.ranaldo@snb.ch, Phone: Phone: +41 44 6313826, Fax: +41 44 6313901.

[§]Dipartimento di scienze economiche 'Marco Fanno', University of Padua, Italy. Tel.: Tel: +39 049/8273848. Fax: +39 049/8274211. E-mail: paolo.santuccidemagistris@unipd.it.

1 Introduction

The common wisdom in the financial literature is that asset prices are barely predictable (e.g. Fama, 1970, 1991). The rationale for this idea is the *Efficient Market Hypothesis* (EMH) in which asset prices evolve according to a random walk process. In this paper, we argue that this principle does not hold for the so-called "high" and "low" prices, i.e. the maximum and minimum price of an asset during a given period. By focusing on asset price predictability rather than assessing the EMH paradigm, we address three main questions in this paper: are high and low prices of equity shares predictable? How can we model them? Do forecasts of high and low prices provide useful information for asset and risk management?

There are three respects in which high and low prices can provide valuable information for their predictability. First, they inform people's thinking. Kahneman and Tversky (1979) show that when forming estimates, people start with an initial arbitrary value, and then adjust it in a slow process. In more general terms, behavioral finance studies have shown that agents' behavior generally depends on reference levels. As in a self-reinforcing mechanism, these forms of mental accounting and framing plus previous highs and lows typically represent the reference values for future resistance and support levels.

Second, high and low prices actually shape the decisions of many kinds of market participants, in particular technical analysts.¹ More generally, any investor using a path-dependent strategy typically tracks the past history of extreme prices. Thus, limit prices in pending stoploss orders often match the most extreme prices in a previous representative period. Moreover, as highlighted in the literature on market microstructure, high and low prices also convey information about liquidity provision and the price discovery process.²

Finally, extreme prices are highly informative as a measure of dispersion. The linear difference between high and low prices is known as the range. Since Feller (1951), there have been many studies on the range, starting from the contribution of Parkinson (1980) and Garman and Klass (1980) among many others.³ The literature shows that the range-based estimation of volatility is highly statistically efficient and robust with respect to many microstructure frictions (see e.g. Alizadeh, Brandt, and Diebold, 2002).

In order to answer the question of why high and low prices of equity shares are predictable, we present a simple implementation of a fractional vector autoregressive model with error correction (hereafter referred to as FVECM) between high and low prices. The rationale for this modeling strategy is twofold. First, it captures the cointegrating relationship between high and low prices, i.e. they may temporarily diverge but they have an embedded convergent path in the long run. This motivates the error correction mechanism between high and low prices. Second, the difference between the high and low prices, i.e. the range, displays long memory that can be well captured by the fractional autoregressive technique. Combining the cointegration between highs and lows with the long memory of the range naturally leads to model high and low prices in an FVECM framework.

The long-memory feature of the range is consistent with many empirical studies on the predictability of the daily range, a proxy of the integrated volatility, see for example Gallant,

¹Recently, academics documented that technical analysis strategies may succeed in extracting valuable information from typical chartist indicators, such as candlesticks and bar charts based on past high, low, and closing prices (e.g. Lo, Mamaysky, and Wang, 2000), and that support and resistance levels coincide with liquidity clustering (Kavajecz and Odders-White (2004)). The widespread use of technical analysis especially for short time horizons (intraday to one week) is documented in, e.g., Allen and Taylor (1990). Other papers on resistance levels are Curcio and Goodhart (1992), DeGrauwe and Decupere (1992), and Osler (2000).

²For instance, Menkhoff (1998) shows that high and low prices are very informative when it comes to analyzing the order flow in foreign exchange markets.

³See also Beckers (1983), Ball and Torous (1984), Rogers and Satchell (1991), Kunitomo (1992), and more recently Andersen and Bollerslev (1998), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002), Brandt and Diebold (2006), Christensen and Podolskij (2007), Martens and van Dijk (2007), Christensen, Zhu, and Nielsen (2009).

Hsu, and Tauchen (1999) which fits a three-factor model to the daily range series to mimic the long-memory feature in volatility, or Rossi and Santucci de Magistris (2009) which finds fractional cointegration between the daily range computed on futures and spot prices. This evidence allows the predictability of variances to be embedded in a model for the mean dynamic of extreme prices. The model we propose thus captures the predictability of extreme prices by means of the predictability of second-order moments, which is a widely accepted fact since the seminal contribution of Engle (1982) and following the ARCH models literature. We thus provide an affirmative answer to the first and second questions initially posed: first, there is compelling evidence of the predictability of high and low prices; second, it suffices to apply a linear model that captures the fractional cointegration between the past time series of highs and lows.

To answer our third question, i.e. do forecasts of high and low prices provide useful information for asset management, we analyze intraday data of the stocks forming the Dow Jones Industrial Average index over a sample period of eight years. The sample period is pretty representative since it covers calm and liquid markets as well as the recent financial crisis. We find strong support for the forecasting ability of FVECM, which outperforms any reasonable benchmark model. We then use the out-of-sample forecasts of high and low prices to implement some simple trading strategies. The main idea is to use high and low forecasts to determine entry and exit signals. Overall, the investment strategies based on FVECM predictions deliver a superior performance even on a risk-adjusted basis.

The present paper is structured as follows. Section 2 discusses the integration and cointegration properties of high and low daily prices in a non-parametric setting. At this stage, our analysis is purely non-parametric and employs the most recent contributions of the literature (such as Shimotsu and Phillips (2005), Robinson and Yajima (2002), and Nielsen and Shimotsu (2007)). Section 3 presents the FVECM that is an econometric specification consistent with the findings of the previous section, i.e. the fractional cointegration relationship between high and low prices. After reporting the estimation outputs, Section 4 provides an empirical application of the model forecast in a framework similar to the technical analysis. Section 5 concludes the paper.

2 Integration and Cointegration of Daily High and Low Prices

Under the EMH, the daily closing prices embed all the available information. As a result, the best forecast we could make for the next day's closing price is today's closing price. This translates into the commonly accepted assumption of non-stationarity for the closing prices or, equivalently, the hypothesis that the price evolution is governed by a random walk process (which is also referred to as an integrated process of order 1, or a unit-root process). Consequently, price movements are due only to unpredictable shocks.⁴ Furthermore, the random walk hypothesis is also theoretically consistent with the assumption that price dynamics are driven by a geometric Brownian motion, which implies normally distributed daily log-returns. Finally, the EMH implies that the prices are not affected by some short-term dynamics such as autoregressive (AR) or moving average (MA) patterns.⁵

However, it is also commonly accepted that daily log-returns strongly deviate from the hypothesis of log-normality, thus casting some doubts on the law of motion hypothesis, in particular with respect to the distributional assumption. In fact, extreme events are more likely to occur compared with the Gaussian case, and returns are asymmetric, with a density shifted to the

⁴In more general terms, if the EMH holds, future prices cannot be predicted using past prices as well as using past values of some covariates. We do not consider here the effects of the introduction of covariates, but focus on the informative content of the price sequence. As a result, we focus on the "weak-form efficiency" as presented in Fama (1970).

⁵The short-term dynamic could co-exist with the random walk within an ARIMA structure, where autoregressive (AR) and moving average (MA) terms are coupled with unit root (integrated) components.

left (negative asymmetry). Many studies analyze market efficiency by testing the stationarity of daily closing prices or market values at given points of time, see Lim and Brooks (2011).⁶

Although market efficiency should hold for any price, by their very nature high/low prices differ from closing prices in two main respects. First, liquidity issues are more relevant for high and low prices. Intuitively, high (low) prices are more likely to correspond to ask (bid) quotes, thus transaction costs and other frictions such as price discreteness, the tick size (i.e. the minimal increments) or stale prices might represent disturbing factors. Second, highs and lows are more likely to be affected by unexpected shocks such as (unanticipated) public news announcements. Then, some aspects such as market resiliency and quality of the market infrastructure can be determinant. In view of these considerations, we pursue a conservative approach by considering the predictability of highs and lows per se as weak evidence of market inefficiency. A more rigorous test is the analysis of the economic implications arising from the predictability of highs and lows. More specifically, we assess whether their prediction provides superior information to run outperforming trading rules.

We should also stress that this attempt will be limited to the evaluation of the serial correlation properties of those series, without the inclusion of the information content of other covariates. Our first research question is thus to analyze the stationarity properties of daily high and daily low prices in order to verify whether the unpredictability hypothesis is valid if applied separately to the two series. If the unpredictability hypothesis holds true, both high and low prices should be driven by random walk processes, and should not have relevant short-term dynamic components (they should not be governed by ARIMA processes). To tackle this issue we take a purely empirical perspective: at this stage we do not make assumptions either on the dynamic process governing the evolution of daily high and low, nor on the distribution of prices, log-prices or returns over high and low. Such a choice does not confine us within the unrealistic framework of geometric Brownian motions, and, more relevantly, does not prevent us from testing the previous issues. In fact, when analyzing the non-stationarity of price sequences, a hypothesis on the distribution of prices, log-prices or returns is generally not required. Given the absence of distributional hypotheses and of assumptions on the dynamic, we let the data provide some guidance. We thus start by analyzing the serial correlation and integration properties of daily high and low prices. Furthermore, given the link between high and low prices and the integrated volatility presented in the introduction, we also evaluate the serial correlation and integration of the difference between high and low prices, the range. In the empirical analyses we focus on the 30 stocks belonging to the Dow Jones Industrial Average index as of end of December 2010.

We consider the daily high log-price, $p_t^H = log(P_t^H)$, and the daily low log-price, $p_t^L = log(P_t^L)$. Our sample data covers the period January 2, 2003 to December 31, 2010, for a total of 2015 observations. The plots of the daily high and low prices show evidence of a strong serial correlation, typical of integrated processes, and the Ljung-Box test obviously strongly rejects the null of no correlation for all lags.⁷ Therefore, we first test the null hypothesis of unit root for the daily log-high, log-low and range by means of the Augmented Dickey Fuller (ADF) test. In all cases, the ADF tests cannot reject the null of unit root for the daily log-high and log-low prices.⁸ TThis result is robust to the inclusion of the constant and trend, as well as different choices of lag. The outcomes obtained by a standard approach suggest that the daily high and daily low price sequences are integrated of order 1 or, equivalently, that they are governed by random walk processes (denoted as I(1) and I(0), respectively). At first glance, this finding seems to support the efficient market hypothesis. This is further supported by the absence of a long- and short-range dependence on the first differences of daily high and daily low log-prices. Moreover, there is clear evidence that daily range is not an I(1) process, but

 $^{^6}$ To our knowledge, Cheung (2007) represents the only noticeable exception that analyzes high and low prices. 7 Results not reported but available on request.

⁸Using standard testing procedures based on the ADF test, we also verified that the integration order is 1, given that on differenced series the ADF test always rejects the null of a unit root.

should be considered an I(0) process. Based on these results, one can postulate that daily high and daily low prices are cointegrated, since there exists a long-run relation between highs and lows that is an I(0) process. However, this finding must be supported by proper tests, since the existence of a cointegrating relation between daily high and daily low potentially allows for the construction of a dynamic bivariate system which governs the evolution of the two series, with a possible impact on predictability. These results confirm the findings in Cheung (2007). Besides the previous result, Andersen and Bollerslev (1997) and Breidt, Crato, and de Lima (1998), among others, find evidence of long memory (also called long range dependence) in asset price volatility. This means that shocks affecting the volatility evolution produce substantial effects for a long time. In this case, volatility is said to be characterized by a fractional degree of integration, due to the link between the integration order and the memory properties of a time series, as we will see in the following. In our case, the autocorrelation function, ACF, in Figure 1 seems to suggest that the daily range is also a fractionally integrated process, provided that it decays at a slow hyperbolic rate. In particular, the ACF decays at a slow hyperbolic rate, which is not compatible with the I(0) assumption made on the basis of ADF tests. Unfortunately, the ADF is designated to test for the null of unit root, against the I(0) alternative, and it is also well known, see Diebold and Rudebusch (1991), that the ADF test has very low power against fractional alternatives. Therefore, we must investigate the integration order of daily high and low prices and range in a wider sense, that is in the fractional context. We also stress that the traditional notion of cointegration is not consistent with the existence of long-memory. In order to deeply analyze the dynamic features of the series at hand, we resort to more recent and nonstandard tests for evaluating the integration and cointegration orders of our set of time series. Our study thus generalizes the work of Cheung (2007) since it does not impose the presence of the most traditional cointegration structure, and it also makes the evaluation consistent with the findings of long memory in financial data.

We thus investigate the degree of integration of the daily high and low prices, and of their difference, namely the range, in a fractional or long-memory framework. This means that we assume that we observe a series, $y_t \sim I(d)$, $d \in \Re$, for $t \geq 1$, is such that

$$(1-L)^d y_t = u_t (1)$$

where $u_t \sim I(0)$ and has a spectral density that is bounded away from zero at the origin. Differently from the standard setting, the integration order d might assume values over the real line and is not confined to integer numbers. Note that if d=1 the process collapses on a random walk, whereas if d=0 the process is integrated of order zero, and thus stationary. The econometrics literature on long-memory processes distinguishes between type I and type II fractional processes. These processes have been carefully examined and contrasted by Marinucci and Robinson (1999), and Davidson and Hashimzade (2009). The process y_t reported above is a type II fractionally integrated process, which is the truncated version of the general type I process, since the initial values, for t=0,-1,-2,... are supposed to be known and equal to the unconditional mean of the process (which is equal to zero)⁹. In this case, the term $(1-L)^d$ results in the truncated binomial expansion

$$(1 - L)^{d} = \sum_{i=0}^{T-1} \frac{\Gamma(i-d)}{\Gamma(-d)\Gamma(i+1)} L^{i}$$
 (2)

so that the definition in (1) is valid for all d, see Beran (1994) among others. In particular, for d < 0, the process is said to be anti-persistent, while for d > 0 it has long memory. When dealing with high and low prices, our interest refers to the evaluation of the integration order d for both high and low, as well as of the integration order for the range. Furthermore, if the daily high and daily low time series have a unit root while the high-low range is a stationary

 $^{^9}$ In contrast, type I processes assume knowledge of the entire history of y_t

but long-memory process, a further aspect must be clarified. In fact, as already mentioned, the presence of a stationary linear combination (the high-low range) of two non-stationary series opens the door to the existence of a cointegrating relation. However, the traditional tests of cointegration are not consistent with the memory properties of the high-low range. Therefore, we chose to evaluate the fractional cointegration across the daily high and daily low time series.

In the context of long-memory processes, the term fractional cointegration refers to a generalization of the concept of cointegration, since it allows linear combinations of I(d) processes to be I(d-b), with $0 < b \le d$. The term fractional cointegration underlies the idea of the existence of a common stochastic trend, that is integrated of order d, while the short period departures from the long-run equilibrium are integrated of order d-b. Furthermore, b stands for the fractional order of reduction obtained by the linear combination of I(d) variables, which we call cointegration gap. We first test for the presence of a unit root in the high and low prices, so that d=1, and, as a consequence, the fractional integration order of the range becomes 1-b. In order to test the null hypothesis of a unit root and of a fractional cointegration relation between daily high and low prices, we consider a number of approaches and methodologies. First, we estimate the fractional degree of persistence of the daily high and low prices by means of the univariate local exact Whittle estimator of Shimotsu and Phillips (2005). Notably, their estimator is based on the type II fractionally integrated process. The univariate local exact Whittle estimators for high and lows (\hat{d}_H and \hat{d}_L , respectively) minimizes the following contrast function

$$Q_{m_d}(d_i, G_{ii}) = \frac{1}{m_d} \sum_{j=1}^{m_d} \left[\log(G_{ii}\lambda_j^{-2d}) + \frac{1}{G_{ii}} I_j \right] \quad i = H, L$$
 (3)

which is concentrated with respect to the diagonal element of the 2×2 matrix G, under the hypothesis that the spectral density of $U_t = [\Delta^{d_H} p_t^H, \Delta^{d_L} p_t^L]$ satisfies

$$f_U(\lambda) \sim G \quad as \quad \lambda \to 0.$$
 (4)

Furthermore, I_j is the coperiodogram at the Fourier frequency $\lambda_j = \frac{2\pi j}{T}$ of the fractionally differenced series U_t , while m_d is the number of frequencies used in the estimation. The matrix G is estimated as

$$\hat{G} = \frac{1}{m_d} \sum_{j=1}^{m_d} Re(I_j) \tag{5}$$

where $Re(I_j)$ denotes the real part of the coperiodogram. Table 1 reports the exact local Whittle estimates of d^H and d^L for all the stocks under analysis. As expected, the fractional orders of integration are high and generally close to 1. Given the estimates for the integration orders, we test for equality according to the approach proposed in Nielsen and Shimotsu (2007) that is robust to the presence of fractional cointegration. The approach resembles that of Robinson and Yajima (2002), and starts from the fact that the presence or absence of cointegration is not known when the fractional integration orders are estimated. Therefore, Nielsen and Shimotsu (2007) propose a test statistic for the equality of integration orders that is informative independently from the existence of the fractional cointegration. In the bivariate case under study, the test statistic is

$$\widehat{T}_0 = m_d \left(S \hat{d} \right)' \left(S \frac{1}{4} \widehat{D}^{-1} (\widehat{G} \odot \widehat{G}) \widehat{D}^{-1} S' + h(T)^2 \right)^{-1} \left(S \hat{d} \right)$$
 (6)

where \odot denotes the Hadamard product, $\hat{d} = [\hat{d}^H, \hat{d}^L]$, S = [1, -1]', $h(T) = \log(T)^{-k}$ for k > 0, $D = \operatorname{diag}(G_{11}, G_{22})$. If the variables are not cointegrated, that is the cointegration rank r is zero, $\hat{T}_0 \to \chi_1^2$, while if $r \geq 1$, the variables are cointegrated and $\hat{T}_0 \to 0$. A significantly large value of \hat{T}_0 , with respect to the null density χ_1^2 , can be taken as an evidence against the equality of the integration orders. The estimation of the cointegration rank r is obtained by calculating the eigenvalues of the matrix \hat{G} . Since G does not have full rank when p_t^H and p_t^L

are cointegrated, then G is estimated following the procedure outlined in Nielsen and Shimotsu (2007, p. 382) which involves a new bandwidth parameter m_L . In particular, \hat{d}_H and \hat{d}_L are obtained first, using (3) with m_d as bandwidth. Given \hat{d} , the matrix G is then estimated, using m_L periodogram ordinates in (5), such that $m_L/m_d \to 0$. The table reports the estimates for $m_d = T^{0.6}$ and $m_L = T^{0.5}$, while results are robust to all different choices of m_d and m_L . Let $\hat{\delta}_i$ be the *i*th eigenvalue of \hat{G} , it is then possible to apply a model selection procedure to determine r. In particular,

$$\hat{r} = \arg\min_{u=0,1} L(u) \tag{7}$$

where

$$L(u) = v(T)(2 - u) - \sum_{i=1}^{2-u} \hat{\delta}_i$$
 (8)

for some v(T) > 0 such that

$$v(T) + \frac{1}{m_L^{1/2}v(T)} \to 0.$$
 (9)

The previous tests are concordant in suggesting that the integration order of p_t^H and p_t^L are equal and close to unity. This is the case for 26 out of 30 equities of the DJIA index. Furthermore, Table 1 shows that L(1) < L(0) in all cases considered, and this can be taken as strong evidence in favor of fractional cointegration between p_t^H and p_t^L , so that equation 8 is minimized in correspondence of r=1. The results reported are relative to the case where $v(T)=m_L^{-0.35}$ and remain valid for alternative choices of v(T) (not reported to save space). Note that, in the bivariate case, equation 8 is minimized if $v(T) > \min(\delta_i)$, where $\min(\delta_i)$ is the smallest eigenvalue of \hat{G} (or alternatively of the estimated correlation matrix $\hat{P} = \hat{D}^{-1/2} \hat{G} \hat{D}^{-1/2}$). Provided that the correlation between p^H and p^L is approximately 1 in all cases, then \hat{P} is almost singular and the smallest eigenvalue of \hat{P} is very close to 0. Therefore $v(T) \approx v(T) - \min(\delta_i) > 0$ and this explains why L(1) has a similar value across all the assets considered. As a preliminary data analysis, we also carry out the univariate Lagrange Multiplier (LM) test of Breitung and Hassler (2002) to verify the null hypothesis of unit roots against fractional alternatives. Unfortunately, we cannot use the extension of Nielsen (2005), since the multivariate LM test of fractional integration order, which is based on the type II fractionally integrated process, always rejects the null of d=1, when series are fractionally cointegrated. Therefore, it is impossible to know if the null has been rejected due to a cointegration relation or because one of the variables is I(1). Table 1 reports the p-values of the univariate LM tests of Breitung and Hassler (2002) for p_t^L and p_t^H . In all cases the null hypothesis cannot be rejected at the 5% significance level, meaning that the high and low log-prices can be considered unit root processes, so that $[\Delta p_t^H, \Delta p_t^H] \sim I(0)$. As a further check, provided that the daily range is an estimate of the daily integrated volatility (Parkinson (1980)), and given several empirical studies showing that the daily realized range has long-memory, we consider the evaluation of the fractional parameter of the daily range series. Note that we refer to the range, $R_t = p_t^H - p_t^L$, as the rescaled root square of the Parkinson estimator, that is $RG_t^2 = 0.361 \cdot (p_t^H - p_t^L)^2$. The Breitung and Hassler (2002) test on R_t confirms the results of the Nielsen and Shimotsu (2007) procedure, since the linear combination $p_t^H - p_t^L$ significantly reduces the integration order in almost all cases, and the local exact Whittle estimates of d^R are approximately 0.6 - 0.7 in all cases, that is in the non-stationary region. Furthermore, the LM test for R_t rejects the null of unit root in 28 out of 30 cases at 10% significance level. As expected, the range has a fractional integration order that is significantly below 1, and in the next section we will show how to incorporate this evidence in a parametric model which exploits the long-run relationship between daily high and low prices. These results are in line with the well-known stylized fact that volatility of financial returns is characterized by long-range dependence, or long memory, see, for instance, Baillie (1996), Bollerslev and Mikkelsen (1996), Dacorogna, Muller, Nagler, Olsen, and Pictet (1993), Ding, Granger, and Engle (1993), Granger and Ding (1996), Andersen, Bollerslev, Diebold, and Ebens (2001). In a recent contribution, Rossi and Santucci de Magistris (2009) find evidence of long memory and fractional cointegration between the daily ranges of the spot and futures prices of the S&P 500 index.

3 Modeling Daily High and Low Prices

As we showed in the previous section, the high and low prices have an embedded convergent path in the long run, so that they are (fractionally) cointegrated. For intuitive reasons¹⁰, we expect that high and low prices can deviate in the short run from their long-run relation. The concept of cointegration has been widely studied during the last three decades, since the original paper by Granger (1981). Most of the analysis has concentrated on the special case where a linear (or nonlinear) combination of two or more I(1) variables is I(0). Tests for I(1)/I(0) cointegration are carried out in a regression setup, as proposed by Engle and Granger (1987), or investigate the rank of the cointegration matrix in a system of equations following the Johansen (1991) procedure. A similar approach has been followed by Cheung (2007). When a cointegration relation exists across two variables, the bivariate system can be re-written in a Vector Error Correction (VEC) form, where the first difference of the cointegrated variables is a function of the cointegrating relation. Such a model has an interesting economic interpretation since deviations from the long-run equilibrium (given by the cointegrating relation) give rise to an adjustment process that influences the future values of the modeled variables. In our framework, changes in the actual high and low prices that make them inconsistent with the long-run relation will produce an effect on future high and low prices. However, the long memory must also be taken into account, differently from what has been considered in Cheung (2007). In a recent contribution, Johansen (2008) proposes a generalization of the VEC model to the fractional case. Such an extension allows for a representation (through a so-called Granger representation theorem) which, in turn, enables us to distinguish between cofractional relations and common trends. Johansen (2008) suggests studying the fractional cointegration relation in the following system representation

$$\Delta^d X_t = (1 - \Delta^b)(\Delta^{d-b}\alpha\beta' X_t - \mu) + \sum_{j=1}^K \Gamma_j \Delta^d L_b^j X_t + \epsilon_t$$
 (10)

which is based on the new generalized lag operator $L_b = 1 - (1 - L)^b$. In our set-up, the vector X_t includes the daily high and low log-prices, $X_t = (p_t^H, p_t^L)'$, and $\epsilon_t = (\epsilon_t^H, \epsilon_t^L)'$ is assumed to be i.i.d. with finite eight moments, mean zero and variance Ω . Furthermore, α (α_H, α_L) is the vector of the loadings, while $\beta = (1, \gamma)$ is the cointegration vector. The first term on the right can be represented as $\alpha(1-\Delta^b)\Delta^{d-b}(p_t^H+\gamma p_t^L-\mu)$ where the core component $(1-\Delta^b)\Delta^{d-b}(p_t^H+\gamma p_t^L-\mu)$ defines the cointegration relation. Differently, the element α_i in the vector α measures the single period response of variable i to the shock on the equilibrium relation. In the following, we restrict the cointegration parameter γ to be equal to -1, so that the cointegration relation can be interpreted in terms of the high-low range. We note that in preliminary estimates where this restriction was not imposed, the estimated cointegration parameter was generally very close to one, and we were not rejecting the null of $\gamma = 1$. Moreover, imposing the condition d=1 in model (10) implies that, following the definition of Hualde and Robinson (2010), in the case of strong fractional cointegration, i.e. b > 1/2, the range would be stationary and integrated of order d-b < 0.5. On the other hand, the case of weak fractional cointegration, where 0 < b < 1/2 see Hualde and Robinson (2010), leads to a non-stationary fractionally integrated range. We also introduce a constant term, μ , in the cointegration relation, which represents the mean value of the range; μ must be positive, provided

¹⁰High and low prices can deviate temporarily because of information motives, liquidity factors or other microstructure effects such as bid-ask spread bounces, price discreteness, trading pressure.

that $p_t^H \geq p_t^L$ by definition. Assuming that the rank of the matrix $\alpha\beta$, the cointegration rank r, is known already, model (10) is estimated following the procedure outlined in Lasak (2008) and Johansen and Nielsen (2010a). In particular, model (10) is estimated via a maximum likelihood technique analogous to that developed by Johansen (1991) for the standard VEC model¹¹. The asymptotic distribution of the FVECM model estimators is studied in Lasak (2008) and Johansen and Nielsen (2010b,a), while this estimation procedure has been employed by Rossi and Santucci de Magistris (2009), which show the finite sample properties of the estimators through a Monte Carlo simulation. In a recent contribution, Johansen and Nielsen (2011) show that the asymptotic distribution of all the FVECM model parameters is Gaussian when b < 1/2. On the other hand, when b > 1/2, the asymptotic distribution of β is mixed Gaussian, while the estimators of the remaining parameters are Gaussian. On the basis of the results in the previous section, it seems natural to estimate model (10) on the log high and low prices for the 30 stocks under analysis. One lag in the generalized autoregressive term is assumed to be sufficient in all cases for a good description of the short term component. Table 2 reports the estimation results of model (10) on the 30 series. The estimated parameter b is lower than 0.5 in 27 cases, meaning that, as expected, daily range is generally non-stationary. In particular, the estimated degree of long range dependence of daily range implied by the FVECM model is between 0.4611 and 0.7467, meaning that the persistence of the range is very high, while the null hypothesis d=1 cannot be rejected in most cases. It is noteworthy to stress that the estimated degree of long memory of the range which is implied by the FVECM model is very close to the values obtained with the semiparametric estimators, in Section 2. Moreover, α_H and α_L are significant and with the expected signs, so that it is possible to conclude that high and low prices are tied together by a common long-memory stochastic trend toward which they converge in the long run at significant rates.

Interestingly, the deviations from the attractor (the long-run relation) have an economic interpretation in terms of volatility proxy, that is the range. Therefore, a parametric model for the high-low prices incorporates significant information on the degree of dispersion of the prices. Hence, we are able to exploit the long-memory feature of the price dispersion in order to obtain better forecasts of future high and low log-prices based on past values. Figure 1 reports the high and low log-prices series of IBM and the common stochastic trend constructed from the estimates of model 10 and the Granger representation theorem for fractional VAR in Johansen (2008). It is also clear that the common stochastic trend closely follows the dynamics of the high and low log-prices, provided that they are tied together by a strong cointegration relation. The deviations from the long run relationship, which is the high-low distance or range, are also plotted. The range is a highly persistent series characterized by long periods above or below the unconditional mean. For example, the recent financial crisis in 2008-2009 is characterized by a larger discrepancy between the high and low prices, that is the result of a higher market risk. In the next section, we will show a possible trading strategy that can benefit from better forecasts of daily high-low bands.

4 Forecasting and Trading

Given the estimates of model (10), a natural exercise would be based on the forecasts of the high and low prices, using them to implement a trading strategy based on the predicted so-called high-low bands. Our focus is purely illustrative, and we provide a reasonable application of our modeling approach, thereby extending the study of Cheung (2007) in that direction. In doing so, we consider an expanding estimation period, which is used to evaluate the model and produce the one-step-ahead forecasts. We base our analysis on a subset of 20 assets of the Dow Jones index, for which we dispose of high frequency prices (i.e. one-minute frequency) for a total of 390 intradaily prices per day. The sample covers the period from January 2, 2003 to

The VEC is obtained as a special case of the FVECM when d and b are fixed to be equal to 1

December 31, 2009, for a total of T = 1762 observations. We provide out-of-sample forecasts for the last 251 sample data points, the year 2009. Therefore, the estimation sample length includes a minimum of S = 1511 observations and a maximum of S = T - 1 data points. At each step, model (10) is estimated on the first S observations, and a one-step-ahead forecast of the high and low prices is obtained; we call these forecasts FC bands. Note that, in order to guarantee that the predicted high-low bands are robust to the overnight activity, the overnight return $\log O_t - \log C_{t-1}$ is included in model (10) as an additional explanatory variable (O_t and C_{t-1} are the opening and closing prices, respectively). The introduction of the overnight return log mimics the regular operating activity of a trader who, using the model, produces the day t forecasts for high and low, including the opening price of time t in the information set. Given the bands, the trader uses them within day t regular trading hours. Figure 2 plots the Japanese candlesticks, based on the observed prices of JPM, with the corresponding predicted high-low bands. It is clear that the FC bands provide a better out-of-sample fit of the high-low dispersion with respect to the high-low bands based on a 5-day moving average of high and low, MA_5 , which represents a tool often used by technical analysts. Table 3 reports the p-values of the Diebold and Mariano (1995) test for the out-of -ample forecasts of the high and low log-prices, obtained using the FVECM. As competing models we chose the random walk, RW, the 5-day moving average, MA_5 , and the 22-day moving average, MA_{22} , which correspond to weekly and monthly averages respectively. 12 We correct the predicted high-low bands of RW, MA_5 and MA_{22} by adding the difference between the opening price of day t, O_t , and the closing price of day t-1, C_{t-1} . Such a choice realigns those competing forecasts with the information set used in the FVECM model where the opening price of time t is taken into account. The Diebold and Mariano (1995) test for the forecasting superiority of FVECM is carried out focusing on the mean squared error (MSE) and on the mean absolute error (MAE) of the forecasts, where the error of model i at date t is defined as the difference, $\epsilon_{i,t}$, between the observed high in the period $t + 1^{13}$, and the corresponding forecast provided by model i:

$$\epsilon_{t+1,i}^H = p_{t+1}^H - \hat{p}_{t+1,i}^H \quad i = FVECM, RW, MA_5, MA_{22}$$
 (11)

Specifically, the interest is on the measure of the relative forecasting performance of the different model specifications, testing the superiority of model i over FVECM, which is the benchmark, with a t-test for the null hypothesis of a zero mean in

$$\epsilon_{t+1,FVECM}^{2} - \epsilon_{t+1,i}^{2} = c_{i} + \nu_{t}
|\epsilon_{t+1,FVECM}| - |\epsilon_{t+1,i}| = d_{i} + \xi_{t}$$
(12)

where negative estimates of c_i and d_i indicate support for the FVECM, provided that all models are compared to the FVECM. The Diebold and Mariano (1995) test is the t-statistics for the nullity of the estimates of c_i and d_i . Overall, Table 3, depicts a situation where the forecast errors associated with the FVECM are significantly smaller than those of the competing models. As expected, the p-value of the test for MA_5 and MA_{22} is highly significant in all cases. This is due to the fact that moving averages are used in practice to identify local trends in the prices and not for a point estimate of the prices. On the other hand, for what concerns the RW model, the t-test based on MSE is always negative and the p-value is often lower than 5% for both the p_t^H and p_t^L . This result suggests that the fractional cointegration model significantly improves the forecasts of high and low log prices, with respect to the model that, consistently with the strong efficiency of the markets, assumes that the best forecast of future prices is the actual price.

We then implement two simple trading rules that make use of the model outcomes. At first, we consider a trading rule based on the predicted high-low bands. We define buy and sell

¹²The alternative specifications all consider separately the high and low prices for the construction of high and low bands. By contrast, our model provides the high and low forecasts within a unified framework.

 $^{^{13}}$ Analogously for the low log-price

signals comparing the intradaily evolution of the equity price and the high-low bands. If the price crosses the high band, we interpret it as a buy signal. Conversely, if the price crosses the low band we have a sell signal, see Murphy (1999). This can be interpreted as a trend-following strategy, where the upper line is used as a bull-trendline in a uptrend, while the lower line is used as a bear-trendline in a downtrend. We also implement the contrarian strategy: if the price crosses the high band, we interpret it as a sell signal. Conversely, if the price crosses the low band we have a buy signal.

It is therefore possible to carry out a realistic trading strategy based on the high-low bands, as described above. In particular, the previous rules define the creation of long or short positions. Those positions created within day t can be closed or maintained in the following days. Once we enter a new position, two additional bands are created in order to guarantee a desired minimum level of profit or a maximum acceptable loss. These additional bands, called the stop-loss and take-profit bands, are proportional to the high-low distance and are created as follows. Suppose that we have a trend-following strategy, and the predicted upper bound, \hat{P}_t^H , is crossed by the price at a given time $t < \tau_0 < t + 1$. In this case, we open a long position and the stop-loss and take-profit thresholds are created as $SL_t = \hat{P}_t^H - \delta \hat{R}_t$ and $TP_t = \hat{P}_t^H + \delta \hat{R}_t$, respectively, where δ determines the size of the new bands and $\hat{R}_t = \hat{P}_t^H - \hat{P}_t^L$ is the predicted daily range. If the price crosses the SL_t or TP_t in $\tau_0 < \tau < t+1$, then the long position is closed. On the other hand, if an open position is not closed during day t, then it is maintained until t+1. By design, positions can also be closed at the opening price for two possible reasons: first, during the market closing period, relevant news might be released with a potentially elevating impact on prices; second, the FVECM model does not guarantee that the opening price at time t+1 is inside the high/low bands of time t+1. Suppose that at time t we have an opened long position in a trend following strategy. At the beginning of t+1, the position is closed if $O_{t+1} < \max([\hat{P}_{t+1}^L; SL_t])$ or if $O_{t+1} > \min([\hat{P}_{t+1}^H; TP_t])$. Such a choice allows us to avoid too risky strategies which might be taken in case of large variations of the prices over two consecutive days. If a position is not closed during the market opening, then \hat{P}_{t+1}^L and \hat{P}_{t+1}^H are used as predicted H-L bands for t+1. Similarly we can define stop-loss and take-profit bands for the short positions and for the contrarian strategy. The payoffs of this trading system, based on two couples of high-low bands, are reported in Table 4. In order to consider a realistic trading strategy, it is assumed that an initial amount, A_0 , of 20,000 US dollars can be invested in the strategy. A fixed cost of 5 dollars is charged on each transaction. During day t, the investor can buy or sell an amount of stocks that is equal to $N_t = [A_t/P_{\tau_0}]$, where [x] indicates the nearest integer less than or equal to x and τ_0 is the time in which the price crosses the bands.

It is immediately evident that the strategies are symmetric, so that when the *trend-following* strategy produces a positive payoff, then in most cases the corresponding payoff of the *contrarian* strategy is lower than 20000 dollars. We notice in general that, across the strategies considered, the payoff from the *contrarian* strategy is generally higher than the payoff obtained with *trend following*. This is probably due to the fact that, when the price exceeds a given threshold, there is a higher probability that it will revert, tending to move toward the initial value, rather than moving further toward more extreme values. The reverting behavior of the extremes has also been noted by Cheung (2007).

Relatively to the other bands employed, the FC bands have similar performances in terms of final outcome. The FC bands provide less frequently the worst performance with respect to the alternative choices. Moreover, when the contrarian strategy is employed with the FC bands, we observe 12 and 11 positive outcomes with $\delta=0.25$ and $\delta=0.5$. In particular, the strategy based on the FC bands has good relative performances when the contrarian strategy is applied with $\delta=0.5$, which increases the probability of maintaining the position opened until t+1. In that case, the FC bands have the best performances in 7 cases. Except for the case of BAC and JPM, the profits and losses associated with FC are rarely above 3000 dollars (or less than -3000), so we can conclude that in general it seems that the payoff variability associated with

FC is lower than the variability associated with the other strategies.

An alternative trading system could be based on a different construction of the bands. Now we focus on the predictions of the model (10) as a possible way of recovering a forecast of the range, R_t . This is automatically obtained by the difference between the predicted high and low prices. Therefore a range-based strategy can be employed. For MA_5 and MA_{22} , these are the averages of the daily range with different horizons, while RW simply takes the range at time t-1 as the predicted range at time t. In this case, the daily H-L bands for day t, are centered on the open price, so that the upper band is equal to $O_t + \hat{R}_t$ and $O_t - \hat{R}_t$. Therefore, the size of the band is $2R_t$. Once the bands have been created, the trend-following (or the contrarian) strategy could be implemented similarly to as described above, with the corresponding SL and TP bands which are constructed with $\delta = 0.5$. In this case, the position, eventually opened during day t, is not maintained until t+1 and must be closed before (or in correspondence of) the last trade of day t. Table 5 reports the results of a contrarian strategy based on the daily range bands. Table 5 reports the value of the investment at the end of the sample, say on December 31, 2009. In 12 out of 20 cases the strategy based on the range, obtained from model (10), reports positive profits, while the strategy based on buy and hold, fifth column, has positive profits in 11 out of 20 cases. With respect to the other strategies, the FC bands perform generally better than RW and MA_5 , while having similar performances to MA_{22} . This is due to the fact that MA_{22} is able to well approximate the long-run dependence of the range series and, in this particular strategy, the difference in terms of profits is not relevant. This evidence can be well understood from Figure 3 which plots the forecasts of the range based on different model specifications. It is clear that RW provides a very noisy forecast of the range, while MA_{22} is extremely smooth and it is close to the forecast of the FVECM that is based on the maximum likelihood estimates of b, which governs the persistence of the range. Relative to the other strategies, the strategy based on FVECM has a lower number of days of trading, that is approximately 40, compared to RW and MA_5 , which trade more frequently. Moreover, the variance associated with the daily payoff of the various strategies is the lowest for the FVECM in 12 out of 20 cases. The variance of the buy \mathcal{E} hold strategy, B&H, is always greater than the variance of the strategies based on intradaily trading. Finally, the Sharpe ratio associated with the FC strategy often takes the highest value. This means that, when the returns of the strategies are adjusted by their riskiness, the FC strategy outperforms the others. This is probably due to the fact that the FVECM is able to provide good forecasts of the range, and therefore more precise timing for investments.

5 Conclusion

The main contribution of this paper is to show that high and low prices of equity shares are partially predictable and that future extreme prices can be forecast simply by using past high and low prices that are readily available. Apparently, their predictability is at odds with the difficulty of forecasting asset returns when prices are taken at a fixed point in time (at closing, say) and with a long tradition of empirical work (e.g. Fama (1970 and 1991)) supporting the efficient market hypothesis.

We propose to model high and low prices using a simple implementation of a fractional vector autoregressive model with error correction (FVECM). This modeling strategy is consistent with two main stylized patterns documented in this paper: first, high and low prices are cointegrated, i.e. they may temporarily diverge but they have an embedded convergent path in the long run. Second, the difference between them, i.e. the range, displays a long persistence that can be well captured by the fractional autoregressive technique.

The analysis of some simple trading strategies shows that the use of predicted high and low prices as entry and exit signals improves the investment performance. More specifically, we find that out-of-sample trading strategies based on FVECM model forecasts outperform any

reasonable benchmark model, even on a risk-adjusted basis.

Future research might extend our work in many respects. An interesting question to address is how good predictions of high and low prices can enhance risk analysis and management.

References

- ALIZADEH, S., M. W. BRANDT, AND F. X. DIEBOLD (2002): "Range-Based Estimation of Stochastic Volatility Models," *The Journal of Finance*, Vol. 57, No. 3, pp. 1047–1091.
- ALLEN, H., AND M. P. TAYLOR (1990): "Charts, Noise and Fundamentals in the London Foreign Exchange Market," *Economic Journal*, 100(400), 49–59.
- Andersen, T., and T. Bollerslev (1998): "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," *International Economic Review*, 39, 885–905.
- Andersen, T. G., and T. Bollerslev (1997): "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," *The Journal of Finance*, 52, 975–1005.
- Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens (2001): "The Distribution of Stock Return Volatility," *Journal of Financial Economics*, 61, 43–76.
- Baillie, R. T. (1996): "Long memory processes and fractional integration in econometrics," Journal of Econometrics, 73(1), 5–59.
- Ball, C. A., and W. N. Torous (1984): "1984. The maximum likelihood estimation of security price volatility: Theory, evidence, and application to option pricing," *Journal of Business*, 57, 97112.
- BECKERS, S. (1983): "Variances of Security Price Returns Based on High, Low, and Closing Prices," *Journal of Business*, 56(1), 97–112.
- Beran, J. (1994): Statistics for Long-Memory Processes. Chapman & Hall.
- Bollerslev, T., and H. O. Mikkelsen (1996): "Modeling and pricing long memory in stock market volatility," *Journal of Econometrics*, 73, 151–184.
- Brandt, M. W., and F. X. Diebold (2006): "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," *Journal of Business*, vol. 79, no. 1, 61–73.
- BREIDT, F. J., N. CRATO, AND P. DE LIMA (1998): "The detection and estimation of long memory in stochastic volatility," *Journal of Econometrics*, 83(1-2), 325 348.
- Breitung, J., and U. Hassler (2002): "Inference on the cointegration rank in fractionally integrated processes," *Journal of Econometrics*, 110(2), 167–185.
- Cheung, Y. (2007): "An empirical model of daily highs and lows," *International Journal of Finance and Economics*, 12, 1–20.
- CHRISTENSEN, B. J., J. Zhu, and M. Nielsen (2009): "Long memory in stock market volatility and the volatility-in-mean effect: the FIEGARCH-M model," Working Papers 1207, Queen's University, Department of Economics.
- Christensen, K., and M. Podolskij (2007): "Realized Range Based Estimation of Integrated Variance," *Journal of Econometrics*, 141, 323–349.
- Curcio, R., and C. Goodhart (1992): "When Support/Resistance Levels are Broken, Can Profits be Made? Evidence from the Foreign Exchange Market," FMG Discussion Papers dp142, Financial Markets Group.

- DACOROGNA, M., U. A. MULLER, R. J. NAGLER, R. B. OLSEN, AND O. V. PICTET (1993): "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," *Journal of International Money and Finance*, 12, 413–438.
- DAVIDSON, J., AND N. HASHIMZADE (2009): "Type I and type II fractional Brownian motions: A reconsideration," *Computational Statistics & Data Analysis*, 53(6), 2089–2106.
- DEGRAUWE, P., AND D. DECUPERE (1992): "Psychological Barriers in the Foreign Exchange Markets," Journal of international and comparative economics, 1, 87–101.
- DIEBOLD, F. X., AND R. S. MARIANO (1995): "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, 13(3), 253–63.
- DIEBOLD, F. X., AND G. D. RUDEBUSCH (1991): "On the power of Dickey-Fuller tests against fractional alternatives," *Economics Letters*, 35(2), 155–160.
- DING, Z., C. GRANGER, AND R. ENGLE (1993): "A Long Memory Property of stock Market Returns and a New Model," *Journal of Empirical Finance*, 1, 83–106.
- ENGLE, R., AND C. GRANGER (1987): "Cointegration and error correction: representation estimation, and testing," *Econometrica*, 55, 251276.
- ENGLE, R. F. (1982): "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, 50, 987–1008.
- FAMA, E. F. (1970): "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, 25(2), 383–417.
- ———— (1991): "Efficient Capital Markets: II," *Journal of Finance*, 46(5), 1575–617.
- Feller, W. (1951): "The asymptotic distribution of the range of sums of independent random variables," *Annals of Mathematical Statistics*, 22, 427–432.
- Gallant, A. R., C.-T. Hsu, and G. Tauchen (1999): "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," *The Review of Economics and Statistics*, 84, No. 4., 617–631.
- Garman, M. B., and M. J. Klass (1980): "On the Estimation of Security Price Volatilities from Historical Data," *Source: The Journal of Business*, Vol. 53, No. 1, 67–78.
- Granger, C., and Z. Ding (1996): "Modeling volatility persistence of speculative returns," *Journal of Econometrics*, 73, 185–215.
- Granger, C. W. J. (1981): "Some properties of time series data and their use in econometric model specification," *Journal of Econometrics*, 16, 121130.
- HUALDE, J., AND P. ROBINSON (2010): "Semiparametric inference in multivariate fractionally cointegrated systems," *Journal of Econometrics*, 157, 492–511.
- JOHANSEN, S. (1991): "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," *Econometrica*, 59(6), 1551–80.
- ——— (2008): "A representation theory for a class of vector autoregressive models for fractional processes," *Econometric Theory*, Vol 24, 3, 651–676.
- Johansen, S., and M. Ø. Nielsen (2010a): "Likelihood inference for a fractionally cointegrated vector autoregressive model," CREATES Research Papers 2010-24, School of Economics and Management, University of Aarhus.

- JOHANSEN, S., AND M. Ø. NIELSEN (2010b): "Likelihood inference for fractionally cointegrated vector autoregressive model," Discussion paper, CREATES, University of Aarhus.
- ———— (2011): "Likelihood inference for a fractionally cointegrated vector autoregressive model," Discussion paper, University of Aarhus.
- Kahneman, D., and A. Tversky (1979): "Prospect Theory: An Analysis of Decision under Risk," *Econometrica*, 47(2), 263–91.
- KAVAJECZ, K. A., AND E. R. ODDERS-WHITE (2004): "Technical Analysis and Liquidity Provision," *Review of Financial Studies*, 17, 1043–1071.
- KUNITOMO, N. (1992): "Improving the Parkinson Method of Estimating Security Price Volatilities," *Journal of Business*, 65(2), 295–302.
- LASAK, K. (2008): "Maximum likelihood estimation of fractionally cointegrated systems," Discussion paper, CREATES Research Paper 2008-53.
- LIM, K., AND R. BROOKS (2011): "The evolution of stock market efficiency over time: a survey of the empirical literature," *Journal of Economic Surveys*, 25, 69–108.
- Lo, A. W., H. Mamaysky, and J. Wang (2000): "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," *Journal of Finance*, 55(4), 1705–1770.
- MARINUCCI, D., AND P. M. ROBINSON (1999): "Alternative Forms of Fractional Brownian Motion," *Journal of Statistical Planning and Inference*, 80, 111–122.
- Martens, M., and D. van Dijk (2007): "Measuring volatility with the realized range," *Journal of Econometrics*, 138, 181–207.
- MENKHOFF, L. (1998): "The noise trading approach questionnaire evidence from foreign exchange," Journal of International Money and Finance, 17(3), 547–564.
- Murphy, J. (1999): Technical Analysis of the Financial Markets. Prentice Hall Press.
- NIELSEN, M. Ø. (2005): "Multivariate Lagrange Multiplier Tests for Fractional Integration," Journal of Financial Econometrics, 3(3), 372–398.
- NIELSEN, M. Ø., AND K. SHIMOTSU (2007): "Determining the cointegration rank in nonstationary fractional system by the exact local Whittle approach," *Journal of Econometrics*, 141, 574–596.
- OSLER, C. (2000): "Support for resistance: technical analysis and intraday exchange rates," *Economic Policy Review*, (Jul), 53–68.
- Parkinson, M. (1980): "The Extreme Value Method for Estimating the Variance of the Rate of Return," *The Journal of Business*, 53, 61–65.
- ROBINSON, P. M., AND Y. YAJIMA (2002): "Determination of cointegrating rank in fractional systems," *Journal of Econometrics*, 106, 217–241.
- ROGERS, L., AND S. SATCHELL (1991): "Estimating variance from high, low and closing prices," *Annals of Applied Probability*, 1, 504–512.
- ROSSI, E., AND P. SANTUCCI DE MAGISTRIS (2009): "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," Discussion paper, University of Pavia, Italy.

- Shimotsu, K., and P. Phillips (2005): "Exact local Whittle estimation of fractional integration.," *Annals of Statistics*, 33, 1890–1933.
- Yang, D., and Q. Zhang (2000): "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," *Journal of Business*, 73(3), 477–91.

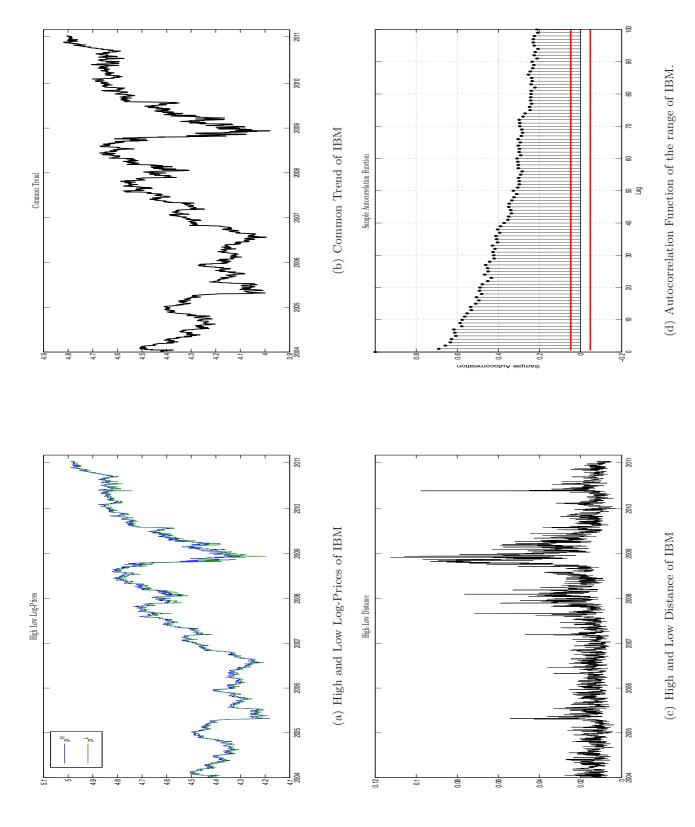
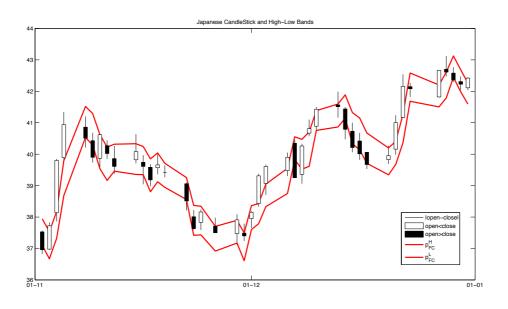


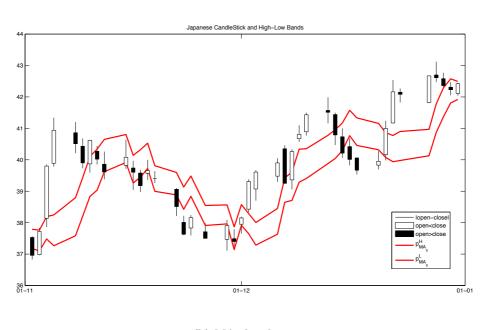
Figure 1: High and Low log prices, Common trend, Range and its autocorrelation function

	d^H	d^L	\hat{T}_0	d^R	L(0)	L(1)	ADF^{H}	ADF^L	ADF^R	BH^H	BH^L	BH^R	BH^{HH}	BH^{LL}
	1.0848	1.0654	0.5331	0.5637	-1.2991	-1.6468	0.6349	0.5552	0.0000	0.4041	0.3038	0.0221	0.4077	0.3064
	1.1273	0.9824	0.3747	0.6218	-1.2991	-1.6421	0.3249	0.3055	0.0000	0.2751	0.2512	0.0244	0.2809	0.2432
	1.0016	0.9733	0.5297	0.6330	-1.2991	-1.6463	0.4173	0.4191	0.0000	0.4009	0.6812	0.1268	0.3366	0.6325
	1.1124	0.9596	0.0882	0.6770	-1.2991	-1.6444	0.6339	0.5353	0.0000	0.2177	0.4334	0.0611	0.2100	0.4161
	1.0309	1.0827	0.1955	0.6235	-1.2991	-1.6453	0.4374	0.4546	0.0000	0.2588	0.1719	0.0545	0.3441	0.4593
\sim	1.0137	0.9823	0.1120	0.5523	-1.2991	-1.6443	0.7602	0.7546	0.0000	0.1970	0.1625	0.0105	0.2695	0.7133
	0.7924	0.8389	7.7693	0.5582	-1.2991	-1.6412	0.5075	0.4934	0.0000	0.2902	0.5934	0.0107	0.26951	0.71334
	1.0618	1.0307	0.0013	0.5807	-1.2991	-1.6460	0.4586	0.3933	0.0000	0.4644	0.4325	0.0400	0.4885	0.4236
	0.9645	0.9619	0.3197	0.6862	-1.2991	-1.6444	0.2269	0.2252	0.0000	0.7260	0.3328	0.0532	0.5480	0.1356
	1.0880	0.9651	0.4989	0.6104	-1.2991	-1.6439	0.5884	0.5573	0.0000	0.3391	0.3984	0.0195	0.3375	0.3933
	0.9284	1.0163	0.2995	0.6913	-1.2991	-1.6441	0.8446	0.8474	0.0000	0.3364	0.1888	0.0169	0.1114	0.3143
	0.9452	0.9877	0.0243	0.5963	-1.2991	-1.6440	0.5117	0.4852	0.0000	0.2433	0.2144	0.0324	0.2017	0.0732
	1.0808	1.0018	2.6934	0.6623	-1.2991	-1.6440	0.8250	0.7689	0.0000	0.7496	0.3154	0.0150	0.5617	0.3417
\mathcal{C}	1.0784	1.0290	0.2405	0.6488	-1.2991	-1.6460	0.7680	0.7687	0.0000	0.6995	0.7717	0.0334	0.6168	0.6883
	0.9426	0.9450	0.3649	0.5684	-1.2991	-1.6406	0.3885	0.3074	0.0000	0.7268	0.4298	0.0402	0.8001	0.4969
	1.0021	0.8836	4.0912	0.5837	-1.2991	-1.6374	0.0226	0.0068	0.0000	0.1176	0.2276	0.0402	0.1117	0.2051
	0.8719	0.9699	0.3984	0.5472	-1.2991	-1.6437	0.6771	0.6770	0.0000	0.1382	0.7410	0.0158	0.3522	0.9141
	1.0685	1.0098	0.0809	0.6524	-1.2991	-1.6422	0.9368	0.9242	0.0000	0.3775	0.1756	0.0177	0.3055	0.1499
	0.9238	0.9946	0.1789	0.5451	-1.2991	-1.6435	0.5975	0.5990	0.0000	0.3930	0.1961	0.0108	0.1248	0.6076
M	0.8719	0.9699	0.3984	0.5472	-1.2991	-1.6437	0.2188	0.1782	0.0000	0.2930	0.1466	0.0143	0.2640	0.1362
<u>.</u>	1.0639	0.9716	1.2338	0.5397	-1.2991	-1.6428	0.2260	0.1866	0.0000	0.5058	0.9536	0.0164	0.4936	0.2856
L	1.0163	0.9729	1.5089	0.5581	-1.2991	-1.6432	0.1189	0.1121	0.0000	0.1844	0.2010	0.0436	0.1800	0.1962
	0.9626	0.9120	0.0034	0.5221	-1.2991	-1.6448	0.3415	0.3029	0.0000	0.2156	0.1942	0.0141	0.0961	0.1937
	0.9439	1.0036	5.1116	0.4385	-1.2991	-1.6363	0.3527	0.2142	0.0000	0.2087	0.2184	0.0057	0.7931	0.1609
	1.0061	0.9731	4.4517	0.6318	-1.2991	-1.6390	0.5508	0.4881	0.0000	0.3233	0.3027	0.0128	0.2979	0.2811
	0.8134	0.8893	0.1183	0.7296	-1.2991	-1.6233	0.3598	0.3376	0.0000	0.2446	0.1160	0.1137	0.2072	0.1035
	0.9708	0.9769	0.2015	0.6304	-1.2991	-1.6433	0.3999	0.3807	0.0000	0.5784	0.4849	0.0477	0.5443	0.2838
	0.9093	0.8937	0.3750	0.6228	-1.2991	-1.6430	0.2418	0.1657	0.0000	0.7232	0.1651	0.0118	0.3188	0.1189
WMT	0.8327	0.8767	1.2432	0.5688	-1.2991	-1.6401	0.7634	0.7711	0.0000	0.0895	0.0684	0.0197	0.0888	0.0676
Į	0.8810	0.8968	0.2200	0.5532	-1.2991	-1.6353	0.3639	0.3612	0.0000	0.5522	0.6749	0.0473	0.5922	0.4737

equal to 0 and 1, respectively. ADF^H , ADF^L and ADF^R are the p-values of the augmented Dickey-Fuller test of unit root for p^H , p^L and p^R . Table also reports the p-value of the Breitung and Hassler (2002) test, BH, for unit root against fractional alternatives, for p^H_t , p^L_t and R_t . The Table 1: Long memory and fractional cointegration estimation. Table reports the long memory estimates of d of p^H and p^L based on the exact local Whittle estimator of Phillips and Shimotsu (2005). The T_0 is the test statistic for the equality of the integration order as in Nielsen and Shimostu(2007). L(0) and L(1) is the value of loss function of Nielsen and Shimostu(2007), evaluated in correspondence of a cointegration rank last two columns reports the Breitung and Hassler (2002) test for the null hypothesis that Δp_t^H and Δp_t^L are I(0), against fractional alternatives.



(a) FC bands



(b) MA₅ bands

Figure 2: Japanese CandleStick with predicted high-low bands. Panel a), the red lines are the high-low band based on model (10). Panel b) the red lines are the high-low bands based on the 5 days moving average. The sample covers the period from November 1, 2010 to December 31, 2010.

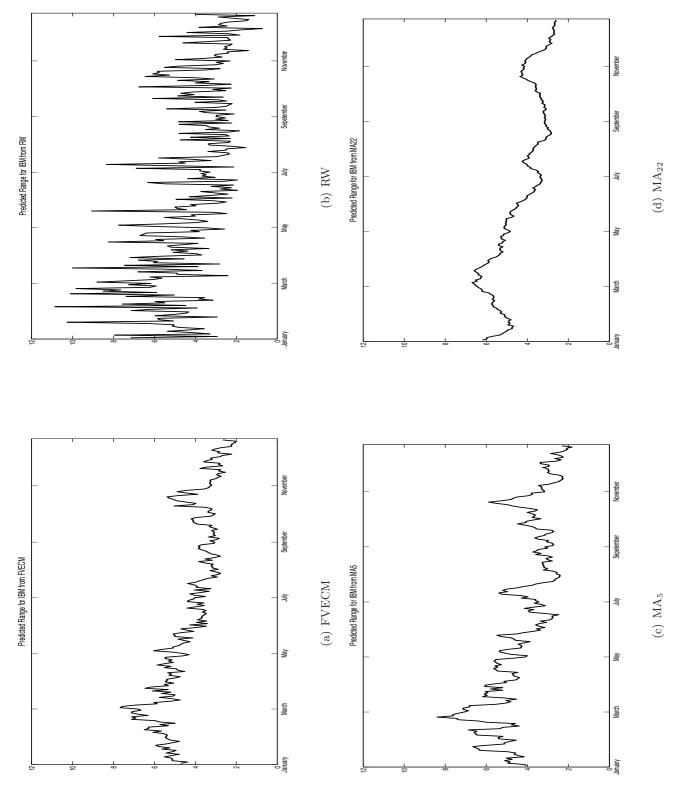


Figure 3: Forecasts of daily range based on different models.

	q	α_H	α_L	μ	γ_{11}	γ_{12}	γ_{21}	722	R_H^2	R_L^2	d = 1
	0.3802	-0.7876	1.9877	0.0291	0.1187	0.8603	0.3370	1.3752	0.0782	0.0590	0.0795
	0.3502	-0.7125	1.8281	0.0393	0.2689	0.1149	-0.0569	0.4921	0.0298	0.1560	0.5162
	0.3375	-1.0255	2.4771	0.0306	0.2686	-0.8925	0.0422	1.4337	0.0577	0.0873	0.3629
	0.3844	0.2369	2.2214	0.0372	-0.2898	-0.5099	0.6056	1.1072	0.0330	0.1097	0.0852
	0.2697	-2.3315	2.4985	0.0467	1.2326	-0.5665	-0.9508	1.1358	0.0547	0.0777	0.1407
	0.4275	-0.6787	1.4959	0.0229	0.1058	-0.3997	0.2773	0.7573	0.0612	0.0662	0.0905
	0.3575	-0.5380	1.9635	0.0469	0.0715	-0.4240	0.1927	0.9602	0.0382	0.0829	0.8450
	0.3777	-0.8042	1.8971	0.0268	-0.0255	-0.6022	0.2900	1.1052	0.0832	0.0772	0.2250
	0.3063	-1.5021	2.1362	0.0354	1.0623	-0.1047	-0.8818	0.7130	0.0212	0.1153	0.0058
	0.3147	-0.8360	2.2335	0.0266	0.0995	-0.6979	0.2625	1.3624	0.0721	0.0842	0.0516
	0.2948	-1.1819	2.9520	0.0281	0.7487	-0.6773	-0.4761	03550	0.0242	0.1580	0.0682
	0.5045	-0.5667	1.1586	0.0245	0.0301	-0.0405	0.1366	0.4246	0.0579	0.0899	0.2885
IBM	0.2716	-1.0091	3.6272	0.0375	0.2703	-1.2317	0.0306	2.0732	0.0420	0.1185	0.2019
7	0.31111	-0.7790	3.3368	0.0199	-0.0398	-1.5638	0.3408	2.0540	0.0498	0.0838	0.0193
	0.3511	-0.4001	2.1323	0.0187	-0.1219	-0.5973	0.2461	1.0202	0.0265	0.0945	0.9027
	0.4055	0.6632	2.3961	0.0365	-0.9959	-1.0623	1.1665	1.6600	0.0404	0.1285	0.3737
	0.3837	-1.1606	2.1448	0.0190	0.6585	-0.5196	-0.4301	1.0009	0.0433	0.1368	0.8407
	0.4179	-0.7837	1.2345	0.0187	0.1014	0.0076	0.0849	0.4602	0.0657	0.0921	0.4340
_	0.2533	-1.5769	4.2245	0.0238	0.5656	-1.9158	-0.4243	2.3400	0.0404	0.1090	0.7580
M	0.3837	-1.1606	2.1448	0.0190	0.6585	-0.5196	-0.4301	1.0009	0.0433	0.1368	0.1370
k ,	0.3772	-0.9899	1.9819	0.0236	0.2362	-0.6770	-0.0323	1.0499	0.0708	0.0784	0.2805
L	0.2948	-2.3810	1.9808	0.0230	1.3380	-0.3381	-1.2334	0.7385	0.0464	0.0817	0.2973
	0.5044	-0.6663	1.1935	0.0197	0.1622	-0.2072	0.0241	0.4410	0.0726	0.0796	0.0810
	0.5389	-0.1512	1.8463	0.0179	-0.0526	-0.3057	0.0960	0.4942	0.0431	0.3229	0.9057
	0.2686	-1.4082	3.4427	0.0420	0.1897	-1.8229	-0.0263	2.2960	0.0738	0.0783	0.3577
	0.2631	-1.7507		0.0475	0.6894	-0.0560	-0.5969	0.4932	0.0567	0.0876	0.6518
	0.3402	-0.6000		0.0318	0.1768	-0.2775	0.0241	0.8860	0.0257	0.1457	0.1235
	0.3611	-0.3482	• •	0.0210	-0.0092	-0.6247	0.2592	1.1408	0.0324	0.1306	0.6763
<u>.</u> .	0.4395	-0.7569		0.0167	0.4527	0.2228	-0.2677	0.1232	0.0296	0.1328	0.9219
	0.4183	-0.0364		0.0309	-0.6596	-0.6936	0.6496	0.9401	0.0471	0.0576	0.3069

Table 2: FVECM estimation. Bold means significance at 5%.

			p_t^H	H					p_t^I	2		
		MSE			MAE			MES			MAE	
	RW		MA_{22}	RW	MA_5	MA_{22}	RW	MA_5	MA_{22}	RW	MA_5	MA_{22}
AXP	0.0089	0.0000	0.0000	0.0076	0.0000	0.0000	0.0042	0.0000	0.0000	0.1359	0.0000	0.0000
BA			0.0000	0.3395	0.0000	0.0000	0.0021	0.0000	0.0000	0.0442	0.0000	0.0000
BAC			0.0000	0.7831	0.0000	0.0000	0.6205	0.0000	0.0000	0.6517	0.0000	0.0000
CAT			0.0000	0.0442	0.0000	0.0000	0.0022	0.0000	0.0000	0.0015	0.0000	0.0000
CVX			0.0000	0.9611	0.0000	0.0000	0.0012	0.0000	0.0000	0.0077	0.0000	0.0000
DD			0.0000	0.0858	0.0000	0.0000	0.0025	0.0000	0.0000	0.0456	0.0000	0.0000
GE			0.0000	0.6094	0.0000	0.0000	0.7163	0.0000	0.0000	0.4283	0.0000	0.0000
HD			0.0000	0.7307	0.0000	0.0000	0.1004	0.0000	0.0000	0.4059	0.0000	0.0000
HPQ			0.0000	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0305	0.0000	0.0000
IBM			0.0000	0.0042	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
JNJ			0.0000	0.0031	0.0000	0.0000	0.0003	0.0000	0.0000	0.0045	0.0000	0.0000
JPM			0.0000	0.1722	0.0000	0.0000	0.0372	0.0000	0.0000	0.1714	0.0000	0.0000
KFT			0.0000	0.2294	0.0000	0.0000	0.0095	0.0000	0.0000	0.1471	0.0000	0.0000
MCD			0.0000	0.5012	0.0000	0.0000	0.0455	0.0000	0.0000	0.1225	0.0000	0.0000
PFE			0.0000	0.0102	0.0000	0.0000	0.0149	0.0000	0.0000	0.0577	0.0000	0.0000
PG			0.0000	0.5565	0.0000	0.0000	0.3134	0.0000	0.0000	0.7674	0.0000	0.0000
L			0.0000	0.0005	0.0000	0.0000	0.0160	0.0000	0.0000	0.2384	0.0000	0.0000
$Z\Lambda$			0.0000	0.0822	0.0000	0.0000	0.2841	0.0000	0.0000	0.8604	0.0000	0.0000
WMT			0.0000	0.3800	0.0000	0.0000	0.0400	0.0000	0.0000	0.0624	0.0000	0.0000
XOM			0.0000	0.4371	0.0000	0.0000	0.0033	0.0000	0.0000	0.0043	0.0000	0.0000

Table 3: Diebold Mariano test for out-of-sample forecast: table reports the p-value of the Diebold-Mariano test based on the mean-squared error, MES, and on the mean-absolute error, MAE. The forecast period includes the last year of transactions.

Strategy Perfomances

		MA_{22}	17224	20535	11860	25040	21559	16589	17416	18255	23278	19146	21278	16698	24705	20206	21549	16933	20055	21335	18454	25861
	0.5	MA_5	22381	19639	40545	13106	15650	14794	23566	14939	17711	22487	18797	14993	23136	26891	17576	19064	26879	20425	19891	21642
	$\delta =$	RW	27421	20610	17548	15337	19497	20664	15427	20479	19333	22475	21938	31478	20303	21317	22676	18259	24236	21664	19414	21490
arian		FC	19080	15247	5880	23311	24470	20736	17639	17417	17535	19901	20260	31943	26583	24973	17227	18560	20214	20583	18074	22877
Contrarian		MA_{22}	21248	20148	15891	21752	21374	19543	19350	21465	21487	20849	20577	18210	20712	21410	20569	19901	20750	20407	21239	21062
	0.25	MA_5	21737	19378	34157	18273	18726	18920	21691	20304	19137	21372	21479	18454	21242	19828	19346	20037	22860	20501	21207	19407
	$\rho = 0$	RW	22947	19807	25887	18540	21052	21592	17758	25120	20416	21214	22905	17633	18697	21357	20560	21319	21769	20674	18173	21955
		FC	15248	18534	25074	16840	20387	22736	21244	26321	18348	18597	23268	19067	18820	20422	20175	20043	19842	19998	19038	20405
		MA_{22}	21831	19030	31268	15391	18091	23411	22454	21302	16823	19086	18470	22750	15867	19379	18161	23351	19530	21297	18363	15145
	0.5	MA_5	15299	19458	7462	28227	24690	25736	15309	25504	21858	18596	20782	23608	16864	14424	21907	20475	14312	18982	19523	17787
	$\delta =$	RW	12414	18318	15439	23830	19643	18158	23109	18362	19839	18705	17857	10405	19193	18297	17043	21417	15849	17834	20154	17960
ollowing		FC	17923	24645	44110	15541	15705	18250	20217	21882	21941	21316	19378	10448	14538	15650	22410	21055	19029	18869	21603	16942
Trend-Following	0.25	MA_{22}	18503	19640	24399	18215	18612	20320	20522	18480	18471	19086	19346	21474	19253	18597	19309	20003	19198	19521	18719	18900
		MA_5	17674	20419	10429	21467	21198	20874	17975	19447	20660	18596	18506	21107	18663	20061	20492	19826	17307	19277	18713	20499
	$\delta = 0$	RW	16588	19832	13672	20843	18710	18106	21738	15643	19293	18705	17339	21708	21168	18583	19134	18606	18122	19125	21853	18018
		FC	25131	21226	14049	22955	19395	17100	18010	14890	21511	21316	17094	19921	21035	19460	19563	19809	19857	19806	20832	19373
			AXP	BA	BAC	CAT	CVX	DD	GE	HD	HPQ	IBM	JNJ	JPM	KFT	MCD	PFE	PG	T	$Z\Lambda$	MMT	XOM

Table 4: Stop-loss and Contarian Strategy performances based on different H-L bands. FC refers to the strategy based on the predicted high-low bands from model (10). RW refers to the strategy based on the predicted high-low bands from a random walk model. MA5 and MA22 refers to the strategy based on the predicted high-low bands from a moving average model of the last 5 and 22 days, respectively. The initial monetary amount is 20000 dollars.

	B&H	8.2698	3.7596	I	4.2094	0.9740	4.8798	I	3.909	7.4841	10.248	3.0183	5.2394	I	I	I	I	I	I	I	I
0	MA_{22}	I	12.031	I	0.7994	I	I	4.8961	19.271	I	I	1.4464	15.187	I	8.7672	0.6980	1.3817	I	10.246	6.1568	I
Sharpe Ratio	MA_5	I	10.257	I	2.6885	I	I	I	18.961	I	I	6.1025	18.334	I	2.7998	2.5382	1.0270	I	I	5.3207	I
SF	RW	I	7.7032	I	I	I	I	15.211	8.2744	I	3.2041	8.2037	9.0347	I	4.059	5.7428	1.0763	1.1209	4.9179	0.6598	I
	FC	I	12.054	I	I	0.7207	I	10.406	23.947	I	4.0053	8.2920	16.982	I	5.0193	I	1.5370	4.9675	7.9862	7.3423	I
	B&H	104.12	21.538	75.367	26.083	10.481	31.542	23.125	18.213	18.274	15.595	4.1811	80.732	9.3886	6.3828	11.010	6.8057	8.7918	7.9600	6.0072	8.2115
ıce	MA_{22}	2.6758	1.3340	3.4755	1.9650	0.2622	1.1014	3.6149	0.7642	0.5462	0.5858	0.1474	2.5489	0.3429	0.3898	0.7808	0.2902	0.4434	0.8101	0.2444	0.3344
Payoff Variance	MA_5	1.9014	1.3403	6.3379	1.8975	0.2215	0.8267	2.0740	0.8297	0.6358	0.4672	0.1974	1.7588	0.4070	0.3934	0.8422	0.2840	0.3493	0.5025	0.1955	0.3104
Pay	RW	2.1412	1.2431	3.3298	2.1414	0.3441	0.6618	4.3626	0.9362	0.5161	0.5118	0.2202	3.3331	0.4180	0.4088	0.8730	0.4075	0.4452	0.8200	0.3474	0.4162
	FC	2.3969	1.1327	10.600	1.8900	0.3049	0.8208	2.1932	0.6102	0.7340	0.4362	0.1472	1.9902	0.3281	0.3839	0.7179	0.2706	0.4013	0.7179	0.1726	0.2554
sions	MA_{22}	46	48	39	41	38	43	51	43	49	43	33	38	45	45	41	39	42	20	41	44
f Transactions	MA_5	53	52	49	49	40	20	20	51	53	53	40	52	51	51	44	48	20	49	45	42
Number of	RW	61	99	55	65	52	62	62	54	61	65	56	59	89	69	62	62	62	64	65	59
Ŋ	FC	41	48	36	43	39	43	48	42	44	47	37	35	44	44	39	42	39	46	37	38
	B&H	42408	23776	21015	24343	20207	25828	17625	24141	28131	30263	21329	27111	19905	19717	19761	19467	19480	19668	18708	16770
	MA_{22}	19331	23499	12912	20158	19322	19177	22227	24301	19104	19406	20132	27094	19568	21361	20106	20003	21736	22260	20747	19135
Payoff	MA_5	19214	22891	12649	20792	19446	17101	19198	24354	18855	19978	20668	26441	18969	20418	20532	21021	20217	19020	20574	19114
	RW	15819	21797	17081	18857	19441	15881	28488	21998	19273	20591	20955	23154	19495	20633	21330	19486	18868	21070	20076	19859
	FC	17780	23240	15139	19281	20082	17847	23825	24779	19490	20195	20805	26914	19480	20763	19399	20461	20758	21666	20743	19381
	'	AXP	$_{ m BA}$	$_{ m BAC}$	CAT	CVX	DD	GE	HD	$^{\mathrm{HPQ}}$	IBM	JNJ	$_{ m JPM}$	KFT	$_{ m MCD}$	PFE	PG	Τ	ΔV	$_{ m MML}$	XOM

sell at the final date. The initial monetary amount is 20000 dollars. The variance of the portfolio increments is calculated as $var(\Delta A_t/100)$. The RW refers to the strategy based on the predicted range from a random walk model. MA_5 and MA_{22} refers to the strategy based on the predicted range from a moving average model of the last 5 and 22 days, respectively. B&H is the payoff of a strategy based on buy at the initial date and Sharpe Ratio is calculated as $SR = \frac{\mu}{\sigma} \cdot 100$, where $\mu = mean(\Delta A_t/A_{t-1})$ and $\sigma = std(\Delta A_t/A_{t-1})$. The Sharpe ratio is only reported for positive Table 5: Strategy performances based on different daily range models. FC refers to the strategy based on the predicted range from model (10). values of μ .