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Abstract

The volatility of financial returns is affected by rapid and large increments. Such move-
ments can be hardly generated by a pure diffusive process for stochastic volatility. On
the contrary jumps in volatility are important because they allow for rapid increases, like
those observed during stock market crashes. We propose an extension of HAR model
for estimating the presence of jumps in volatility, using the realized-range measure as a
volatility proxy. By focusing on a set of 36 NYSE stocks, we show that, once that squared
jumps in prices are disentangled from integrated variance, then there is a positive prob-
ability of jumps in volatility, conditional on the past information set. We then focus on
the contribution of jumps during periods of financial turmoil. We analyze the dependence
between the first principal component of the volatility jumps with a set of financial co-
variates including VIX, S&P500 volume, CDS, and Federal Fund rates. We observe that
CDS captures large part of the expected jumps moves, verifying the common interpreta-
tion that large and sudden increases in volatility in stock markets over some days in the
recent financial crisis have been caused by credit deterioration of US bank sector. Finally,
we extend the model incorporating the credit-default swap in the dynamics of the jump
size and intensity. The estimates confirm the significant contribution of the credit-default
swap to the dynamics of the volatility jump size.
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1 Introduction

Recent empirical studies indicate that diffusive stochastic volatility and jumps in returns are

incapable of capturing the empirical features of equity index returns. Eraker et al. (2003)

report convincing evidence that volatility of financial returns is affected by rapid and large

increments. Such movements can be hardly generated by a pure diffusive process for stochastic

volatility. More precisely, in a pure diffusive stochastic volatility setup, volatility can only

increase by a sequence of small positive increments. On the contrary jumps in volatility are

important because they allow for rapid increases, like those observed during stock market

crashes. Eraker et al. (2003) results strongly suggest the presence of both jumps in volatility

and returns. They also note that jumps in returns can generate large returns but the impact of

jumps is transient. Furthermore, diffusive stochastic volatility and jumps in returns can both

generate realistic patterns of both unconditional and conditional non-normalities in returns,

but they have difficulties in capturing the pattern followed by conditional volatility of returns.

Differently, jumps in volatility are rapid but persistent factors driving volatility. In fact, once at

the high level, volatility reverts to its long run mean, so that jumps in volatility have a persistent

effect. In those cases, the Broadie et al. (2007) test to detect jumps in volatility rejects a

square-root stochastic volatility model and an extension with jumps in prices. A reason might

be that these models include volatility increments which are approximately normal. Differently,

Broadie et al. (2007) show that a model with contemporaneous jumps in volatility and prices

easily passes these tests. In Eraker et al. (2003), Eraker (2004), Broadie et al. (2007), and

Chernov et al. (2003) the estimation of jumps in volatility is based on stochastic volatility

models, with jumps in prices and/or in instantaneous volatility, expressed in continuous time.

Todorov and Tauchen (2011), by means of a non-parametric analysis on the VIX volatility

index, find that market volatility involves many small changes as well as occasional big moves,

where the presence of big moves justifies the use of jumps in volatility modelling. Further, they

find strong correlation between return and volatility jumps measured as realized jumps in both

series. In general, both the return-based and option-based evidence support the presence of

jumps in returns as well as jumps in volatility.

In continuous-time setting, adding jumps to stochastic volatility models involves an ad-

ditional set of latent state variables. The estimation of stochastic volatility with jumps in
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returns and/or volatilities can be possible only if the unobserved state variables are filtered

out. Chernov et al. (2003) use the EMM, Pan (2002) adopt the implied-state technique to

fit her models to returns and option prices. Eraker et al. (2003), Eraker (2004), estimate by

means of simulation-based methods. Li et al. (2008) employ MCMC techniques for inferences

of continuous-time models with stochastic volatility and infinite-activity Lévy jumps using dis-

cretely sampled data.

We contribute to this strand of the financial econometrics literature by focusing on the

modeling and on the estimation of the jump component in volatility in discrete time. As a

distinctive feature of our contribution, we use realized ranges as non parametric ex-post measure

of the daily integrated volatility. Such a choice allows simplifying the computational burden

of estimating the jumps in volatility as it circumvents the need to integrate out unobservable

quantities. As Todorov (2009, 2011) has pointed out, the convenience of this method stems from

the fact that the inference on the volatility process is based on estimates of latent quantities

of the price process, i.e. the integrated volatility and the sum of squared jumps. For example,

we can make inference on the volatility jumps regardless of how complicated the model for the

stochastic volatility is. Furthermore, recent theoretical findings by Christensen and Podolskij

(2007), prove that realized range, that is based on prices sampled at intradaily frequency, is a

very efficient estimator of the quadratic variation of the returns. In our framework, efficiency

of the integrated variance estimation is a crucial element, since the potential reduction of the

measurement error obtained with realized-range measures can lead to more precise evaluations

of the volatility jump component. Given that our focus is on the volatility jumps, we employ

the so called bias corrected range-based bipower variation, see Christensen et al. (2009). This

is a consistent estimator of the integrated variance, when the price process is affected by jumps

and contaminated by microstructure noise. In this way, we are able to disentangle the jump

component due to the presence of jumps in prices from the total price variation, leaving us with

a volatility series that contains the volatility jumps, and allow us to identify them, if present.

Consequently, we treat the bias corrected range-based bipower variation as its asymptotic limit,

namely the integrated variance.

We thus propose a parametric model in discrete time to evaluate the probability and the in-

tensity of the volatility jumps. In particular, given the well documented long-range dependence
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of the realized variance estimators, see Andersen et al. (2003) among others, and the persistent

effects of jumps in volatility, we suggest a conditional model that generalizes the well known

HAR model, introduced by Corsi (2009), but anticipated in meteorological applications by

Jewson and Caballero (2003) with the AROMA model, allowing for the presence of an additive

dynamic conditional volatility jump term. The jump component is modelled like a compound

Poisson process allowing for multiple jumps per day, as in Chan and Maheu (2002) and Ma-

heu and McCurdy (2004), whose intensity and magnitude parameters are varying over time

according to an autoregressive specification. Following this approach, we are able to model and

identify periods with an increasing volatility jump activity, that reflect periods of high market

stress, since the unexpected jump risk cannot be hedged away and investors may demand a

large risk premium to carry these risks. The discrete time specification of the HAR with a

jump component, called Heterogeneous Autoregressive-Volatility-Jumps (HAR-V-J) model, is

estimated by maximum likelihood.

The empirical analysis focus on 36 stocks quoted at the New York Stock Exchange, repre-

senting nine sectors of the U.S. economy: banks, insurance and financial services, oil gas and

basic materials, food beverage and leisure, health care, industrial goods, retail and telecommu-

nications, services, and technology. The estimation results point out that the jump activity is

characterized by two different periods. The first one, from 2004 to 2007, of low jump activity,

the second, from mid-2008 to mid-2009, of high jump activity. In particular, during the second

period the jump component represents a relevant part of the estimated conditional volatility.

Given the estimated volatility jump sequences, we make a step forward toward the economic

interdependence between them and some covariates. Rangel (2011) conducts a similar analysis

focusing on the effect that scheduled announcements, like disclosure of public information re-

garding fundamental macroeconomic variables, have on the conditional jump intensity of daily

market returns. Our idea is to verify if the conditional expected volatility jump components

estimated for the set of stocks considered share some common components. The principal

components analysis (PCA) suggests that there is a jump volatility factor that is able to re-

sume most of the observed variability in the conditional expected jumps. We relate this jump

volatility factor to a set of daily financial variables, such as VIX, trading volume of S&P 500,

Federal Funds rate, and credit default swaps (CDS) on the US banks in order to investigate the
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potential determinants of occasional big moves in asset’s volatility. The main result of empirical

analysis is that CDS capture large part of the expected jumps moves, verifying the common

interpretation that large and sudden increases in volatility in stock markets over some days

in the recent financial crisis have been caused by credit deterioration of US bank sector. We

also argue that this result is not driven by the inclusion of the financial sector in the analysis.

In fact, a robustness check made excluding the volatility jumps associated with banks, lead to

almost identical results.

This paper is organized as follows. In Section 2 the econometric model is set out and the

estimation procedure is outlined. Section 3 illustrates the estimation results of the HAR-V-J

model with data on 16 NYSE stocks. Section 4 investigates the determinants of the common

component of estimated expected jumps and presents the estimates of an extended version of

the HAR-V-J. Section 5 concludes. The Appendix summarizes some results associated with

the realized range and presents the realized range estimator and the bias-corrected realized

range-based bipower variation which are used in the empirical analyses.

2 A model for realized range volatility with jumps

Our first research question is associated with the estimation of the jumps contribution to the

integrated volatility. A wide empirical literature is focused on modeling daily realized volatil-

ity. Andersen and Bollerslev (1998), Andersen et al. (2001) and Andersen et al. (2003), report

evidence of long memory in the ex-post volatility measurements, as realized volatility. How-

ever, Lieberman and Phillips (2008) argue that the long memory found in realized volatility

can be an artifact due to aggregation of intradaily squared returns. On the other hand, part

of the literature, following Granger and Hyung (2004), connects the observed high persistence

to the presence of level shifts in the mean of the volatility process, given that level shifts can

generate spurious evidence of long memory, see also Christensen and Santucci de Magistris

(2010) and Bordignon and Raggi (2010). The Heterogeneous Autoregressive (HAR) model by

Corsi (2009), an extension of the HARCH model of Muller et al. (1997), approximates the long

memory feature of ex-post volatility measures by means of a long lagged AR process.1 The

1In this regard, see also McAleer and Medeiros (2008) and Martens et al. (2009) for an application in terms
of forecast performance of a level shift model with HAR dynamics for realized volatility.
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HAR model mimics the asymmetric propagation of volatility, due to the presence of hetero-

geneous market participants. It’s an additive cascade model of different volatility components

each of which is generated by the actions of different types of market players. This additive

volatility cascade generates a simple long lagged AR-type model, as it considers averages of

realized volatilities over different time horizons. In the most common HAR specification, the

actual realized volatility is regressed on its past daily, weekly and monthly averages. The main

advantage of the HAR is therefore represented by its estimation simplicity, given that the model

can be evaluated by standard OLS.

Our research approach differs from the previously cited papers in the integrated volatility

estimators adopted, as we already anticipated. In fact, we focus on the Realized Range and not

on Realized Volatility. The Appendix discusses the estimator we consider, the bias-corrected

realized range-based bipower variation, denoted as RBV ∆
m,BC . Such a quantity, which is a proxy

of the integrated variance, is evaluated at the daily level from stock prices sampled at 1 minute

intervals.

Here we focus on the extension of the model proposed by Corsi (2009), adding a conditional

volatility jump component to the conditional mean. This additional term allows estimating the

probability and the impact of the volatility jumps on the dynamics of the continuous part of

the realized range, once it has been disentangled from the price jumps part (see the Appendix

for details on the estimator). Let Xt = logRBV ∆
m,BC,t be the daily logarithm of bias-corrected

realized range-based bipower variation and I t−1 be the time t − 1 information set, the HAR-

Volatility Jump (HAR-V-J) model for Xt is given by,

Xt = µ+ φDXt−1 + φWXW
t−1 + φMXM

t−1 + Zt + εt εt ∼ N(0, σ2
ε ) (1)

where

XW
t =

1

5

4∑

j=0

Xt−j , and XM
t =

1

22

21∑

j=0

Xt−j

represent the weekly and monthly volatility components, respectively, see also Corsi (2009).

This model for Xt implies that the RBV ∆
m,BC is given by a multiplicative structure such as

RBV ∆
m,BC,t = exp {X̄t−1} exp {Zt} exp {εt}
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where X̄t−1 = µ + φDXt−1 + φWXW
t−1 + φMXM

t−1. Hence, the jump term Jt = exp {Zt} acts as

a multiplicative factor in the volatility process. In case of no jumps Jt = 1, and the volatility

follows a HAR process. The jump term, Zt, in the period t log-volatility is given by

Zt =

Nσ,t∑

k=1

Yt,k

where the jump size is

Yt,k ∼ i.i.d.N (Θσ,t,∆σ,t) .

εt and Yt,k are assumed to be independent. Following Chan and Maheu (2002), Θσ,t and ∆σ,t

are modelled as a function of past log-volatility, namely

Θσ,t = ζ0 + ζ1Xt−1 (2)

and

∆σ,t = η0 + η1X
2
t−1. (3)

The jump component has a compound Poisson structure where the number of jumps arriving

between t− 1 and t, Nσ,t, is a Poisson counting process with intensity parameter Λσ,t > 0 and

density

P
(
Nσ,t = j|I t−1

)
=

e−Λσ,tΛj
σ,t

j!
, j = 0, 1, 2, ...

This implies that

E
[
Nσ,t|I t−1

]
= Var

[
Nσ,t|I t−1

]
= Λσ,t

so that the conditional density of Zt given Nσ,t and I t−1 is

Zt|Nσ,t = j, I t−1 ∼ N (jΘσ,t, j∆σ,t) (4)

Since E [Zt|Nσ,t = j, I t−1] = jΘσ,t, the conditional expected value of the jump component is

E
[
Zt|I t−1

]
= Θσ,tΛσ,t (5)
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where Θσ,t is assumed to be measurable with respect to I t−1, as in (2). Given the conditional

density of Zt in (4), the conditional variance of the jump component is

Var
[
Zt|I t−1

]
=

(
∆σ,t +Θ2

σ,t

)
Λσ,t, (6)

where ∆σ,t is assumed to be measurable with respect to I t−1, see (3). Whereas, as in Chan and

Maheu (2002), the unobserved log-volatility jump intensity is assumed to follow an autoregres-

sive conditional jump intensity specification

Λσ,t = Λ0 + λ1Λσ,t−1 + ψξt−1 (7)

such that the conditional jump intensity in period t depends on its own lag and on the lag

of the innovation term ξt, which represents the measurable shock constructed ex-post by the

econometrician. This shock, or jump intensity residual, is defined as

ξt = E
[
Nσ,t|I t

]
− Λσ,t.

thus ξt depends on the expected number of jumps measured with respect to the information set

including the contemporaneous information, i.e. at time t. It follows that the jump intensity

equation can be therefore rewritten as

Λσ,t = Λ0 + (λ1 − ψ)Λσ,t−1 + ψ E
[
Nσ,t−1|I t−1

]

with

E
[
Nσ,t|I t

]
=

∞∑

j=0

jP
(
Nσ,t = j|I t

)
. (8)

As noted by Chan and Maheu (2002) other functional forms that include nonlinearity also may

be very useful. The filtered probabilities P (Nσ,t = j|I t) are obtained by means of the Bayes’

law

P
(
Nσ,t = j|I t

)
=

P (Xt|Nσ,t = j, I t−1)P (Nσ,t = j|I t−1)

P (Xt|I t−1)
, j = 0, 1, 2, . . . (9)
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where

P
(
Xt|I t−1

)
=

∞∑

j=0

P
(
Xt|Nσ,t = j, I t−1

)
P
(
Nσ,t = j|I t−1

)

and P (Xt|Nσ,t = j, I t−1) is given by the density of εt. Analogously, we can compute the condi-

tional probability of tail events, such as P (Xt > u|I t−1). This allows to compare the predictive

abilities of events like log-volatility is above a given threshold of the HAR-V-J model to the

Gaussian HAR model.

2.1 Log-likelihood

Given equation (4), the first two conditional moments of Xt are given by

E
[
Xt|Nσ,t = j, I t−1

]
= µ+ φDXt−1 + φWXW

t−1 + φMXM
t−1 + jΘσ,t

and

Var
[
Xt|Nσ,t = j, I t−1

]
= σ2

ε + j∆σ,t.

As in Chan and Maheu (2002) the likelihood function of the model, conditional on the number

of arrivals,Nσ,t = j, and to I t−1, is therefore given by

f(Xt|Nσ,t = j, It−1) =
1√

2π(σ2
ε + j∆σ,t)

exp

(

−
(Xt − µ− φDXt−1 − φWXW

t−1 − φMXM
t−1 − jΘσ,t)2

2(σ2
ε + j∆σ,t)

)

so that the log likelihood function conditional on I t−1 is given by

)(Xt|I t−1) = log

(
∞∑

j=0

P (Nσ,t = j|I t−1) · f(Xt|Nσ,t = j, I t−1)

)

(10)

The likelihood function is then maximized with respect to the parameter vector,

θ = {µ,φD,φW ,φM , ζ0, ζ1, η0, η1,λ0,λ1,ψ, σ2
ε}. In the computation of the log-likelihood function

the expression in (10) is approximated by a finite sum, where we employ a truncation value of

20.

Adopting the expression in Maheu and McCurdy (2004, p.766), the first four conditional
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moments of Xt are:

E[Xt|I t−1] = X̄t−1 + Λσ,tΘσ,t (11)

Var[Xt|I t−1] = σ2
ε +

(
Θ2

σ,t +∆σ,t

)
Λσ,t (12)

Sk[Xt|I t−1] =
Λσ,t

(
Θ3

σ,t + 3Θσ,t∆σ,t

)

[
σ2
ε +

(
Θ2

σ,t +∆σ,t

)
Λσ,t

]3/2 (13)

Kur[Xt|I t−1] = 3 +
Λσ,t

(
Θ4

σ,t + 6Θ2
σ,t∆σ,t + 3∆2

σ,t

)

[
σ2
ε +

(
Θ2

σ,t +∆σ,t

)
Λσ,t

]2 (14)

The expected value of RBV ∆
m,BC,t = exp {Xt} conditional on I t−1 is

E
[
RBV ∆

m,BC,t|I t−1
]
=

∞∑

j=0

[
P
(
Nσ,t = j|I t−1

)
· exp

{
X̄t−1 + jΘσ,t +

1

2
(σ2

ε + j∆σ,t)

}]
(15)

Finally, the conditional expectation of Jt ≡ exp {Zt} is given by

Jt|t−1 ≡ E
[
Jt|I t−1

]
=

∞∑

j=0

P
(
Nσ,t = j|I t−1

)
· exp

(
jΘσ,t +

1

2
j∆σ,t

)
. (16)

In the next section, we estimate the HAR-V-J model by ML, following the steps outlined

above, to disentangle the volatility jump component, Jt, from the continuous volatility term,

represented by X̄t−1.

3 Volatility jumps in the US market

Our analysis is based on the intradaily returns of 36 equities of the S&P 500 index. Prices are

sampled at one minute frequency, from January 2, 2004 to December 31, 2009, for a total of 1510

trading days. The companies considered are shown in Table 1. We compute the RBV ∆
m,BC,t,

for each stock, according to (24), using one-minute returns. The parameter m is set equal the

average number of returns in one minute interval in each trading day for each stock considered,

while the number of intradily ranges is n = 390.

Figure 1 plots the dynamic behavior of the volatility of BA, IBM, JPM, and UPS. The

volatility is characterized by two dominant regimes. A long period of low volatility, approxi-
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mately from 2004 to 2007, which is followed by a period of high volatility in correspondence of

the financial crisis. It is interesting to note that the first part of the sample is not character-

ized by large jumps, while the period in correspondence of the recent financial crisis has many

large spikes. As expected, this suggests that during financial crises, the probability and the

magnitude of the jumps are higher.

As it is apparent from the second and third columns of Table 3, the series are right-skewed

and leptokurtic. The sample skewness is around 1, on average, while the kurtosis is generally

higher than three but smaller than six. This positive skewness could be related to the presence

of a few large values in the logRBV ∆
m,BC,t series, such as those observed during the financial

crisis (2008-2009). The unconditional non-normality could stem from the presence of jumps

in the volatilities, as well as to changes in the conditional behavior of the series. Explicitly

accounting for the presence of jumps allows to assume the conditional normality of the shocks,

as in (1). We estimate the model in (1) according to the maximum likelihood procedure outlined

in previous section. Table 2 reports the estimated parameters of the HAR-V-J for the 36 stocks

under analysis. Introducing the jump component in the model induces a better in-sample fit.

The likelihood-ratio test strongly rejects the null hypothesis, i.e. the HAR model with no

jumps, in all cases. Thus, when Λσ,t, Θσ,t and ∆σ,t are allowed to vary over time, we obtain an

improvement over the more traditional HAR model without jumps.

Focusing on the jump size mean, we note that the estimates of ζ0 in (2) are significant in

18 out of 36 cases, while those of ζ1 are generally positive but not statistically different from

zero. Furthermore, in 17 cases the jump size is statistically not different from zero, namely the

impact of jumps on the conditional mean of Xt tends to be centered around zero on average.

However, this does not imply that jumps do not affect the conditional moments of log-volatility.

Even when Θσ,t = 0 the jump dynamics affects the first four conditional moments in (11)-(14),

and thus the tail realizations. In particular, conditional skewness of log-volatility is affected by

the magnitude and sign of Θσ,t. The sample averages for the 36 stocks of Sk(Xt|I t−1), reported

in Table 3 are always positive and smaller than one. This means that including the jumps in

the model allows to partially account for the positive skewness observed in the log-volatility.

Analogous considerations hold for the sample averages of the conditional kurtosis.

The estimated jump sizes of the four stocks, representative of different sectors, plotted in
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Figure 2, display a similar behavior in the case of BA, IBM, and JPM. The average jump

size increases as the level of volatility increases, such as during the last two years. This is

particularly evident for the bank sector. On the contrary, when ζ1 is close to 0, such as in the

case of UPS the plot of the estimated jump size looks like a constant across time. We found

a similar result for the parameters in the jump size variance, see (3). In fact, η0 is generally

significant and positive while η1 is not statistically different from zero, so that the variance of

the jumps sizes can be restricted to be constant.

Now, if we turn to the parameters of Λσ,t, the jump intensity, we have that the persistence

parameter, λ1, is strongly significant and close to 1 in most cases. It is noteworthy that the

estimates are greater than 0.9 in 24 out of 36 cases. This result confirms the evidence in Eraker

et al. (2003) and Duffie et al. (2000), where the jump arrivals in volatility are highly persistent,

producing clusters in jumps.

The plots of the expected number of jumps in Figure 3 suggest the presence of three regimes

in the jumps intensity. The first period, from 2004 to the beginning of 2007, is characterized by

an absence of jumps in volatility (the number of jumps is on average one in twenty days). In the

second period, the estimated jump arrivals sharply increase to a daily average of 0.5-0.6, while

between mid-2008 and mid-2009, the average number of jump arrivals dramatically increases,

reaching an average of approximately one jump per day. We obtain slightly different results

for Λσ,t of JPM which has a sharper increase at mid of 2007 and remains high till the second

part of 2009. This could be the outcome of the financial crisis, which hit the bank sector more

than others. This is a common characteristic of the estimated jump intensities of the financial

stocks in the sample. Qualitatively, this result is similar to the finding in Andersen et al. (2007,

p.714, Figure 3), which depicts an important temporal dependence in the jump arrivals and in

the jump sizes.

The ex-post probability of a jump, shown for the four stocks in Figure 4, illustrates the

persistence in the Λσ,t estimates. This also means that in the crisis period (2008-2009) the

ex-post probability of observing at least one log-volatility jump approaches one. This is also

an evidence of jump clustering which, in fact, characterizes all the series in the sample. The

higher estimated jump activity in the second part of the sample explains also the increase in

the unconditional expected value of the Λσ,t process, see Table 3. The sample averages of the
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estimated Λσ,t turn out to be, in a few case, larger than one. We think that this could be

induced by abnormal variations in the log-volatility, occurred during the financial crisis, which

somewhat affect the estimate of the Λσ,t process parameters. Moreover, the parameter ψ of the

innovation term is always positive, and significant in more than half of considered stocks. As a

consequence the unobserved past innovation has a positive and significant impact on the jump

intensity.

Figure 5 reports the estimated expected exponential jumps, Ĵt|t−1. In all cases, the expected

exponential jumps increase during the period 2008-2009, that is, jumps in volatility constitute

an important source of price variability. By looking at the volatility of JPM, the expected jump

component increases already after 2007. The role of the jumps for IBM and BA is relevant

in the period between mid-2008 and mid-2009, namely during the recent financial crisis. It

is evident from Figure 2 the role played by the specification of the jump size dynamics. It is

noteworthy that the estimated ζ1 in the jump size equation for IBM is significantly positive

and larger compared to the others stocks. This means that when there is a sharp increase in

the past volatility this has a significant impact on the jump size of IBM which drives up the

overall jump component. On the other hand, the estimated jump intensity (Figure 3) follows a

pattern close to those observed for the others. A completely different picture is obtained with

the Ĵt|t−1 of UPS, which remains rather low and stable for the entire period.

It is also interesting to study the difference between the ex-ante and ex-post probabilities of

jumps during a given day. This can be done in our setup, simply comparing P (Nσ,t = j|I t−1)

with P (Nσ,t = j|I t), where the latter is obtained by the Bayes law in (9). In particular,

the recent financial crisis peaked on October 10, 2008, when annualized volatility of the S&P

500 index reached a peak of 120%. As it is clear from Figure 6, the estimated ex-ante and

ex-post probabilities on October 10, 2008 have different patterns. In particular, the ex-ante

probabilities of more than 1 jump, calculated using Λσ,t, are already high and centered on 1-2

jumps. On the other hand, after the arrival of the information on the volatility for October

10, 2008, the ex-post jump probability distribution is shifted to the right, such that we have

a higher probability of observing 3-4 jumps on that day. Finally, looking at the Ljung-Box

test on the model residuals, see the last columns of Table 2, it is clear that for some series

the HAR-V-J model is not able to completely capture the dynamics of the log-volatility series.
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This is due to the peculiar autoregressive lag structure of the HAR-RV model which appears

too restrictive for a many series under exam, thus leaving some autocorrelation in the residuals.

Alternatively, adopting an ARFIMA model one could optimally select the lag structure such

that the persistent component of volatility is accounted for. However, this is beyond the scope

of the present paper, since the focus is on the modeling of the jump term. It is important to

stress that the autocorrelation in the residuals is not due to the inclusion of the jump term in

the HAR-V model.

In Table 3 we show the sample averages of conditional moments of the expected number

of jumps, as computed in (8), and of conditional moments of Xt, as in (12)-(14). The average

ex-post number of jumps is very close to the expected number of jumps, meaning that the

specification of Λσ,t correctly estimates the conditional mean of E[Nσ,t|I t]. Since, the HAR-V-J

model is a non-Gaussian conditional model for Xt due to the presence of jumps it generates

positive skewness and mild leptokurtosis.

Table 3 also reports the sample correlations of the expected exponential jump component,

E[Jt|I t−1] with the squared price jumps, defined as
∑Np(t)

i=1 ξ2i (see (23)). The jumps are esti-

mated by Ξt = λ2,m (RRGBC −RBVBC). The interesting finding is a positive correlation with

the squared jumps-in-price component (see for an analogous result see Todorov and Tauchen,

2011). This finding confirms the evidence in Eraker et al. (2003) which suggest a positive

association in the price and volatility jumps. In particular, this correlation is strengthened

during the financial crisis, since the arrival of bad news induces not only jumps in prices, but

also a sharp increase in the volatility. A possible explanation is that as traders receive new

information, they revise their expectations, causing an increase in the disagreement on the fair

price that leads to higher volatility.

In order to highlight the ability of the HAR-V-J model in predicting the log-volatility

one-day ahead, we compute P (RBV ∆
m,BC,t > u|I t−1), where u is the level of the annualized

volatility. We choose October 10, 2005, as a day of low volatility, and October 10, 2008, as a

day of extremely high volatility, with u equal to 30% for October 10, 2005, and to 120% for
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October 10, 2008. This probability is given by

Pr
[
RBV ∆

m,BC,t > u|I t−1
]
=

∞∑

j=0

[
P
(
Nσ,t = j|I t−1

)
·
(
1− Φ

(u− µt

σt

))]

where

µt = E[Xt−1|Nt = j, I t−1] = X̄t−1 + jΘσ,t

σ2
t = V ar[Xt−1|Nt = j, I t−1] = σ2

ε + j∆σ,t

where Φ(·) is the standard Normal cdf. This simple exercise allows to evaluate how much

the introduction of the jump component in the HAR increases the conditional probability of

observing abnormal levels of volatility. The results in Table 4 clearly illustrates that the HAR-

V-J behaves better than the Gaussian HAR for both threshold levels. This is not surprising

because the positive conditional probability of observing more than one jump, as already seen

above, dramatically increases the conditional probability that the log-volatility is above a given

threshold, as shown in the case of u = 120%. In general, the performances of the two models for

October 10, 2005, are very similar, and a conditional probability equal to zero is given to the

event of observing a volatility above 30%. It is interesting to note that the conditional proba-

bility that the annualized RBV is larger than 30% in October 10, 2005, for Ford, is correctly

anticipated by the HAR-V-J while the estimated probability obtained with the Gaussian HAR

is zero. A completely different picture is obtained in October 10, 2008, when the average level

of volatility is much higher and the possibility of observing a level higher than 120% is much

more likely. In this case, the HAR-V-J is able in the majority of the stocks considered to give

a conditional probability of an extreme realization around 30% which is much higher than the

probability implied by the Gaussian HAR.

4 Volatility jumps and financial covariates

Understanding the origins of jumps in returns and volatility is a topic of considerable interest to

both theorist and market practitioners. In this section we focus on the economic determinants of

volatility jumps. To this end, we investigate to what extent the estimated jump components in

logRBV ∆
m,BC,t are driven by common factors. We aim at identify variables that have predictive
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power for the future occurrence of jumps for the stocks considered. We consider in our analysis

financial and policy variables that are informative on the market expectations of the future

economic activity and on the perceived risks of the financial system.

We regress the estimated exponential jump components, Ĵt|t−1, of each stock on a set of

lagged financial variables2: the first difference of the logarithm of S&P 500 volume, ∆Volumes ;

the daily log-return of S&P,∆S&P ; the log-return of the DJ-UBS Commodity Index, ∆Commodity ;

the first difference of the logarithm of the Federal Reserve trade-weighted US dollar index,

∆Exchange; the first difference of the logarithm of the volatility index VIX, ∆VIX ; the excess

yield on Moody’s seasoned Baa corporate bond over the Moody’s seasoned Aaa corporate bond,

the credit spread or CS ; the difference between the 10-Year and 3-months Treasury constant

maturity rates, the term spread or TS ; the difference between the effective and the target Fed-

eral Funds rates, FF ; and the US Banks sector credit default swap index, CDS. The estimated

parameters are shown in Table 5. From the results is evident that only the last three variables,

namely TS, FF, and CDS, are significant for almost all the stocks. Moreover, it should be

noted that the signs of the estimated coefficients are the same across the individual stocks.

This suggests that there could be a common factor in the estimated jump components which

can be predicted on the basis of lagged economic and financial variables.

To get further insights on the presence of a common factor in the individual jump com-

ponents we extract the first principal component, PC1, computed from the correlation matrix

of the 36 estimated conditional jump series, Ĵt|t−1. PC1, explains approximately 63% of the

overall variation (considering the first three components one arrives at 74%). The weights3

in PC1 are all positive with the exception of the loading of PFE, which is slightly negative.

This could explained by the peculiar behavior of the estimated expected jump component of

PFE which mostly depends on the value of ξt−1 because the estimated λ1 is very small (see

Table 2). PC1, plotted in Figure 7(a), is therefore a good proxy of the latent volatility jump

factor. The dynamic pattern of PC1 closely follows the behavior of the volatility series, and, as

illustrated above, a sharp increase occurs in the levels of the expected volatility jumps during

the financial crisis period. In order to investigate the determinants of the volatility jump series,

we regress PC1 on the same set of variables previously used. Table 6 reports the result of the

2We follow here the setup in Fernandes et al. (2009).
3Not reported to save space but available upon request from the authors.
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regression. Expected jumps are significantly (and positively) correlated with the credit spreads

and CDS (depicted in Figure 8), which reflect the perceived credit risk, especially during the

financial crisis. The R2 is higher than 37%, suggesting that TS, CDS, and FF have predictive

power on jumps in volatility. Further, the partial r2 reported in the last column, show that

among the variables included in the regression only FF and CDS have nonzero correlation with

the volatility jump factor. Jointly removing TS, CDS, and FF from the regression drastically

reduces the R2. Such a result might be driven by the inclusion in our sample of the financial

sector. To address this issue, we extract the first principal component of the volatility jumps of

28 equities (thus excluding banks and insurance companies). The first PC explains again the

63% of the total variation and its pattern, shown in Figure 7(b), is almost indistinguishable

from that of the entire set of assets. Furthermore, the second panel of Table 6 shows that

the coefficient sign and magnitude are only slightly affected. The coefficient associated with

the CDS maintain its significance, even if its magnitude is somewhat smaller. This might be

explained by the direct effect that CDS have on the banks volatility. Analogous conclusions

can be drawn looking at the partial r2, which is still larger than 0.13 even when the financial

sector is not included in the calculation of the principal components.

Given the predictive ability of CDS and the FF we extend the HAR-V-J model including

both variables in the jump intensity and the expected jump size dynamic equations, as follows:

Λσ,t = λ0 + λ1Λσ,t−1 + β1CDSt−1 + β2|FFt−1|+ ψξt−1 (17)

Θσ,t = ζ0 + ζ1Xt−1 + ζ2CDSt−1 + ζ3|FFt−1| (18)

where β1 is restricted to be positive in order to guarantee that Λσ,t > 04. However, from

a simple analysis of the rolling estimates, shown in Figures 10(a)-10(d), calculated for the

interval 21/12/2007 and 31/12/2009, it is evident that the estimates of β2 and ζ3 are highly

unstable. The extent of this regime change during the crisis period clearly emerges also from

Figure 9, which plots the dynamics of the absolute value of FF . This suggests the exclusion of

FFt−1 from both equations, i.e. β2 = ζ3 = 0. A completely different picture is obtained from

the the rolling estimates5 of β1 and ζ2, which turn out to be much more stable than those of β2

4FF is in absolute value to guarantee the positivity of Λσ,t
5Available upon request from the authors.
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and ζ3, thus suggesting that the parameters can be consistently estimated, with the available

sample, by maximum likelihood.

The estimation results are presented in Table 7, where emerges that CDS has a positive

and significant effect on the size of the volatility jumps, but not on their intensity. Therefore,

a worsening in the credit risk, as represented by the CDS, of financial intermediaries increases

the expected size of the volatility jumps, and thus the market risk. These results confirm

and extend those in Zhang et al. (2009) on the relation between credit risk, volatility risk and

jumps. In particular, we stress that bad news on the default risk, that is an increase of the CDS,

directly impacts on the expected size of the volatility jumps, causing a rapid variation in the

price. The importance of the inclusion of the CDS in the jump equations is also shown by the

improvement of the in-sample fit over the classic HAR model. In particular, Table 7 reports

the Diebold-Mariano tests, which, in most cases is negative and often significant. Finally,

in order to show the results of the HAR-V-J model with lagged CDS in the jump intensity

and expected jump size dynamic equations and the differences with the model that does not

include this variable, we calculate and plot in Figure 11 the ex-ante and ex-post probability

of jumps on October 10, 2008. The estimated ex-ante and ex-post probabilities are markedly

different from those obtained with the standard HAR-V-J (see Figure 6). In particular, the

densities are less concentrated and assign larger probabilities to higher number of jumps. The

differences between the probabilities in Figure 6 and those in Figure 11 can be explained by the

introduction of the CDS in the model. Such a change is not confined to the pure interpretation

of the estimated parameters but has effects involving the entire filtering approach leading to

the identification of the jump component. As a result, and as expected, once the CDS is taken

into account (through its introduction in the model), the probability of having a jump during

the crisis are higher than those obtained without the CDS.

5 Concluding remarks

This paper studies the contribution of volatility jumps to the evolution of volatility. Differently

from some earlier contribution we propose a modified version of the HAR for realized measure

instead of relying on continuous-time stochastic volatility specification (as for example in Eraker
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et al., 2003, Broadie et al., 2007). We model the corrected bipower realized range, a consistent

estimator of the integrated variance in presence of jumps in prices and microstructure noise,

with a HAR-V-J model that allows for the presence of jumps in volatility. The inference on

the parameters of the model is carried out using maximum likelihood estimation, after having

specified the dynamics of the jumps sizes and intensities. The estimation results of the HAR-V-

J model with high-frequency data from 36 stocks suggest that jumps in volatility are more likely

to happen during the financial crises, i.e., when the level of volatility is high, and are positively

correlated with jumps in prices. The second part of the analysis focuses on the common

determinants of the jump component to the volatilities of individual stocks. It turns out that

the variability of a common factor of the estimated jumps, obtained by principal components,

can be predicted using a set of leading financial variables. In particular, CDS on US banks

appears particularly significant in explaining the observed common jump component. This

result reinforces the idea that the increase in volatility observed during the 2008-2009 US stock

market turmoil has been provoked by the worsening of the credit risk of financial institutions.

From this point of view the paper contributes to the understanding of the volatility evolution

and in particular to the nature and the sources of volatility jumps. Finally, the HAR-V-J model

is modified to incorporate the information content of CDS in the dynamics of the jump size

and intensity. The estimation results of the extended HAR-V-J model confirm the significative

contribution of the CDS to dynamics of the jump size, for all stocks considered.
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Appendix A: Realized range estimators

In this Appendix, we describe the integrated volatility estimator we adopt in our empirical

study. Our objective is to estimate a suitable measure of the return variation over the trading

day, that is disentangled from the jump in prices component.

Suppose first that the log-price of an asset, p(t), follows a stochastic volatility model (SV):

p(t) = p(0) +

∫ t

0

µ(u)du+

∫ t

0

σ(u)dW (u), t ≥ 0 (19)

where the mean process µ(t) is locally bounded and predictable, σ(t) is assumed to be inde-

pendent of Standard Brownian motion W (·) and càdlàg. Consider the equidistant partition

0 = t0 < t1 < . . . < tn = 1 where ti = i/n and ∆ = 1/n for i = 1, . . . , n. If p is assumed to

be fully observed, then the intraday range at sampling times ti−1 and ti (i = 1, 2, . . . , n) would

be computed as sp,∆i
= maxti−1≤t,s≤ti {pt − ps}. However, to avoid biases associated with an

infrequent trading activity (that might occur over a finite sample), we follow Christensen and

Podolskij (2007) and assume that mn+1 equally spaced observations of the price are available,

giving mn returns. Thus, there are n intervals each with m returns. The log-price for each time

in the interval (0, 1) is denoted as p i−1
n

+ t
mn

, where i = 1 . . . , n and t = 0, . . . , m. The observed

range over the i-th interval is given by spi∆,∆,m = max0≤s,t≤m

{
p i−1

n
+ t

mn
− p i−1

n
+ s

mn

}
.

The RRG based on discrete observations is then

RRG∆
m =

1

λ2,m

n∑

i=1

s2pi∆,∆,m. (20)

where λr,m = E[srW,m] = E
[
max0≤s,t≤m

{
Wt/m −Ws/m

}r
]
is the r-th moment of the range of

a standard Brownian motion over a unit interval when we observe only m increments of the

underlying continuous time process. The value of λr,m is obtained through numerical simulation

of a standard Brownian motion observed m times over the unit interval and λ2,m → λ2 =

4 log (2) as m → ∞. Moreover if we assume that the stochastic volatility process is of the kind

in (19) and m → c ∈ N ∪∞:

√
n(RRG∆

m − IV )√
ΛmRRQ∆

m

d→ N(0, 1)
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with Λm =
λ4,m−λ2

2,m

λ2
2,m

, and

RRQ∆
m =

n

λ4,m

n∑

i=1

s4pi∆,∆,m.

The RRG∆
m is a consistent estimator of IV as n → ∞, and is five times more efficient than

realized volatility, see Martens and van Dijk (2007). In fact, RRG∆
m uses more information,

both the maximum and minimum prices over a given interval, than the corresponding RV

estimator, that takes into account just the last price of each interval Furthermore, Christensen

and Podolskij (2007) show that, for very general continuous time processes for σ(t), the Realized

Range converges to the Integrated Volatility, RRG∆ p→ IV . When the price is contaminated

by microstructure noise, ηt, and the noise is modeled as an i.i.d. sequence of random variables

with mean zero and finite variance ω2, Christensen et al. (2009) show that the estimator of the

integrated variance is

RRG∆
m,BC =

1

λ̃2,m

n∑

i=1

(sp̃i∆,∆,m − 2ω̂N)
2 (21)

where

λ̃r,m = E

[∣∣∣∣∣ max
t:η t

m
=ω,s:η s

m
=−ω

(
W t

m
−W s

m

)∣∣∣∣∣

r]

. (22)

The variance of the noise process ω2 can be consistently estimated with ω̂2
N = RV N

2N , where

RV N is the realized variance computed using N intraday returns, with N = nm, i.e. the total

number of log-returns, and N1/2 (ω̂2
N − ω2)

d→ N (0,ω4).

If we consider, in addition to the microstructure noise, the presence of jumps in prices, that

is the price follows a jump-diffusion process

p(t) = p(0) +

∫ t

0

µ1(u)du+

∫ t

0

σ(u)dW1(u) +

Np(t)∑

i=1

ξi (23)

where Np(t) counts the jumps arrivals at time t, and ξi is the jump size. Christensen et al.

(2009) show that the bias-corrected realized range-based bipower variation, defined as:

RBV ∆
m,BC =

1

λ̃2
1,m

n−1∑

i=1

|spi∆,∆,m − 2ω̂N ||sp(i+1)∆,∆,m − 2ω̂N | (24)

is a consistent and robust estimator of the integrated variance in the presence of stochastic
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volatility, jumps and noise. Furthermore, the price jumps can be determined as

λ2,m

(
RRG∆

m,BC −RBV ∆
m,BC

) p→
Np(t)∑

i=1

ξ2i

where Np(t) cumulates the number of jumps in a given discrete interval. In this paper, we have

used (24) to estimate the daily integrated volatility. Given the properties outlined above, the

bias-corrected realized range-based bipower variation represents a suitable ex post-measure of

the integrated variance. We further note that, by construction, RBV ∆
m,BC is an estimate of the

cumulated continuous part of instantaneous volatility plus the contribution from the jumps in

volatility, if present.
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Sector Ticker Company
BANK BAC Bank of America

C Citygroup
JPM JP Morgan
WFC Wells Fargo

INSURANCE AND FIN. SERVICES AXP American Express
GS Goldman & Sachs
MET Met Life
MS Morgan Stanley

OIL, GAS AND BASIC MATERIALS XOM Exxon
CVX Chevron
FCX Freeport-McMoRan Copper
NEM Newmont Mining Corporation

FOOD, BEVERAGE AND LEISURE TWX Time Warner
PEP Pepsi Cola
KFT Kraft
MCD Mc Donalds

HEALTH CARE AND CHEMICAL JNJ Johnson & Jonhson
PFE Pfizer
PG Procter & Gamble
DD Du Pont

INDUSTRIAL GOODS CAT Caterpillar
BA Boeing
HON Honeywell
F Ford

RETAIL AND TELECOMMUNICATIONS WMT Wall-Mart
T AT&T
HD Home Depot
VZ Verizon

SERVICES FDX Fed-Ex
UPS UPS
GE General Electric
EMR Emerson Electric

TECHNOLOGY AAPL Apple
IBM International Business Machines
HPQ Hewlett Packard
TXN Texas Instruments

Table 1: Sector, Companies and Ticker
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(a) All stocks

β s.e. t-stat p-value r2

const -2.2264 0.5062 -4.398 0.0000
∆Volumet−1 0.3543 0.3118 1.136 0.2560 0.0094
∆Commodityt−1 -26.7892 13.075 -2.049 0.0406 0.0002
∆Exchanget−1 12.0329 17.988 0.669 0.5036 0.0001
∆S&Pt−1 -0.9740 18.837 -0.052 0.9588 0.0001
∆VIXt−1 3.2619 2.9468 -1.107 0.2685 0.0001
CSt−1 0.8990 0.5610 1.603 0.1092 0.0132
TSt−1 -0.4454 0.1415 -3.147 0.0017 0.0172
FFt−1 -9.0329 2.5498 -3.542 0.0004 0.1557
CDSt−1 1.8061 0.5181 3.485 0.0005 0.1690

(b) Excluding the Financial Sector

β s.e. t-stat p-value r2

const -1.9010 0.4182 -4.545 0.0000 –
∆Volumet−1 0.2918 0.2613 1.117 0.2643 0.0082
∆Commodityt−1 -24.6809 12.569 -1.964 0.0498 0.0002
∆Exchanget−1 5.8724 15.405 0.381 0.7031 0.0001
∆S&Pt−1 -0.7386 16.863 -0.044 0.9651 0.0001
∆VIXt−1 2.7413 2.3651 1.159 0.2466 0.0002
CSt−1 0.8922 0.4415 2.021 0.0435 0.0162
TSt−1 -0.3806 0.1239 -3.071 0.0022 0.0157
FFt−1 -9.0319 2.6003 -3.473 0.0005 0.1768
CDSt−1 1.3005 0.3895 3.339 0.0009 0.1314

Table 6: OLS regression: The first principal component of the excess jump, PC1, is regressed on
the lagged values of the S&P volume change, ∆Volumes; the daily log return of S&P,∆S&P; the
log return of the DJ-UBS Commodity Index, ∆Commodity; the first difference of the logarithm
of the foreign exchange value of the US dollar, ∆Exchange; the first difference of the logarithm
of the foreign exchange value of the volatility index VIX, ∆VIX; the credit spread, CS; the
term spread, TS; the difference between the effective and the target Federal Funds rates, FF;
the US Banks sector credit default swap index, CDS. The Newey-West standard errors, with a
a Bartlett kernel with bandwidth 9, are reported. The last column reports the partial r2. The
Financial Sector is given by the sum of the Bank and Insurancce sectors.

31



H
A
R

S
iz
e

V
ar
ia
n
ce

In
te
n
si
ty

D
ie
b
ol
d
-M

ar
ia
n
o

µ
φ
D

φ
W

φ
M

ζ 0
ζ 1

ζ 2
η 0

η 1
λ
0

λ
1

ψ
β
1

M
S
E

M
A
E

A
A
P
L

-0
.6
54

4
0.
35

28
0.
26

42
a

0.
25

25
a

0.
25

03
0.
00

00
0.
08

33
0.
00

00
0.
01

15
0.
04

30
0.
90

43
a

0.
22

26
0.
00

00
-2
.2
81

7b
-1
.8
90

0c

A
X
P

-0
.9
33

4
0.
21

08
a

0.
35

12
a

0.
28

81
v

0.
07

23
0.
00

00
0.
06

30
b

0.
00

11
0.
00

37
0.
02

34
0.
96

35
a

0.
49

11
a

0.
04

29
-1
.8
05

1c
-2
.8
53

8a

B
A

-0
.8
68

8a
0.
24

66
a

0.
39

04
a

0.
20

19
a

0.
28

92
a

0.
04

74
0.
05

26
b

0.
03

00
0.
00

44
0.
00

00
0.
98

95
a

0.
09

55
c

0.
00

15
-1
.9
33

2b
-1
.1
36

6
B
A
C

-0
.7
53

1c
0.
35

29
a

0.
31

33
a

0.
21

27
a

0.
22

10
b

0.
02

20
0.
05

97
c

0.
00

88
c

0.
00

65
a

0.
00

78
b

0.
95

62
a

0.
37

70
a

0.
03

59
-1
.7
56

9c
-1
.3
59

4
C

-1
.3
23

9a
0.
31

88
a

0.
25

09
b

0.
24

15
a

-0
.0
00

7
-0
.0
06

8
0.
05

94
a

0.
03

47
a

0.
00

00
0.
46

31
b

0.
90

19
a

0.
75

01
a

0.
08

37
-2
.3
46

3a
-2
.3
96

3a

C
A
T

-0
.4
20

4
0.
34

10
0.
34

78
a

0.
23

61
-0
.1
52

8
-0
.0
42

5
0.
13

08
0.
15

08
0.
00

00
0.
06

40
0.
83

24
b

0.
41

92
0.
01

56
-2
.5
36

9a
-1
.2
37

7
C
V
X

-0
.3
85

8a
0.
38

14
a

0.
48

91
a

0.
05

84
-0
.0
41

1
-0
.0
08

4
0.
06

21
b

0.
10

30
a

0.
00

00
0.
02

66
0.
96

31
a

0.
42

56
0.
00

00
-2
.2
72

0b
-1
.9
34

2b

D
D

-0
.7
79

6
0.
28

11
a

0.
42

17
a

0.
15

69
-0
.0
10

1
-0
.0
06

7
0.
05

41
0.
06

70
0.
00

00
0.
01

11
0.
98

20
a

0.
35

94
0.
01

48
-2
.4
01

9a
-1
.7
21

1c

E
M
R

-1
.5
40

2a
0.
16

69
b

0.
34

39
a

0.
20

55
a

0.
16

14
0.
02

90
0.
07

89
c

0.
04

72
0.
00

00
0.
02

55
0.
98

48
a

0.
26

05
0.
00

54
-1
.3
81

9
-0
.6
95

6
F

-0
.2
40

8a
0.
25

61
a

0.
30

49
a

0.
38

40
a

-0
.0
14

9
-0
.0
06

2
0.
01

39
0.
13

62
a

0.
00

00
0.
04

87
0.
90

70
a

0.
80

47
a

0.
12

48
b

-0
.8
13

0
-0
.1
86

1
F
C
X

-1
.0
25

8a
0.
17

84
a

0.
37

74
a

0.
19

10
a

0.
15

94
a

0.
04

09
a

0.
01

46
b

0.
03

56
a

0.
00

00
1.
04

02
b

0.
73

19
a

0.
39

97
c

0.
03

85
-0
.7
79

3
-2
.1
88

7b

F
D
X

-0
.8
87

8a
0.
23

82
a

0.
22

15
a

0.
39

86
a

0.
03

55
0.
00

21
0.
01

89
b

0.
03

03
0.
00

00
1.
00

83
a

0.
80

02
a

0.
41

54
a

0.
01

37
b

-1
.5
90

9
-0
.0
55

3
G
E

-1
.1
95

2a
0.
21

97
a

0.
34

65
a

0.
26

35
a

0.
00

56
-0
.0
08

1
0.
06

15
a

0.
04

16
0.
00

04
0.
35

00
b

0.
84

33
a

0.
77

53
a

0.
10

79
-2
.8
58

3a
-3
.1
55

4a

G
S

-0
.4
34

2a
0.
44

06
a

0.
33

81
a

0.
14

51
b

-0
.1
06

3
-0
.0
31

6
0.
09

12
0.
08

10
b

0.
00

00
0.
01

77
0.
96

81
a

0.
49

55
c

0.
00

73
-1
.6
68

7c
-0
.6
08

3
H
D

-0
.8
43

7b
0.
31

35
a

0.
31

78
a

0.
23

30
a

-0
.0
62

1
-0
.0
17

3
0.
06

14
a

0.
03

07
0.
00

04
0.
36

27
b

0.
88

01
a

0.
78

02
a

0.
00

60
-1
.8
16

6c
-1
.6
94

8c

H
O
N

-2
.0
46

0a
0.
21

88
a

0.
25

20
a

0.
17

91
a

0.
08

99
0.
00

98
0.
01

65
0.
02

31
0.
00

00
0.
71

40
b

0.
89

54
a

0.
43

99
b

0.
00

00
-1
.4
88

6
-0
.8
32

3
H
P
Q

-0
.5
30

8b
0.
33

81
a

0.
42

46
a

0.
14

14
a

-0
.1
60

1
-0
.0
36

1
0.
09

30
c

0.
12

62
c

0.
00

04
0.
16

38
0.
81

84
a

0.
51

41
b

0.
00

00
-1
.3
39

9
-1
.1
27

4
IB

M
-0
.6
85

2a
0.
31

87
a

0.
38

06
a

0.
14

03
a

0.
25

92
0.
02

20
0.
07

73
b

0.
01

12
0.
03

00
0.
00

82
0.
94

05
a

0.
30

89
b

0.
00

27
0.
87

89
-0
.8
33

3
JN

J
-1
.8
70

5a
0.
12

67
a

0.
49

15
a

0.
13

02
a

0.
16

40
a

0.
01

50
b

0.
01

35
c

0.
03

32
a

0.
00

00
0.
07

86
0.
98

09
a

0.
09

16
0.
01

05
-2
.0
01

b
-0
.2
86

4
JP

M
-0
.7
55

1a
0.
39

57
a

0.
34

69
a

0.
14

93
a

-0
.0
56

2
-0
.0
14

0b
0.
07

07
a

0.
03

39
b

0.
00

00
0.
25

01
c

0.
93

67
a

0.
48

07
a

0.
00

00
-3
.7
05

7a
-3
.2
21

1a

K
F
T

-0
.6
36

1b
0.
14

98
0.
47

94
a

0.
25

64
a

0.
36

92
0.
00

00
0.
12

72
0.
00

00
0.
01

21
0.
14

24
0.
22

84
0.
22

84
0.
00

50
-0
.1
79

5
0.
96

87
M
C
D

-0
.8
04

8
0.
19

11
a

0.
40

17
a

0.
26

08
a

0.
60

72
0.
08

70
0.
08

36
0.
00

00
0.
01

08
0.
00

31
0.
97

67
a

0.
15

70
0.
00

29
-0
.7
96

1
-0
.2
93

7
M
E
T

-0
.5
43

0a
0.
19

38
a

0.
44

55
a

0.
26

64
a

0.
30

94
0.
00

81
0.
00

91
0.
00

00
0.
00

68
0.
02

84
0.
78

54
a

0.
56

55
c

0.
07

22
-2
.7
89

2a
-2
.3
75

3b

M
S

-1
.0
44

9a
0.
33

05
a

0.
23

60
a

0.
26

69
a

0.
03

06
0.
00

00
0.
04

16
a

0.
02

57
a

0.
00

00
0.
47

69
0.
90

33
a

0.
69

39
b

0.
03

40
-2
.3
95

2b
-2
.5
90

2a

N
E
M

-0
.2
56

5a
0.
31

24
a

0.
44

76
a

0.
18

66
a

0.
09

56
0.
00

00
0.
12

79
c

0.
00

00
0.
01

07
0.
00

02
0.
99

31
a

0.
15

32
0.
00

08
-1
.1
65

1
-0
.2
43

3
P
E
P

-0
.8
08

7a
0.
16

45
a

0.
43

09
a

0.
27

55
a

0.
13

87
0.
00

00
0.
15

97
a

0.
13

46
0.
00

00
0.
08

74
0.
75

82
0.
39

19
0.
00

37
-1
.6
98

3b
-1
.4
27

1
P
F
E

-0
.5
46

2a
0.
31

36
0.
30

81
0.
29

17
a

0.
12

99
0.
00

00
0.
05

53
0.
21

56
0.
00

00
0.
22

11
0.
53

50
0.
32

24
0.
04

59
-0
.9
90

4
-1
.7
95

5c

P
G

-0
.7
59

8a
0.
30

02
a

0.
39

12
a

0.
18

00
b

0.
00

00
0.
00

15
0.
11

61
0.
16

29
0.
00

00
0.
02

15
0.
95

94
a

0.
24

52
0.
00

15
-1
.8
72

6b
-1
.0
11

11
T

-0
.6
12

7a
0.
21

85
a

0.
45

61
a

0.
20

16
a

0.
16

67
0.
04

36
0.
07

71
b

0.
14

80
a

0.
00

00
0.
00

00
0.
99

89
a

0.
22

28
B

0.
00

36
0.
06

81
0.
73

62
T
W

X
-1
.0
73

3a
0.
18

31
a

0.
38

40
a

0.
25

33
a

0.
07

10
c

0.
00

66
0.
01

40
c

0.
03

70
0.
00

00
0.
18

37
c

0.
94

82
a

0.
27

76
0.
04

41
-1
.6
20

2c
-0
.0
07

1
T
X
N

-0
.7
93

0a
0.
23

49
a

0.
42

47
a

0.
16

66
c

0.
00

00
0.
00

43
0.
05

12
0.
03

80
a

0.
00

15
0.
00

00
0.
99

70
a

0.
39

37
0.
00

91
-1
.3
33

6
-1
.0
80

4
U
P
S

-0
.5
46

1c
0.
24

03
a

0.
50

81
a

0.
15

81
0.
03

49
0.
00

00
0.
10

29
0.
17

33
0.
00

00
0.
00

19
0.
98

73
a

0.
16

80
0.
00

31
-1
.7
43

0a
-1
.0
78

6
V
Z

-0
.6
59

3b
0.
23

12
a

0.
37

52
a

0.
28

65
a

0.
13

07
0.
00

00
0.
08

18
0.
16

08
0.
00

01
0.
15

97
0.
66

32
a

0.
66

32
c

0.
03

03
-1
.0
91

2
-1
.3
76

8
W

F
C

-0
.8
17

3b
0.
23

21
a

0.
30

80
a

0.
32

93
a

0.
08

40
0.
00

00
0.
07

06
b

0.
00

23
0.
00

33
0.
01

70
0.
94

59
a

0.
63

97
b

0.
06

44
-2
.5
97

6a
-3
.2
06

3a

W
M
T

-0
.5
61

7a
0.
20

66
a

0.
47

62
a

0.
22

32
a

0.
13

88
0.
01

27
0.
05

84
b

0.
18

20
0.
00

00
0.
00

60
0.
98

19
a

0.
17

20
c

0.
00

33
-1
.5
98

2
-1
.5
33

7
X
O
M

-0
.5
98

8a
0.
38

51
a

0.
40

46
a

0.
10

57
a

0.
15

23
0.
02

09
0.
09

01
a

0.
00

50
0.
00

42
b

0.
01

44
0.
97

53
a

0.
30

37
b

0.
00

00
-1
.0
54

9
-1
.0
75

1

T
ab

le
7:

E
st
im

at
ed

p
ar
am

et
er
s
of

th
e
m
od

el
w
it
h
u
n
ob

se
rv
ed

ju
m
p
in
te
n
si
ty

an
d
si
ze

sp
ec
ifi
ed

as
in

(1
7)

an
d
(1
8)
.
a,

b,
an

d
c
st
an

d
fo
r

si
gn

ifi
ca
n
ce

at
1%

,
5%

an
d
10
%

re
sp
ec
ti
ve
ly
.
T
ab

le
al
so

re
p
or
ts

th
e
in
-s
am

p
le

D
ie
b
ol
d
-M

ar
ia
n
o
te
st

T
h
e
lo
ss

fu
n
ct
io
n
s
ar
e
th
e
m
ea
n
sq
u
ar
ed

er
ro
r,
M

S
E
,
an

d
th
e
m
ea
n
ab

so
lu
te

er
ro
r,
M

A
E
.
N
eg
at
iv
e
va
lu
es

re
p
re
se
nt

u
n
d
er
-p
er
fo
rm

an
ce

of
H
A
R

w
it
h
re
sp
ec
t
to

H
A
R
-V

-J
.

32



20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

RBVBC

Co
rre

ct
ed

 R
ea

liz
ed
−B

ip
ow

er
 R

an
ge

 o
f B

A

(a
)
B
A

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

RBVBC

Co
rre

ct
ed

 R
ea

liz
ed
−B

ip
ow

er
 R

an
ge

 o
f I

BM

(b
)
IB

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

RBVBC

Co
rre

ct
ed

 R
ea

liz
ed
−B

ip
ow

er
 R

an
ge

 o
f J

PM

(c
)
JP

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

RBVBC

Co
rre

ct
ed

 R
ea

liz
ed
−B

ip
ow

er
 R

an
ge

 o
f U

PS

(d
)
U
P
S

F
ig
u
re

1:
B
ia
s
co
rr
ec
te
d
ra
n
ge
-b
as
ed

b
ip
ow

er
va
ri
at
io
n

33



20
04

20
05

20
06

20
07

20
08

20
09

20
10

−0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

!t
"

Ju
m

p 
siz

e 
of

 B
A

(a
)
B
A

20
04

20
05

20
06

20
07

20
08

20
09

20
10

−0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

!t
"

Ju
m

p 
siz

e 
of

 IB
M

(b
)
B
A
C

20
04

20
05

20
06

20
07

20
08

20
09

20
10

−0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

!t
"

Ju
m

p 
siz

e 
of

 J
PM

(c
)
JP

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

−0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

!t
"

Ju
m

p 
siz

e 
of

 U
PS

(d
)
U
P
S

F
ig
u
re

2:
T
h
e
ex
p
ec
te
d
ju
m
p
si
ze
,
Θ

σ t

34



20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

#t
"

Ju
m

p 
In

te
ns

ity
 o

f B
A

(a
)
B
A

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

#t
"

Ju
m

p 
In

te
ns

ity
 o

f I
BM

(b
)
IB

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

#t
"

Ju
m

p 
In

te
ns

ity
 o

f J
PM

(c
)
JP

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

#t
"

Ju
m

p 
In

te
ns

ity
 o

f U
PS

(d
)
U
P
S

F
ig
u
re

3:
T
h
e
ex
p
ec
te
d
nu

m
b
er

of
ju
m
p
ar
ri
va
ls
,
Λ

σ t

35



200
4

200
5

200
6

200
7

200
8

200
9

201
0

00.10.20.30.40.50.60.70.80.91
Ex P

ost 
Pro

bab
ility 

of a
 Jum

p of
 BA

(a
)
B
A

200
4

200
5

200
6

200
7

200
8

200
9

201
0

00.10.20.30.40.50.60.70.80.91
Ex P

ost 
Pro

bab
ility 

of a
 Jum

p of
 IBM

(b
)
IB

M

200
4

200
5

200
6

200
7

200
8

200
9

201
0

00.10.20.30.40.50.60.70.80.91
Ex P

ost 
Pro

bab
ility 

of a
 Jum

p of
 JPM

(c
)
JP

M

200
4

200
5

200
6

200
7

200
8

200
9

201
0

00.10.20.30.40.50.60.70.80.91
Ex P

ost 
Pro

bab
ility 

of a
 Jum

p of
 UP

S

(d
)
U
P
S

F
ig
u
re

4:
E
x-
p
os
t
p
ro
b
ab

il
it
y
of

a
ju
m
p
,
P
(N

σ
,t
≥

1|
It
).

36



20
04

20
05

20
06

20
07

20
08

20
09

20
10

123456789

E[Jt|It−1]

Ex
pe

ct
ed

 E
xp

on
en

tia
l J

um
ps

 o
f B

A

(a
)
B
A

20
04

20
05

20
06

20
07

20
08

20
09

20
10

123456789

E[Jt|It−1]

Ex
pe

ct
ed

 E
xp

on
en

tia
l J

um
ps

 o
f I

BM

(b
)
IB

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

123456789

E[Jt|It−1]

Ex
pe

ct
ed

 E
xp

on
en

tia
l J

um
ps

 o
f J

PM

(c
)
JP

M

20
04

20
05

20
06

20
07

20
08

20
09

20
10

123456789

E[Jt|It−1]

Ex
pe

ct
ed

 E
xp

on
en

tia
l J

um
ps

 o
f U

PS

(d
)
U
P
S

F
ig
u
re

5:
E
st
im

at
ed

ex
p
ec
te
d
ex
p
on

en
ti
al

ju
m
p
,
Ĵ
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Figure 7: First principal component of estimated conditional jumps in daily volatilities.
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