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Abstract

A new-Keynesian DSGE model in which contractionary monetary policy shocks
generate recessions is estimated with U.S. data. It is then used in a Monte Carlo
exercise to generate artificial data with which VARs are estimated. VAR mone-
tary policy shocks are identified via sign restrictions. Our VAR impulse responses
replicate Uhlig’s (2005, Journal of Monetary Economics) evidence on unexpected
interest rate hikes having ambiguous effects on output. The mismatch between
the true (DSGE-consistent) responses and those produced with sign-restriction
VARs is shown to be due to the low relative strength of the signal of the mon-
etary policy shock. We conclude that Uhlig’s (2005) finding is not inconsistent
with monetary policy non-neutrality.
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1 Introduction

The conventional view on the effects of monetary policy shocks is the following. An un-
expected policy rate hike increases the real interest rate, depresses aggregate demand,
and pushes inflation down in the short-run. An intriguing exercise proposed by Uhlig
(2005) casts doubts on this transmission mechanism. Working with a VAR estimated
with post-WWII U.S. data, Uhlig (2005) shows that the response of output to a mone-
tary policy shock is surrounded by a large amount of uncertainty. As a matter of fact,
output may increase or decrease following a shock that triggers conventional reactions
of other macroeconomic indicators.

This result is thought-provoking. As stated by Uhlig (2005, p. 406),

" "Contractionary" monetary policy shocks do not necessarily seem to have
contractionary effects on real GDP. One should therefore feel less comfort-
able with the conventional view and the current consensus of the VAR liter-

ature that has been the case so far.”

In light of this finding, Uhlig (2005, p. 382) concludes that

"Neutrality of monetary policy shocks is not inconsistent with the data."”

This paper shows that Uhlig’s (2005) intriguing result is consistent with the con-
ventional view on the real effects of monetary policy shocks. In short, we show that
ambiguous effects of a monetary policy tightening on output may be found with VARs
estimated with artificial data generated by structural models in which monetary pol-
icy is non-neutral. We do so by setting up a Monte Carlo exercise in which the Data
Generating Process (DGP) is a new-Keynesian DSGE model predicting "textbook" ef-
fects as for the short-run reaction of output to monetary policy shocks. Such model is

estimated with U.S. data and employed to generate artificial data with which we feed



our VARs. Monetary policy shocks are identified by imposing a set of widely-accepted,
model-consistent sign restrictions on the modeled variables. Following Uhlig (2005), we
leave the reaction of output unconstrained at all horizons.

Our main result reads as follows. The estimated DSGE model of the business cycle
predicts a phase of economic bust and a deflation after an unexpected policy tightening.
However, our VARs return quite uncertain indications as for the reaction of output.
In particular, about 2/3 of the VAR responses of output conditional on an unexpected
policy tightening turn out to be positive, a result consistent with Uhlig’s (2005) evidence.
In other words, our exercise replicates Uhlig’s (2005) finding in a controlled environment
in which monetary policy shocks do exert an influence on the U.S. business cycle. This
result proves that an uncertain reaction of output to a monetary policy shock obtained
with sign-restriction VARs is not inconsistent with the conventional view.

This result is driven by the relatively little role played by policy shocks in influencing
the volatility of output. Given the weakness of the signal, the estimated VAR monetary
policy "shock" is actually a combination of all shocks hitting the economic system. In
particular, supply shocks contaminate the estimated dynamic responses and induce a
positive output reaction. Sign restrictions are shown to correctly identify the negative
effects on output exerted by policy shocks in alternative environments in which such
shocks play a (counterfactually) larger role as for the volatility of output. Therefore,
in principle, nothing is wrong with the sign restrictions methodology. If the signal
associated to the shocks one aims at identifying is strong enough, sign restrictions
represent a powerful procedure to recover its macroeconomic effects (see also Paustian
(2007) and Canova and Paustian (2011)). Unfortunately, monetary policy shocks are
typically found to be of limited quantitative importance as for the U.S. output volatility.
Therefore, the uncertain reaction of output to monetary policy shocks found with sign

restrictions VARs may be due to an identification issue, more than representing a truly



genuine empirical fact.!

We verify the robustness of our finding to a number of perturbations of our baseline
exercise. These include alternative sets of sign restrictions, which enable us to identify
other shocks (non-policy demand shocks, supply shocks); different sample-sizes of arti-
ficial data; different sets of constrained horizons as for our restrictions; and a different
estimated DGP. In particular, our baseline exercise is conditional on a small-scale model
a la King (2000), Woodford (2003), and Carlstrom, Fuerst, and Paustian (2009). As
an alternative, we employ the larger-scale framework proposed by Smets and Wouters
(2007). Our result turns out to be very robust to these departures from our benchmark
exercise.

Previous papers have already investigated the ability of VARs to recover the true
effects of structural shocks in DSGE frameworks. Alternative identification schemes
featuring short-run zero-restrictions to recover the effects of monetary policy shocks are
scrutinized by Canova and Pina (2005) and Carlstrom, Fuerst, and Paustian (2009).
Christiano, Eichenbaum, and Vigfusson (2006) and Chari, Kehoe, and McGrattan
(2008) assess the ability of truncated VARs to recover the true (DSGE-consistent)
effects of a technology shock on hours worked. Ferndndez-Villaverde, Rubio-Ramirez,
Sargent, and Watson (2007) derive a condition to ensure the existence of the VAR rep-
resentation of a DSGE model. Ravenna (2007) discusses the assumptions needed for a
finite order VAR representation of a DSGE model to exist, and shows that truncated
VARs may produced severely biased impulse responses when the true DGP is an infinite
order VAR. Our paper focuses on the ability of sign restrictions VARs to recover the

effects of a monetary policy shock. It alternatively deals with two estimated, state-

'We note that, as a matter of fact, Uhlig (2005) never explicitly claims that his result is not
consistent with conventional wisdom. What our paper shows is that models in line with conventional
wisdom are very likely to produce an outcome like the one proposed by Uhlig (2005). The search for
DSGE models not implying VAR reactions as those in Uhlig (2005), and which are therefore "rejected"
by the data (as processed by such VARs), is left to future research.



of-the-art DSGE framework in the attempt to be as informative as possible as for the
issue of interest, i.e., the interpretation of an uncertain output reaction to monetary
policy shocks. Kilian and Murphy (2012) demonstrate that sign restrictions alone are
insufficient to infer the responses of the real price of oil to demand and supply shocks in
the market for crude oil. They show that the imposition of empirically plausible bounds
on the magnitude of the short-run oil supply elasticity and on the response of real ac-
tivity reduces the set of admissible model solutions to a smaller number of qualitatively
similar estimates. Caldara and Kamps (2012) study the relevance of information com-
ing from the imposition of boundaries on fiscal elasticities in SVARs dealing with fiscal
policy shocks. Differently, we deal with monetary policy shocks whose identification can
hardly rely on external information concerning elasticities. Paustian (2007) derives a
sufficient condition for sign restrictions VARs to recover the correct sign of the response
of a given variable to a shock of interest, and shows that the relative variance of such
shock is relevant to correctly identify the effects of such shock. Canova and Paustian
(2011) elaborate further on this issue by conductive extensive Monte Carlo simulations.
Moreover, they show how sign restrictions may be employed to validate classes of DSGE
models. Differently, this paper focuses on the macroeconomic effects of monetary policy
shocks as measured by sign restrictions VARs, and shows that an uncertain reaction of
output may be obtained even when conditioning on textbook monetary policy models
that are suited to fit the U.S. quarterly data.

The paper develops as follows. Section 2 presents and estimates a standard new-
Keynesian DSGE model with U.S. data. Such model is employed as a DGP in Section
3, which sets up our Monte Carlo experiment. Then, we contrast the impulse responses
generated with our estimated DSGE with those coming from the sign-restriction VARs
in a controlled environment. Section 4 collects our robustness checks. Section 5 con-

cludes.



2 A DSGE model as DGP

This Section presents the DSGE model we will use as a DGP in our Monte Carlo

simulations and its estimation.

2.1 Model presentation

We work with a standard three-equation DSGE model a la King (2000), Woodford
(2003), and Carlstrom, Fuerst, and Paustian (2009). The log-linearized version of the
model is presented in Table 1. Eq. (1) is an expectational new-Keynesian Phillips
curve (NKPC) in which 7; stands for the inflation rate, 5 represents the discount
factor, y; identifies the output gap, whose impact on current inflation is influenced by
the slope-parameter x, « identifies indexation to past inflation, and ] represents a
supply shock (e.g., a "price mark-up" shock); « is the weight of the forward-looking
component in the intertemporal IS curve (2); o~ ! is the households’ intertemporal
elasticity of substitution; v is the inverse of the Frisch labor elasticity, and ¢ identifies
a demand shock (e.g., a "technology" shock); 7., 7, and 7x are policy parameters in
the Taylor rule (3); the monetary policy shock e allows for a stochastic evolution of
the policy rate. All shocks ¢i,i = (7, a, R) are assumed to follow mutually independent
AR(1) processes that feature autocorrelation coefficients (p.., p,, pr), respectively. The

standard deviation of the structural innovations u,i = (7, a, R) are (6,,0,,0R).

2.2 Model estimation

We estimate the model (1)-(4) with Bayesian methods. We work with quarterly U.S.
data, sample: 1984:1-2008:I1. This sample, which identifies a period of great moderation
from a macroeconomic standpoint, does not include the bulk of the Volcker disinflation.
We do so to avoid dealing with a phase of imperfect credibility by the Federal Reserve
(Erceg and Levin (2003), Goodfriend and King (2005)). Our sample choice is also



justified by our willingness to control for policy parameters’ instability (Clarida, Gali,
and Gertler (2000) and subsequent contributions); heteroskedasticity of the structural
shocks (Justiniano and Primiceri (2008)); omitted variables as, e.g., real money bal-
ances, which may have played an important role in determining output in the 1970s
(Castelnuovo (2012)); and instabilities concerning VARs estimated over the post-WWII
and possibly due to the appointment of Paul Volcker as Federal Reserve Chairman in
1979 have been detected by Bagliano and Favero (1998), Boivin and Giannoni (2006),
and Castelnuovo and Surico (2010). Our sample ends in 2008:1I to exclude the accelera-
tion of the financial crises began with the bankruptcy of Lehman Brothers in September
2008, which triggered non-standard policy moves by the Federal Reserve.

We employ three observables to estimate our model. The output gap is computed
as log-deviation of the real GDP with respect to the potential output estimated by
the Congressional Budget Office. The inflation rate is the quarterly growth rate of
the GDP deflator. For the short-term nominal interest rate we consider the effective
federal funds rate expressed in quarterly terms (averages of monthly values). The
source of the data is the Federal Reserve Bank of St. Louis’ website. The vector
0 = [5,0,K,0,%,0,Tr, Ty, TRy Pa> Prs PRs Ta, Ox,0r| collects the parameters characteriz-
ing the model. We set 5 = 0.99 and v = 1, a very standard calibration in the literature.
The remaining priors are collected in Table 2. Details on the Bayesian algorithm em-
ployed to estimate our DSGE model are discussed in our Appendix.

Our posterior estimates are reported in Table 2. All the estimated parameters
take quite conventional values. The parameters of the policy rule suggest an aggres-
sive conduct to dampen inflation fluctuations, and a high degree of policy gradualism;
the estimated degree of price indexation (posterior mean) is 0.09 (90% credible set:
[0.01,0.17]); the estimated weight of the forward looking component in the IS curve

is 0.78 (90% credible set: [0.70,0.86]). A comparison involving actual series and the



DSGE model’s one-step ahead predictions confirms the very good-short term predictive

power of our small-scale model (evidence provided in our Appendix).

3 Impulse responses: DSGE vs. SRVARs

This Section presents our Monte Carlo exercise and our main results.

3.1 Monte Carlo exercise

Our Monte Carlo experiments aim at comparing the true (DSGE-consistent) impulse
responses with those produced with a VAR whose monetary policy shocks are identified
with sign restrictions (SRVAR). We calibrate the vector of our estimated structural
parameters 6 of the DSGE framework with our posterior means. Then, we compute
the DSGE model-consistent impulse responses conditional on 8 to an unexpected nom-
inal interest rate hike, and store them in the [3xHxJ] DSGE IRF s matrix, which
accounts for the [3z1] vector of variables we focus on, the h € {1,..., H} step-ahead
responses of interest, and the j € {1, ..., J} draws of such responses. Subsequently, we
run the following algorithm.

For j =1 to J, we

1. feed our VARs with the artificial data m; $.[37] (variables: inflation, output gap,

nominal rate) generated with the DSGE model conditional on ;

2. compute the impulse responses to a monetary policy shock with sign restrictions

(as explained below);

3. store them in the [3xHxJ] SRVAR IRF s matrix.

We set the number of repetitions K = 1,000, the horizon of the impulse response

functions H = 15, and the length of the pseudo-data sample T" = 98. This sample



numerosity coincides with that of the actual data sample (1984:1-2008:1I) that we em-
ployed to estimate our DSGE model. Monetary policy shocks are normalized to induce
an on-impact equilibrium reaction of the nominal rate equivalent to 25 quarterly basis
points. Our VAR include all endogenous state variables of the DSGE model. Moreover,
the number of shocks equals the number of observables. Importantly, Ravenna (2007)
and Carlstrom, Fuerst, and Paustian (2009) show that, in this case, a model like ours
has got a VAR representation of order 2, which is the one we employ in our simulations.
This is important, in that it ensures that our results are not affected by any truncation

bias, at least in population.?

3.2 Sign restrictions

Sign restrictions represent a strategy to identify a structural shock in VAR analysis.
In a nutshell, the idea is that of imposing ex post sign restrictions on a set of mo-
ments generated with the VAR, e.g., a set of impulse responses to a given shock. In
our application, we estimate the reduced-form VAR coefficients A(L) and covariance
matrix A from the data via OLS. Then, we orthogonalize the VAR residuals via an
eigenvalue-cigenvector decomposition such that A = PHP”, where P is the matrix of
eigenvectors and H is the diagonal matrix of eigenvalues. The non-uniqueness of the
MA representation of the VAR is exploited to provide a set of alternative proposals for
the shock(s) of interest via the employment of three Givens rotation matrixes Q;;(w),
where w € (0,27), and R = Q,5(w1) Q;3(w2) Quz(ws), RRT = I;. The "impulse" matrix
loading the VAR with candidate "shocks" is therefore given by B (w) = PDY?R(w). If
the impulse responses to the "candidate" shock satisfy all the required restrictions, then
the draw of the orthonormal vector w and the corresponding responses are retained.

Otherwise, they are discarded. In so doing, we assign equal, strictly positive weight to

2Robustness checks dealing with the optimal choice of the VAR lag-length based on the Schwarz
criterion delivered virtually identical results.



the draws we retain (those that meet our restrictions), and assign zero prior weight to
those that violate our constraints. A non-exhaustive list of recent applications of the
sign-restriction strategy to identify structural shocks includes Faust (1998), Canova and
de Nicol6 (2002), Peersman (2005), and Uhlig (2005). Rubio-Ramirez, Waggoner, and
Zha (2010) propose an algorithm to compute rotations of the impulse matrix efficiently.
Such algorithm works well also when the number of variables in the vector is large and
several restrictions are imposed to identify more than one structural shock. Canova and
Paustian (2011) propose an algorithm which derives a set of robust restrictions from a
class of structural DSGE models that one may exploit to identify the shock(s) of interest
with Vector Autoregressions. Fry and Pagan (2011) critically review the estimation of
structural VARs with sign restrictions.

We identify the monetary policy shock by imposing "textbook" constraints on the
impulse responses of inflation and the policy rate to a monetary policy shock. The signs
to achieve identification are collected in Table 3. Such signs are robust in the sense of
Canova and Paustian (2011), because they hold true for a variety of different calibrations
of the parameters of interest (see our Appendix). Such constraints are imposed on the
first K = 2 quarters, i.e., the one in which the shock occurs and the following one.
This choice is in line with Uhlig’s (2005), which sets K = 5 but deals with monthly (as
opposed to quarterly) data. Importantly, we leave the reaction of output unconstrained
in order to let the (artificial) data free to speak as for the effects of an unexpected
interest rate hike (on output itself). Notice that, in this Monte Carlo exercise, the
set of restrictions associated to the monetary policy shock only is sufficient to identify
such shock. This is because an unexpected contractionary monetary policy move is the
only shock able to generate an on-impact negative (conditional) correlation between the

short-term policy rate and inflation according to our DGP.? Section 4 documents the

3There are important differences between this exercise and Uhlig’s (2005). Uhlig (2005) also consid-
ers total reserves, non-borrowed reserves, and a commodity price index, which he exploits to identify

10



robustness of our results in presence of additional restrictions that identify two more

shocks (price mark-up, technology).

3.3 Results

We recall our research question, which is:

"Suppose that the Data Generating Process is a standard DSGE framework
in which monetary policy is not neutral. Would a VAR with sign restrictions
imposed on the responses of inflation and the policy rate only be capable of

uncovering the authentic reaction of output to a monetary policy shock?"

Figure 1 depicts the impulse responses to a monetary policy shock obtained in our
in lab-exercise. It collects ten randomly drawn realizations as well as pointwise 90%
response intervals. The reaction of output turns out to be quite uncertain. Realizations
suggesting a "boom" after a policy tightening are all but rare. Positive realizations
do not only occur on impact, but also for a number of periods after the shock. When
looking at this evidence, one could hardly interpret these monetary policy shocks as
truly "contractionary". However, this VAR evidence is, by construction, consistent
with a "textbook" transmission of a monetary policy shock. Interestingly, this VAR
evidence occurs in spite of a positive short-run reaction of the policy rate. Notice that a
large number of policy rate realizations go negative from the third quarter onward (an
evidence in line with Uhlig, 2005). However, one may easily verify that the real interest
rate stays positive along all the horizons considered here. Therefore, a negative long-run

interest rate is not the explanation for our frequently positive response of output.

monetary policy shocks with actual data. In contrast, our exercise deals with a world in which infla-
tion, output, and the policy rate are the only relevant variables, and non-borrowed reserves are just
left unmodeled. Another important difference regards the frequency of the data, which is monthly in
Uhlig’s case vs. quarterly in our exercise. Therefore, our exercise should be seen as inspired by Uhlig’s
(2005) findings, more than else.

11



As anticipated, the ambiguous reaction of output resembles the main finding in Uhlig
(2005). He documents that, two times out of three, an unexpected policy tightening
will move real GDP up on impact. Figure 2 documents the uncertainty surrounding
the on-impact output reaction. Realizations are more in favor of a positive reaction of
output, which goes against conventional wisdom. The number of positive realizations
amounts to 61%, which is very close to the 2/3 figure proposed by Uhlig (2005).

Figure 3 depicts the DSGE-consistent impulse responses and the median reactions
computed over our K = 1,000 draws. The true reactions of inflation and output
(red dashed lines with diamonds) to a monetary policy shocks are negative (the zero
value is outside the estimated Bayesian 90% credible set, not shown here). This is not
surprising, in light of the fact that the DSGE model (1)-(4) features a standard demand
channel that implies a negative correlation between the real ex-ante interest rate and
output conditional on monetary policy shocks. However, all the pointwise median
reactions suggested by our structural VARs differ substantially from the true responses.
In particular, the reaction of output is clearly wrongly signed, and persistently so.

A possible drawback of this exercise is the way in which we compute the median
VAR responses. In general, the pointwise location measure one computes across dif-
ferent models do not necessarily deliver a model-(rotation-)consistent response. Fry
and Pagan (2011) propose to select the impulse responses conditional on the retained
rotation matrix which minimizes the distance with respect to the pointwise median.

We document in our Appendix that our results are robust to this alternative way of

4Technically, we are plotting a density constructed by considering impulse responses conditional
on 1,000 different randomly drawn datasets. In other words, we consider, per each given dataset, a
single rotation meeting our sign restrictions. Clearly, a (much more time-consuming) alternative would
be to consider, per each given database, a large number of rotations meeting our sign restrictions.
A robustness check documented in our Appendix considers 1,000 different rotations (meeting our
requirements) per each one of our 1,000 different samples. Our main result, i.e., the large uncertainty
surrounding the reaction of output in a context in which the true DGP is a standard textbook model,
turns out to be very robust to this perturbation of our benchmark case.

12



computing our impulse responses to a monetary policy shock.’

Importantly, what our simulations show is that, even conditional on a standard
demand channel effectively being at work, an agnostic identification procedure like the
one based on sign-restrictions may produce findings interpretable as support to the
monetary neutrality hypothesis. This may happen (and, in our simulations, it does
happen) even if shocks are not rare, but actually hit the economic system in each
period. Moreover, our exercise shows that the evidence provided in Figures 1 and 2 is
fully-consistent with a "textbook" AD-AS new-Keynesian model and the transmission
of monetary policy impulses embedded in it. Of course, Uhlig’s (2005) evidence is not
necessarily the outcome of an exercise conducted by employing realizations generated

by a DGP like ours. However, in light of our exercise, this is a possibility to consider.

3.4 Understanding the driver

What is the driver of our result? Our interpretation hinges upon the low relative con-
tribution that monetary policy shocks exert on the variance of output. As shown in
Paustian (2007) and Canova and Paustian (2011), sign restrictions work well when the
"signal" of the shock of interest is strong enough.

Paustian (2007) provides a simple example to understand why the relative strength

of a shock matters. Assume the structural model of a given economy to be the following:

dy, d
Ye | _ il 12 Uyt | s 012/ 0
Tt d21 d22 Ugt ’ 0 Ui '
+ o+

The econometrician imposes some sign restrictions to identify the two shocks u,; and

Uy, whose variance covariance is 2. In particular, she imposes

We focus on the pointwise median as opposed to the pointwise mean or the trimmed pointwise
mean because of its larger precision in this context (see Canova and Paustian (2011)). As proposed by
Liu and Theodoridis (2012), an alternative choice (not entertained here) would be to select the unique
rotation matrix which minimizes the distance between the on-impact VAR pointwise medians and the
on-impact responses predicted by a (possibly misspecified) DSGE model.

13



mi1 M2 ~
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Notice that the sign of the impact of the shock %,; on the variable x; is not imposed.
Can the econometrician recover such sign correctly?” One may work out the equations
implied by the system DXD’ = M M’, where the matrix D contains the structural
parameters of the economy, while the matrix M is a rotation matrix satisfying the
three signs imposed by the econometrician. Paustian (2007) shows that there exist a
critical value 0® = 02 /07 = —dy1dy(diadas) ™" such that, for o2 > o, the sign of the
impact of u,; on x; is uniquely determined by the three restrictions imposed by the
econometrician. If, instead, 02 < o2, then such sign is not pinned down without further
assumptions on the values of the structural parameters of the economy.

This condition tells us that the relative strength of the signal of a shock is important
to identify the effects of such shock correctly. According to our estimated DSGE model,
the contribution of policy shocks in explaining the variance of the forecast errors of our
variables is low, i.e., it amounts to about 10%, 4%, and 21% as for inflation, output,
and the policy rate, respectively (figures referring to the variance of one year-ahead
forecast errors). In this case, what happens is that the estimated "shock" is actually
a combination of all the true, structural disturbances hitting the economic system.
Formally, uft = ¢pul® + ¢Jul + ¢%uf, where ul is the monetary policy shock estimated
by the sign restrictions VAR, and qb’é,i = (m,a, R) are the loadings taken by the true
structural shocks. The larger the standard deviation of the shock one is after (the
monetary policy shock, in our context) with respect to the remaining ones, the smaller
the values of the loadings associated to the remaining shocks (¢ and ¢% in our case).

Two exercises are conducted to give support to this interpretation. The first one

re-runs our Monte Carlo exercise by switching some shocks off.® Figure 4 depicts the

6Technically, we do so by setting the standard deviations of the shocks we aim at switching off to

14



reaction of output in four alternative scenarios. The first one is our baseline scenario,
which is represented by the top-left panel. The second one is a scenario in which the
demand shock is suppressed (top-right panel). The outcome of this experiment should
be judged by contrasting it to the baseline case (depicted in the top-right panel to ease
comparability). It is possible to see that things go even worse than in the baseline
scenario, in that the reaction of output as suggested by the VAR is even more distant
than the one in the benchmark case. This suggests that i) the demand shock enters the
linear combination which determines 7, and ii) the loading ¢% is negative. In other
words, u* picks up also the dynamics of output after a negative demand shock. An
interesting scenario is that in which the supply shock is muted (bottom-left panel). It is
easy to see that 1) the reaction of output is largely negative; ii) it suggests in fact a deeper
recession than the true one. Therefore, u picks up also the effects of a negative supply
shock on output, and such shock is responsible for the positive reaction of output in our
benchmark simulations. Finally, and as expected, when the monetary policy shock is
made the sole responsible for the macroeconomic volatilities in our economy (bottom-
right panel), our VARs perfectly recover the true effects of a monetary policy shock.
This is not surprising, because shutting down the volatilities of the (non-policy) demand
and supply shocks is equivalent to imposing ¢ = ¢% = 0. Consequently, uZ® perfectly
recovers the conditional correlations induced by the true monetary policy shock u*.
We conduct a second exercise to support the role of monetary policy shocks’ signal in
our VAR context. In this exercise, the standard deviation of the monetary policy shock
in our DSGE model (otherwise calibrated with our posterior means) is counterfactually
inflated. Figure 5 collects the results of our simulations. Evidently, the stronger the
signal, the more precise the estimation of the median effect of the monetary policy

shock on output. An increase of 25% of the standard deviation of output leads to

10~3 > 0 to avoid singularity issues.
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a substantial improvement in terms of (reduction of the) distance between the true
response and that implied by our VAR estimates. Nevertheless, the sign of output
is still wrong, also on impact. An increase of 50% of the standard deviation leads
to an appreciable reduction in the "distortion", with the median reaction of output
being correctly signed for the first two quarters. A (dramatic) increase of 400% of the
standard deviation of the monetary policy shock in our estimated DSGE model leads to
a spectacular performance by sign restrictions. Consistently, the percentage of wrongly
signed output realizations falls as the signal becomes stronger. The responses of output,
on impact, are wrongly signed in 46% of the cases when the standard deviation of the
policy shock is scaled up by 25%, 37% of the times when it is scaled up by 50%, and
just 2% of the times when the shock’s standard deviation is multiplied by a factor of 5.
However, this scenario features a counterfactually strong monetary policy shock, which
is responsible of about 75%, 52%, and 87% of the forecast error variance of inflation,
output, and the policy rate (again, these figures refer to the variance of the four-step
ahead forecast errors). According to the estimates available in the literature, this is a
different world with respect to the U.S. economy. Uhlig (2005) finds monetary policy
shocks to be responsible of about 5-10% for the variations in real GDP at all horizons
as for the period 1965-2003, monthly data. Similar estimates are proposed by Smets
and Wouters (2007) with their DSGE structural analysis dealing with quarterly data,
sample 1957-2004, and by Justiniano, Primiceri, and Tambalotti (2010), who analyze
a similar sample. Christiano, Eichenbaum, and Evans (2005) analyze the sample 1965-
1995 with a Cholesky-VAR and document a larger contribution of monetary policy
shocks on output variation of about 38% (two-year ahead forecast error). However, the
authors themselves advise to treat this conclusion with caution, in that the uncertainty
surrounding this figure is large - the 5th percentile of the distribution suggests a much

smaller contribution of about 15%. With the same methodology, Altig, Christiano,
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Eichenbaum, and Lindé (2011) find monetary policy shocks to be responsible for about
9% of the movements of the real GDP at business cycle frequencies in the sample
period 1982-2008. Justiniano and Primiceri (2008) document the time-dependence of
the contribution of such shock to output growth, but the largest realizations, which
are estimated to occur in the mid-1970s and early-1980s, never exceed 15% (median
values).”

Wrapping up, our simulations show that a particular set of sign restrictions imposed
on VAR impulse responses may generate a very uncertain and often positive responses
of output even in a world in which such responses are in line with conventional wisdom.
This may occur due to the weakness of the signal associated to the policy shocks.
Therefore, Uhlig’s (2005) evidence if consistent with monetary policy shocks having the
power of affecting the business cycle.

One should bear in mind that Uhlig’s (2005) result is obtained by employing a longer
sample (1965-2003), modeling extra variables such as total reserves, non-borrowed re-
serves, and a commodity price index, and employing monthly observations. Importantly,
in our Appendix we show that this VAR evidence can be obtained also by estimating a
trivariate VAR modeling GDP deflator inflation, the CBO output gap, and the federal

funds rate with U.S. quarterly data, 1984:1-2008:11. Hence, our simulations replicate an

empirical result which appears to be quite robust as for the U.S. economy.

4 Robustness checks

We verify the robustness of our results to a number of variations of our baseline ex-
ercise. These variations consider the identification of non-policy shocks on top of the

monetary policy disturbance, a sample size much larger than the one employed in our

TOf course, different modeling assumptions may lead to different results as for the macroeconomic
effects of monetary policy shocks. Faust (1998) shows that, if one is willing to search for a prior that
places the largest possible mass on the impulse vector that explain the largest share of output variation,
some 86% of the variance of output may be attributed to monetary policy shocks.
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baseline simulations, a different number of periods during which our sign restrictions are
imposed, and a different structural model as our DGP. We analyze these perturbations
in turn.

Identification of extra-shocks. Our DSGE model (1)-(4) features three shocks,
i.e., a monetary policy shock, a supply (mark-up) shock directly influencing the inflation
rate, and a demand (technology) shock that affects the output gap in first place. In our
baseline exercise, we appeal to restrictions regarding the monetary policy shock only.
Paustian (2007) and Canova and Paustian (2011) suggest to use as many restrictions as
possible to identify the effects of a given shock and distinguish it with respect to other
disturbances in the economy. We then identify also the non-policy demand shock and
the supply shock by imposing "textbook" sign-restrictions (consistent with our DSGE
model) as indicated in Table 2.

Figure 6 (top-left panel) shows the density of our on-impact output responses ob-
tained by adding these extra-sign restrictions. The reaction of output remains quite
uncertain. The median value of the distribution is 0.32, i.e., the on-impact reaction of
output is, once again, wrongly signed. As in our baseline case, the evidence is dramat-
ically different when moving to an alternative world in which the standard deviation
of the monetary policy shock is five times larger. In this latter case, which is depicted
in the top-right panel of Figure 6, the signal associated to the policy shock is strong
enough, and the true effects on output are, as a matter of fact, correctly recovered not
only on impact, but also as for the entire span of interest.

Sampling uncertainty. The analysis conducted so far involves two types of uncer-
tainties. One is the so called "identification uncertainty", which regards the ability of
sign restrictions per se to recover the true effects of monetary policy shocks on output
(see our discussion in Section 3.4). Such uncertainty refers to the inability of the sign

restrictions VARs to recover the true macroeconomic effects of a monetary policy shock.

18



The other one is the "sampling uncertainty" which is typically faced by an econome-
trician endowed with a small sample. The sample-size we used in our analysis is the
typical sample size employed in macroeconometric analysis of the U.S. data during the
great moderation. Of course, it is of interest to understand if an econometrician en-
dowed with a much larger sample would do a better job in recovering the true effects
of a monetary policy shock on output. Figure 6 (central-left panel) plots the results
of a simulation in which the sample-size equals 100,000 observations. Evidently, the
uncertainty surrounding the reaction of output is much smaller. This implies that part
of our baseline result is indeed due to sample uncertainty. However, some 61% of the
on-impact reactions of output are positive, and the on-impact median reaction reads
0.09. Again, a quite different picture emerges when the signal is made much stronger
(Figure 6, central-right panel), with the dynamics of output being correctly recovered
by our VARs, and the share of positive reaction of output dramatically falling down to
zero (not shown).

Number of constrained horizons. When working with sign restrictions, one of
the key-choices is how many restrictions to place per each given shock/variable. Our
baseline choice is K = 2, i.e., two periods (including the one in which the shock realizes).
It is therefore of interest to check if our results are sensitive to a variation of K. We
then set K = 6, and re-run our experiments. Figure 6 (bottom panels) shows that our
results are robust to this perturbation. As a matter of fact, in the scenario in which the
contribution of the monetary policy shock is counterfactually boosted up, the reaction
of output replicates the true one just perfectly. This last result may be easily interpret
in light of the fact that K = 6 is actually consistent with the true dynamics of output
in response to a monetary policy shock in the DSGE model.

Smets and Wouters (2007) model as DGP. Our Monte Carlo results are condi-

tional on a set of assumptions, the most important one possibly being that of the DGP
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in place. Small-scale models like the one we employ in our baseline analysis have proved
to be useful also for empirical investigations. However, they miss to consider a number
of nominal and real frictions which may be relevant to model the transmission of a mon-
etary policy impulse to the real side of the economy. Hence, we consider an alternative
framework that is (one of those) currently used by central banks and research institutes
to perform policy analysis, i.e., the Smets and Wouters (2007) model (see, for similar
frameworks, Christiano, Eichenbaum, and Evans (2005) and Justiniano and Primiceri
(2008)). We estimate this model with U.S. data, sample 1984:1-2008:11. (Details on the
structure of the model, the data employed to estimate it, our Bayesian estimation, and
our posterior estimates can be found in our Appendix.) Then, we calibrate such model
with our posterior means and conduct our Monte Carlo experiment. Notice that, as in
the case of the small-scale model, the short-run restrictions imposed on the responses
of inflation and the policy rate are theoretically sufficient to achieve the identification
of the monetary policy shock. This is so because, out of the seven shocks in Smets and
Wouters’ (2007) model, three of them (TFP shock, price mark-up shock, wage mark-up
shock) induce a policy trade-off that implies a positive correlation between inflation and
the policy rate in the short run. Other three shocks (risk-premium shock, investment
shock, and fiscal spending shock) act as "demand" shocks, which also induce a positive
correlation between inflation and the nominal interest rate in the first quarters after the
shock. Therefore, the only shock leading to a negative conditional correlation between
inflation and the federal funds rate in the short run is the monetary policy shock.
Figure 7 (top panels) shows the outcome of our exercise. Again, when sticking to
the baseline calibration, the average reaction of output (here expressed in growth rates)

is at odds with respect to the conventional view.® Some 70% of the realizations of the

8We model our artificial data with a VAR(2). Our results are robust to the employment of a
variety of alternative VAR(p) models, with p ranging from 3 to 16. Our qualitative message remains
unchanged when employing either the log-level of output or the model-consistent output gap in place
of the growth rate of output in our VARs.
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distribution of the on-impact response of output to a monetary policy shock suggest a
positive reaction. But, exactly as in the case of the small-scale model, this is a result
due to the low strength of the signal associated to the monetary policy shock. If such
strength is counterfactually increased, the picture changes drastically once again. In
particular, the average reaction of output as suggested by the VAR analysis nicely lines
up with the true reaction as predicted by the Smets-Wouters model.

Unfortunately, as already pointed out when dealing with the small-scale version of
the DSGE framework, the magnified standard deviation of the monetary policy shock
we deal with is clearly counterfactual. The estimated Smets and Wouters (2007) model
conditional on our great moderation sample implies a contribution of the monetary pol-
icy shocks to output growth of about 5%, a result in line with Christiano, Eichenbaum,
and Evans (2005) and Smets and Wouters (2007). To have a sense of the likelihood of a
larger contribution of such shock to the volatility of output, we conduct an alternative
estimation in which we set the prior mean of the standard deviation of the policy shock
to 0.60, a value five times larger than the one estimated in our baseline case. Moreover,
we set the standard deviation of the ZG distribution of such standard deviation of the
policy shock to 0.25, much smaller than our baseline calibration (that is, 2). Our es-
timate of the standard deviation of the policy shock turns out to be larger, i.e., 0.16,
and the contribution of such shock to the volatility of output is estimated to be twice
as large, i.e., almost 10%. However, we also record a drop of the marginal likelihood of
about 20 log-points, which indicates a much worse fit of the model, overall. According
to our estimates, the scenario that should take place in order to have the VAR able to
recover the true effects of a monetary policy shock is just very unlikely to occur.

The reason why we get a pointwise median reaction of output which is very different
with respect to the one suggested by the Smets-Wouters mode in the baseline scenario

is that, again, the signal associated to the monetary policy shock is weak. Therefore,
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the reaction of output is due to a combination of shocks, not only to the monetary
policy shock. Figure 8 plots the medians obtained by simulating the Smets-Wouters
model in different scenarios characterized by the absence of one or more structural
shocks. Shocks to the TFP, risk-premium, fiscal condition, and investment appear to
exert a quantitatively negligible impact on the reaction of output. Differently, two
supply shocks, i.e., those to the price and wage mark-ups, are clearly important drivers
of such a reaction. In particular, when shutting the price mark-up shock off, the VAR
gets the on impact sign right (but it overstates the impact of the policy shock), and it
correctly captures the dynamic response over the horizons of interest. The wage-mark
up shock clearly dampens the pointwise median response. In other words, these two
shocks importantly affect the estimation of the effects of policy shocks on output one can
obtain with sign restrictions VARs. When jointly shutting these two shocks down, we
actually obtain a negative reaction of output which overstates the true one (Figure not
shown here for the sake of brevity). This implies that the reaction of output is demand
shocks also enter the linear combination of structural shocks which is interpreted by
our VARs as pure monetary policy shocks, and they do so acting as negative demand
shocks (on aggregate). Finally, and not surprisingly, when the true economy features
the monetary policy shock only, the VAR is perfectly able to recover the true effects of
a monetary policy innovation.

Restrictions on the response of output. An obvious way to fix the distortion
affecting the response of output to a monetary policy shock would seem to be that of
placing a sign restriction on the reaction of output. Of course, this is somewhat prob-
lematic for our study, whose aim is to offer a possible interpretation of the conditional
correlation proposed by Uhlig (2005) that hinges upon the choice of not imposing such
sign restriction on output - in general, if one wants to stay as agnostic as possible as

regards the response of output, it would seem natural not to impose any restriction
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on its reaction to the shock of interest. However, to have a sense of the impact of
such a possible restriction, we go back to our small-scale model, produce artificial data,
and ask our rotation matrices to return a non-positive reaction of output (on top of a
non-negative reaction of the policy rate and a non-positive reaction of inflation) for the
first K = 2 horizons. Therefore, a negative output reaction to an unexpected monetary
policy tightening is now an assumption - and not a result - in the very short run.
Figure 9 documents the outcome of our exercise. Two scenarios are proposed. The
first one - top row panels - employs a calibration for our DGP in line with our estimated
posterior means. An interesting result emerges. The reaction of output is estimated to
be non positive for the first five periods, i.e., a longer horizon than the one involved
by our sign restrictions. This is not entirely surprising, in light of the fact that we are
dealing with a VAR that well captures the persistence of the series. In other words,
the "initial conditions" dictated by our sign restrictions matter for periods over those
of the imposition of the signs, and work in favor of reducing the wedge between the
true output response and the one estimated by the VAR. Said so, evident discrepancies
between the true DSGE-based responses and those estimated with our VARs are still
present. As shown by the panels at the bottom of Figure 9, in a counterfactual world
in which monetary policy shocks’ contribution to output volatility is (substantially)

inflated, we are instead able to recover the correct reaction of output.

5 Conclusions

A standard new-Keynesian DSGE model of the business cycle featuring monetary policy
non-neutrality is estimated with quarterly U.S. data. It is then used in a Monte Carlo
exercise to generate artificial data with which VARs are estimated. Sign restrictions
are imposed to identify the effects of a monetary policy shock with such VARs. We

replicate Uhlig’s (2005) evidence on the ambiguous effects of a contractionary monetary
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policy shock on output. We show that this result is due to the weak signal associated
to the policy shock in this environment (i.e., to the low contribution of such shock to
the volatility of output). Sign restrictions are shown to correctly identify the negative
effects on output in an alternative world in which the share of output variance explained
by monetary policy shocks is counterfactually magnified. Our results reconcile Uhlig’s
(2005) evidence with the conventional view on the real effects of monetary policy shocks.

After stating what this paper is about, it is worth pointing out what this paper
is not about. This paper does not represent, in any manner, a "rejection" of Uhlig’s
(2005) empirical findings. If anything, it is quite the opposite. Uhlig’s (2005) empirical
result is very intriguing because it is obtained with a clean VAR-based econometric
investigation. As stressed by Uhlig (2012), the challenge is that of understanding why
that result is there and what it implies as for macroeconomic modelling. Our exercise
suggests that a researcher who believes in monetary policy non-neutrality should ezpect
to get empirical results in line with Uhlig’s (2005) when dealing with sign-restriction
VARs that do not impose any constraints on the response of output to a monetary
policy shock.

Our paper contains a suggestion to practitioners working with sign restrictions.
Canova and Paustian (2011) suggest to use robust sign restrictions to identify shocks
of interest with VAR estimated with actual data, which can then be exploited to assess
the ability of DSGE models to replicate the VAR responses to such identified shocks.
In light of our findings, the comparison between DSGE responses and VAR, responses
may be problematic in presence of shocks whose signals are weak. Our suggestion is to
compare the VAR responses computed with actual data to the VAR responses computed
with artificial data generated with DSGE models and identified via the same set of sign
restrictions. In other words, our suggestion is to use the class of DSGE models one is

interested into not only to isolate robust sign restrictions, but also to form a correct
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a-priori on what a VAR exercise run with actual data may actually deliver in terms of

dynamic responses to the shocks of interest.
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Variables
m: Inflation, y;: Output gap, R;: Nominal interest rate

Log-linearized equations
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Calibrated parameters
Discount factor: 5 = 0.99; Inverse of the Frisch labor elasticity: v =1

Table 1: Description of the small-scale DSGE Model - Log-linearized Equa-

tions. The definitions of the structural parameters are given in this Table and Table
2.
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Param. Interpretation Priors Poste[r%or %eans

5h,95t¢

I} Discount factor Calibrated 0[.9]9

vt Frisch elasticity Calibrated [1]

K NKPC, slope N(0.1,0.015) 0.12
[0.10,0.14]

o Price indexation B(0.5,0.2) 0.09
0.01,0.17]

IS, forw. look. degree B(0.5,0.2) 0.78
[0.70,0.86]

Inverse of the IES N(3,1) 5.19
[3.95,6.45]

Tr T. Rule, inflation N(1.5,0.3) 2.21
[1.85,2.56]

T. Rul .3,0.2 1

Ty Rule, output gap  G(0.3,0.2) [018570.62 ’

TR T. Rule, inertia B(0.5,0.285) 0.81
[0.77,0.86]

P AR tech. shock B(0.5,0.285) 0.89
[0.84,0.94]

O AR cost-push shock  B(0.5,0.285) 0.98
[0.97,0.99]

PR AR mon. pol. shock  B(0.5,0.285) 0.43
[0.30,0.56]

o Std. tech. shock 7G(1.5,0.2) 1.50
[1.10,1.91]

Or Std. cost-push. shock ZG(0.35,0.2) 0.09
0.07,0.11]

OR Std. mon. pol. shock ZG(0.35,0.2) 0.14
[0.12,0.15]

Table 2: Bayesian estimates of the DSGE model. 1984:1-2008:11 U.S. data. Prior
densities: Figures indicate the (mean,st.dev.) of each prior distribution. Legend: (N,
B, G, IG) stand for (Normal, Beta, Gamma, Inverse Gamma) densities. Posterior
densities: Figures reported indicate the posterior mean and the [5th,95th] percentile of
the estimated densities. Details on the estimation procedure provided in the text.

Shocks\Imposed signs m™ y R
MP shock < >
Supply shock > < >
Demand shock < < <

Table 3: Sign restrictions to achieve structural shocks’ identification. Identi-
fication in the baseline case achieved by imposing restrictions for K=2 and as for the
monetary policy shock only. Alternative scenarios discussed in the text.
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Figure 1: Impulse response functions to a monetary policy shock identified
with sign restrictions. Realizations conditional on sign restrictions imposed for K=2
and concerning the monetary policy shock only. Blue solid lines represent 10 randomly
selected impulse responses meeting the imposed sign restrictions. Dashed magenta lines
identify the 5th and 95th percentiles of the distribution. Figure based on 1,000 draws.
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100

Figure 2: On impact impulse response function of output to a monetary policy
shock. Realizations conditional on sign restrictions imposed for K=2 and concerning
the monetary policy shock only. On impact realizations (i.e., at horizon 0) only. Out-

liers excluded by trimming the realizations not belonging to the [2.5th,97.5th] percentiles
interval out. Figure based on 1,000 draws.
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Figure 3: Impulse responses to a monetary policy shock: DSGE vs. VAR.
Realizations conditional on sign restrictions imposed for K=2 and concerning the mon-
etary policy shock only. Red dashed lines with diamonds identify the reaction to a
monetary policy shock conditional on the DSGE model calibrated with posterior-mean
values. Blue dashed lines represent the median response across all the VAR impulse
responses meeting the imposed sign restrictions.
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Figure 4: Output response to a monetary policy shock: Selections of struc-
tural shocks. Top-left panel: Baseline case. Top-right panel: Simulations conditional
on the monetary policy and supply shocks only. Bottom-left panel: Simulatios condi-
tional on the monetary policy and demand shocks only. Bottom-right panel: Simulations
conditional on the monetary policy shock only. Realizations conditional on sign restric-
tions imposed for K=2 and concerning the monetary policy shock only. Blue dashed
lines represent the median response across all the VAR impulse responses meeting the
imposed sign restrictions. Red dashed lines with diamonds identify the reaction to a
monetary policy shock conditional on the DSGE model calibrated with posterior-mean

values. Figure based on 1,000 draws.
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Figure 5: Output response to a monetary policy shock: Role of the signal.
Standard deviations of the monetary policy shock in the DGP increased by 25%, 50%,
and 400% in panels [1,2], [2,1], and [2,2], respectively. Realizations conditional on
sign restrictions imposed for K=2 and concerning the monetary policy shock only. Blue
dashed lines represent the median response across all the VAR impulse responses meeting
the imposed sign restrictions. Red dashed lines with diamonds identify the reaction to
a monetary policy shock conditional on the DSGE model calibrated with posterior-mean
values. Figure based on 1,000 draws.

34



Estimated o R 5 times estimated o R
€ €

i 0.1
@ 150
g 0 ok X2 TPy
2 100 L2
= -0. >
z 50 ¢ D
0 -0.2 -
0 1 2 3 2 4 6 8 10 12 14
0.1
S 150
= 0 m-’-—.—‘—‘—-{‘
T 100 4=t
g 0d oo
O U.lge H”
g 5o <
0 -0.2 -
2 3 2 4 6 8 10 12 14
0.1
150
0 T ——t—t
©
y 100 4_9—0-
< _‘:f
50 'O-T ?*
0 o E— 0.2— -
2 3 2 4 6 8 10 12 14

Figure 6: Output response to a monetary policy shock: Robustness checks.
Perturbation of the baseline case as follows. "All Shocks": All three shocks (monetary
policy shock, mark-up shock, technology shock) are jointly identified. "Population":
Stmulations conducted conditional on a sample size equal to 10,000 observations. "K =
6": Sign restrictions imposed over the period of the shock and the following five periods.
Left column: On impact (i.e., at horizon 0) impulse response function of output to a
monetary policy shock. Realizations conditional on different scenarios as indicated by
the y-azis labels. Qutliers excluded by trimming the realizations not belonging to the
[2.5th,97.5th] percentiles interval out. Figure based on 1,000 draws. Right column:
Standard deviations of the monetary policy shock in the DGP increased by 400%. Blue
dashed lines represent the median response across all the VAR impulse responses meeting
the imposed sign restrictions. Red dashed lines with diamonds identify the reaction to a
monetary policy shock conditional on the DSGE model calibrated with posterior-median
values where not otherwise specified.
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Figure 7: Relevance of the strength of the policy shock signal in the Smets-
Wouters (2007) model. Realizations conditional on sign restrictions imposed for K=1

and concerning the monetary policy shock only. Blue dashed lines identify the median

response across all the VAR impulse responses meeting the imposed sign restrictions.

Dashed red lines with diamonds: Reaction to a monetary policy shock conditional on
the Smets- Wouters (2007) DSGE model calibrated with posterior-mean values. Standard

deviations of the monetary policy shock in the DGP increased by 400% in panels [2,1],
[2,2], and [2,3]. "Output" expressed in growth rates. Figure based on 1,000 draws.
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Blue dashed lines represent the median response across all the
VAR impulse responses meeting the imposed sign restrictions. Red dashed lines with
diamonds identify the reaction to a monetary policy shock conditional on the DSGE
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Figure 9: Sign imposed on output, small-scale model. Realizations conditional on
sign restrictions imposed for K=2 and concerning the monetary policy shock only. Blue
dashed lines identify the median response across all the VAR impulse responses meeting
the imposed sign restrictions. Dashed red lines with diamonds: Reaction to a monetary
policy shock conditional on the small-scale DSGE model calibrated with posterior-mean
values. Standard deviations of the monetary policy shock in the DGP increased by 400%
in panels [2,1], [2,2], and [2,3]. Figure based on 1,000 draws.
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Appendix of the paper "Monetary Policy Neutrality?
Sign Restrictions Go to Monte Carlo"

Bayesian estimation

To perform our Bayesian estimations we employed DYNARE, a set of algorithms de-
veloped by Michel Juillard and collaborators (Adjemian, Bastani, Juillard, Mihoubi,
Perendia, Ratto, and Villemot (2011)). DYNARE is freely available at the following URL:
http://www.dynare.org/.

The simulation of the target distribution is basically based on two steps.

e First, we initialized the variance-covariance matrix of the proposal distribution
and employed a standard random-walk Metropolis-Hastings for the first t < tq =
20,000 draws. To do so, we computed the posterior mode by the "csminwel"
algorithm developed by Chris Sims. The inverse of the Hessian of the target
distribution evaluated at the posterior mode was used to define the variance-
covariance matrix Cj of the proposal distribution. The initial VCV matrix of
the forecast errors in the Kalman filter was set to be equal to the unconditional
variance of the state variables. We used the steady-state of the model to initialize

the state vector in the Kalman filter.

e Second, we implemented the "Adaptive Metropolis" (AM) algorithm developed
by Haario, Saksman, and Tamminen (2001) to simulate the target distribution.
Haario, Saksman, and Tamminen (2001) show that their AM algorithm is more
efficient than the standard Metropolis-Hastings algorithm. In a nutshell, such
algorithm employs the history of the states (draws) so to ’tune’ the proposal
distribution suitably. In particular, the previous draws are employed to regulate
the VCV of the proposal density. We then exploited the history of the states

sampled up to t > tg to continuously update the VCV matrix C; of the proposal



distribution. While not being a Markovian process, the AM algorithm is shown
to possess the correct ergodic properties. For technicalities, see Haario, Saksman,

and Tamminen (2001).

We simulated two chains of 200,000 draws each, and discarded the first 90% as
burn-in. To scale the variance-covariance matrix of the chain, we used a factor so to
achieve an acceptance rate belonging to the [23%,40%)] range. The stationarity of the
chains was assessed via the convergence checks proposed by Brooks and Gelman (1998).
The region of acceptable parameter realizations was truncated so to obtain equilibrium

uniqueness under rational expectations.

Predictive power of the estimated small-scale model

We checked the predictive power of the estimated small-scale model. Figure A1l con-
trasts the actual series employed in our empirical exercise with the DSGE model’s one
step-ahead predictions. As shown by the Figure, the model performs well along the

one-step ahead forecasting dimension.

Robustness of our sign restrictions in the sense of Canova-
Paustian (2011)

The sign-restrictions imposed in our exercise are robust to in the sense of Canova and
Paustian (2011). We prove this by sampling 1,000 different calibrations of our small-
scale model from uniform densities whose domains are large enough to contain the
most common calibrations employed in the literature, computing the impulse responses
of interest to a monetary policy shock suggested by each given different calibration, and

plotting the 90% sets. Figure A2 shows the robustness of our sign restrictions to such

a wide variety of different calibrations.
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Fry and Pagan (2011) computation of the model-consistent im-
pulse responses

A possible drawback of our exercise is the way in which we compute the median VAR
responses. We do so by appealing to the empirical distribution constructed with all
the wl), that induce impulse responses meeting our constraints. Fry and Pagan (2011)
identify two possible drawbacks in doing so. Call C’Z(,Z)h the set of responses of a variable
i to a shock k£ at a horizon h, where j indexes the value of the estimated responses in
the set of the theory-consistent models j € {1, ..., J}. First, for a given j, med(C’gk’h)
may very well be none of the selected theory-consistent models. Second, assume that
all med(Ci(,z?h), j € {1,..., J} are actually selected models. As a matter of fact, nothing
guarantees that, for whatever pair of different (hq,hs), (med(Ci(,f?hl),med(Ci(,f?hz)) is
generated by the same model. Fry and Pagan (2011) suggest a way to search for the
single model j whose associated responses are as close as possible to the medians shown
in Figure 3.

The Fry-Pagan median impulse responses are reported in Figure A3. Interestingly,
negligible differences arise as for the reactions of inflation and the policy rate to a
monetary policy shock. More importantly for this study, the reaction of output is
also robust to the Fry-Pagan way of constructing the median, at least as for the run
dynamics. The two medians start differing from the sixth quarter after the shock.
The Fry and Pagan response suggests larger positive values and a delayed peak (at
the seventh quarter vs. the fifth one in the case of the baseline median reaction).
However, the main message is clearly confirmed when checked via the Fry-Pagan lenses,

i.e., median measures suggest a positive reaction of output in a context in which, as a

'In seeking for such a single model, one has to recognize that the impulses need to be made unit-
free by standardizing them. This is done by subtracting from each model-specific impulse response
(conditional on a given horizon h) its median and dividing such difference by the standard deviation,
where the median and the standard deviation are computed across all the retained models models -
see Pagan and Fry (2011, p. 950-951).
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matter of fact, such reaction in negative.

SRVAR with actual U.S. data

Uhlig (2005) works with monthly data, a richer VAR including extra variables (total
reserves, non-borrowed reserves, a commodity price index) and with a sample (1965-
2003) much longer than the one we employed to estimate our DSGE models, i.e., 1984:1-
2008:I1. Is the VAR evidence on an uncertain reaction of output robust to the employ-
ment of a trivariate VAR modeling the U.S. inflation, output gap, and federal funds
rate as for the great moderation? To answer this question, we estimate such a trivariate
VAR(4) with actual U.S. data, 1984:1-2008:11, and identify a monetary policy shock
by imposing the same signs imposed in our baseline Monte Carlo exercise, i.e., a non-
positive reaction of inflation and a non-negative reaction of the federal funds rate for
K = 2. Our observables are defined as in Section 2.2. The choice of including a mea-
sure of the output gap is justified by two reasons. First, Giordani (2004) shows that a
VAR including a measure of potential output is likely to return less distorted impulse
responses to a monetary policy shock. Second, the inclusion of the output gap in our
VAR estimated with actual data makes such VAR comparable to the ones employed in
our Monte Carlo experiments.

Figure A4 reports the impulse responses over different horizons. One may easily
notice the huge uncertainty surrounding the response of output, which clearly resembles
the one produced with our Monte Carlo experiment and presented in Figure 1 in the
paper. The empirical density of the on-impact response of output to a monetary policy
shock is presented in Figure A5. Again, the similarity with our Monte Carlo-based
Figure 2 in the main text is striking. The share of on-impact positive realizations of
output is even larger than that recorder by Uhlig, in that our density suggests that

eight responses out of ten take a positive value.
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Our evidence reinforces the empirical result proposed by Uhlig (2005) on the uncer-

tain reaction of output to a monetary policy shock identified with sign restrictions.

Rotation uncertainty

Our baseline model hinges upon the selection of a single model (rotation) meeting
our sign constraint per each given database. It is of interest to understand if our
findings go through if we retain more rotations satisfying our constraints per each
given dataset. Then, we re-run our simulations by retaining, per each one of our 1,000
artificial datasets, 1,000 models models meeting our constraints. Then, we compute the
median realization of the on-impact output responses to a monetary policy shock over
such 1,000 models per each given dataset. We end up having a density based on 1,000
medians (here 1,000 is the number of different datasets), which is depicted in Figure 6.
Clearly, all the mass cover positive values, an evidence suggesting that our main result
is robust to employing different models per each given artificial dataset. Moreover,
the median value of the median realizations reads 0.63, a value very close to the one
computed in our baseline case (see our main text). The 5th and 95th percentiles of the
distribution are 0.43 and 0.87, respectively. We conclude that our results are robust to

the employment of a large number of rotations per each given dataset.

The Smets-Wouters (2007) model

The Smets and Wouters (2007) model is a Dynamic Stochastic General Equilibrium
framework extremely popular in academic and institutional circles. The model features
a number of shocks and frictions, which offer a quite rich representation of the economic
environment and allow for a satisfactory in-sample fit of a set of macroeconomic data
(Del Negro, Schorfheide, Smets, and Wouters (2007)). Moreover, Smets and Wouters
(2007) show that this model is quite competitive when contrasted with Bayesian-VARs

as for forecasting exercises, in particular for the elaboration of medium-term predictions.



The Smets and Wouters (2007) model features sticky nominal price and wage settings
that allow for backward-looking inflation indexation; habit formation in consumption;
investment adjustment costs; variable capital utilization and fixed costs in production.
The stochastic dynamics is driven by seven structural shocks, namely a total factor pro-
ductivity shock, two shocks affecting the intertemporal margin (risk premium shocks
and investment-specific technology shocks), two shocks affecting the intratemporal mar-
gin (wage and price mark-up shocks), and two policy shocks (exogenous spending and
monetary policy shocks).

In a nutshell, the model features the following main ingredients. Households max-
imize a nonseparable utility function in consumption and labor over an infinite life
horizon. Consumption appears in the utility function in quasi-difference form with re-
spect to a time-varying external habit variable. Labor is differentiated by a union, so
there is some monopoly power over wages, which results in explicit wage equation and
allows for the introduction of sticky nominal wages a la Calvo (1983). Households rent
capital services to firms and decide how much capital to accumulate given the capital
adjustment costs they face. The utilization of the capital stock can be adjusted at
increasing cost. Firms produce differentiated goods, decide on labor and capital inputs,
and set prices conditional on the Calvo model. The Calvo model in both wage and
price setting is augmented by the assumption that prices that are not reoptimized are
partially indexed to past inflation rates. Prices are therefore set in function of current
and expected marginal costs, but are also determined by the past inflation rate. The
marginal costs depend on wages and the rental rate of capital. Similarly, wages de-
pend on past and expected future wages and inflation. The model features, in both
goods and labor markets, an aggregator that allows for a time-varying demand elastic-
ity depending on the relative price as in Kimball (1995). This is important because the

introduction of real rigidity allows us to estimate a more reasonable degree of price and
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wage stickiness.

The log-linearized version of the DSGE model around its steady-state growth path

reads as follows:

Yy =
c =
1y =
q =

Y =

CyCt + iyl + 2y2t + €7 (1)
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and g, and i, are the steady-state exogenous spending-output ratio and investment-
output ratio, with:

iy = (7= 1+ 0k, (20)

where v is the steady-state growth rate, ¢ is the depreciation rate of capital, &, is the
steady-state capital-output ratio; z, = RYk, is the steady-state rental rate of capital.
Notice that eq. (16), the one of the stochastic process of the government spending,
allows for the productivity shock to affect it. This is so because exogenous spending,
in this model, includes net exports, which may be affected by domestic productivity
development.

As for the consumption Euler equation (2):

g = % (1 + 3) (21)

C
= —= 22
Co O'c(l—i—%) ( )
_ 2
3 = —2— (23)

Current consumption is a function of past and expected future consumption, of expected
growth in hours worked, of the ex ante real interest rate, and of a disturbance term
eb. Under the assumption of no habits (A = 0) and that of log-utility in consumption
(0. =1), ¢ = ¢3 = 0, then the standard purely forward looking consumption equation
is obtained. The disturbance term £? represents a wedge between the interest rate con-
trolled by the central bank and the return on assets held by the households. A positive
shock to this wedge increases the required return on assets held by the households. At
the same time, it increases the cost of capital and it decreases the value of capital and
investment (see below). This is basically a shock very similar to a net-worth shock.

This disturbance is assumed to follow a standard AR(1) process.
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The dynamics of investment is captured by the investment Euler equation (3), where:

1

i = 24

1 T (24)
1

iy = 25

’ L+ fyl=oen?e (%)

where ¢ is the steady-state elasticity of the capital adjustment cost function, and (3
is the discount factor applied by households. Notice that capital adjustment costs are
a function of the change in investment, rather than its level. This choice is made to
introduce additional dynamics in the investment equation, which is useful to capture the
hump-shaped response of investment to various shocks. In this equation, the stochastic
disturbance ¢! represents a shock to the investment-specific technology process, and is
assumed to follow a standard first-order autoregressive process.

The value-of-capital arbitrage equation (4) suggests that the current value of the
capital stock ¢; depends positively on its expected future value (with weight ¢ =
By7o¢(1 —4)), as well as the expected real rental rate on capital Ejry,; and on the ex
ante real interest rate and the risk premium disturbance.

Eq. (5) is the first one of the supply side block. It describes the aggregate production
function, which maps output to capital (k) and labor services (l;). The parameter «
captures the share of capital in production, and the parameter ¢, is one plus the share
of fixed costs in production, reflecting the presence of fixed costs in production.

Eq. (6) suggest that the newly installed capital becomes effective with a one-period
delay, hence current capital services in production are a function of capital installed
in the previous period k; and the degree of capital utilization z;. As stressed by eq.
(7), the degree of capital utilization is a positive function of the rental rate of capital,
2 = 211k, where z; = (1 — %) /v and 1 is a positive function of the elasticity of the

capital utilization adjustment cost function normalized to belong to the [0,1] domain.
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Eq. (8) describes the accumulation of installed capital k;, featuring the convolutions:

ki = (1-68)/ (26)
ky = [1 — (1 — %)] (1+B87'77) v (27)

Installed capital is a function not only of the flow of investment but also of the rela-
tive efficiency of these investment expenditures as captured by the investment-specific
technology disturbance ¢!, which follows an autoregressive, stationary process.

Eq. (9) relates to the monopolistic competitive goods market. Cost minimization by
firms implies that the price mark-up u?, defined as the difference between the average
price and the nominal marginal cost or the negative of the real marginal cost, is equal
to the difference between the marginal product of labor and the real wage w;, with the
marginal product of labor being itself a positive function of the capital-labor ratio and
total factor productivity.

Profit maximization by price-setting firms gives rise to the New-Keynesian Phillips

curve, i.e., eq. (10), with the convolutions being:

bp
™ o= ——E— 28
1 1_‘_671—06% ( )
Bytoe
Ty = ——— 29
- T (29)

1 (]' - B,yliacgp)cl' - gp)
1+ 57(1_%)% £p [<¢p - 1)5p + 1} .

T3 (30)

Notice that, in maximizing their profits, firm have to face price stickiness a la Calvo
(1983). Firms that cannot reoptimize in a given period index their prices to past
inflation as in Smets and Wouters (2003). In equilibrium, inflation 7, depends positively
on past and expected future inflation, negatively on the current price mark-up, and
positively on a price mark-up disturbance /. The price mark-up disturbance is assumed
to follow an ARMA(1,1) process. The inclusion of the MA term is to grab high-frequency

fluctuations in inflation. When the degree of price indexation ¢, = 0, m; = 0 and eq.



(10) collapses to the purely forward-looking, standard NKPC. The assumption that all
prices are indexed to either lagged inflation or trend inflation ensures the verticality of
the Phillips curve in the long run. The speed of adjustment to the desired mark-up
depends, among others, on the degree of price stickiness ¢, the curvature of the Kimball
goods market aggregator ¢,, and the steady-state mark up, which in equilibrium is itself
related to the share of fixed costs in production (¢, — 1) via a zero-profit condition. In
particular, when all prices are flexible (§, = 0) and the price mark-up shock is zero at all
times, eq. (10) reduces to the familiar condition that the price mark-up is constant, or
equivalently that there are no fluctuations in the wedge between the marginal product
of labor and the real wage. Cost minimization by firms also implies that the rental rate
of capital is negatively related to the capital-labor ratio and positively to the real wage
(both with unitary elasticity) (see eq. (11)).

Similarly, in the monopolistically competitive labor market, the wage mark-up will
be equal to the difference between the real wage and the marginal rate of substitution
between working and consuming, an equivalence captured by eq. (12), where o is the
elasticity of labor supply with respect to the real wage and A is the habit parameter
in consumption. Eq. (13) shows that real wages adjust only gradually to the desired
wage mark-up due to nominal wage stickiness and partial indexation, the convolutions

related to this equation being:

1

_ 31

wl 1 +/87170.C ( )

L+ By b

_ 32
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_ 33
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wy = b ( B7 511))( gw) (34)

L+ Byt=oe &, [(dy — Dew +1]
Notice that if wages are perfectly flexible (¢, = 0), the real wage is a constant mark-

up over the marginal rate os substitution between consumption and leisure. When wage
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indexation is zero (¢, = 0), real wages do not depend on lagged inflation. Notice that,
symmetrically with respect to the pricing scheme analyzed earlier, also the wage-mark
up disturbance follows an ARMA(1,1) process.

The model is closed by eq. (14), which is a flexible Taylor rule postulating a system-
atic reaction by policymakers to current values of inflation, the output gap, and output
growth. In particular, one of the objects policymakers react to is the output gap, de-
fined as a difference between actual and potential output (in logs). Consistently with
the DSGE model, potential output is defined as the level of output that would prevail
under flexible prices and wages in the absence of the two mark-up shocks. Then, poli-
cymakers engineer movements in the short-run policy rate r;, movements which happen
gradually given the presence of interest rate smoothing p. Stochastic departures from
the Taylor rate, i.e. the rate that would realize in absence of any policy rate shocks,
are triggered by a stochastic AR(1) process.

Finally, egs. (15)-(18) define the stochastic processes of the model, which features,
as already pointed out, seven shocks (total factor productivity, investment specific tech-
nology, risk premium, exogenous spending, price mark-up, wage mark-up, and monetary
policy).

Notice that the model features a deterministic growth rate driven by labor-augmenting
technological progress, so that the data do not need to be detrended before estimation.

Tables A1 and A2 document our prior and posterior densities. Figure A7 shows
that our results are robust to the employment of the Fry and Pagan (2011) search of

the model closest to our pointwise medians.
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Figure A1l: Actual series vs. DNK’s one-step ahead forecasts. Solid blue
line: Actual series. Dotted red lines: DSGE framework’s one-step-ahead predictions.
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Figure A2: Robustness of our sign restrictions in the sense of Canova and
Paustian (2011) - small scale model. Pictures identifying 90% sets obtained by
drawing 1,000 different calibrations of our small scale model. Calibrations obtained by

drawing from uniform densities with a wide support as in Canova and Paustian (2011).
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Figure A3. Fry and Pagan (2011) impulse responses to a monetary policy
shock. Realizations conditional on sign restrictions imposed for K=2 and concerning
the monetary policy shock only. Red dashed lines with diamonds identify the reaction to
a monetary policy shock conditional on the DSGE model calibrated with posterior-mean
values. Blue dashed lines represent the median response across all the VAR impulse
responses meeting the imposed sign restrictions. Magenta lines with circles represent
the median VAR responses computed as suggested by Fry and Pagan (2011). Figure
based on 1,000 draws.
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Figure A4. Impulse response functions to a monetary policy shock iden-
tified with sign restrictions - actual U.S. data. Realizations conditional on sign
restrictions imposed for K=2 and concerning the monetary policy shock only. Blue solid
lines represent 10 randomly selected impulse responses meeting the imposed sign restric-

tions. Dashed magenta lines identify the 5th and 95th percentiles of the distribution.
Figure based on 1,000 draws.
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Figure A5. On impact impulse response function of output to a monetary
policy shock - actual U.S. data. Realizations conditional on sign restrictions imposed
for K=2 and concerning the monetary policy shock only. On impact realizations (i.e.,
at horizon 0) only. Outliers excluded by trimming the realizations not belonging to the
[2.5th,97.5th] percentiles interval out. Figure based on 1,000 draws.

xviil



50

Figure A6. Density of shares of positive on-impact reactions of output
to a monetary policy shock. Realizations conditional on sign restrictions imposed
for K=2 and concerning the monetary policy shock only. Density constructed on the
basis of 1,000 different shares of positive on-impact reactions of output to a monetary
policy shock. Per each given dataset (total number of the datasets: 1,000), the share
of positive realizations of output is computed by considering 1,000 accepted rotation
matrices. Median value of the realized shares: 0.63. [5th,95th] percentiles: [0.43,0.87].
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Param. Interpretation Priors Poste[r%or % eans

5h,95t

Capital adj. t elasticit 4,1.5 6.06
© apital adj. cost elasticity N(4,1.5) S0

Oc Risk aversion N (1.5,0.375) 1.39
[1.16,1.62]

h Habit formation B(0.7,0.1) 0.63
[0.50,0.75]

&, Wage stickiness 5(0.5,0.1) 0.64
[0.49,0.79]

oy Elast. lab. supply N(2,0.75) 1.76
[0.78,2.74]

3 Price stickiness 5(0.5,0.1) 0.71
[0.62,0.80]

L Wage indexation B(0.5,0.15) 0.52
[0.28,0.76]

Lp Price indexation B(0.5,0.15) 0.40
[0.20,0.59]

P Capacity utiliz. elast. B(0.5,0.15) 0.69
[0.54,0.85]

®—1 Fixed c. in prod. (share)  N(0.25,0.125) 0.44
[0.30,0.57)

Tr T. Rule, inflation N (1.5,0.25) 2.10
[1.78,2.43]

p T. Rule, inertia 1(0.75,0.10) 0.83
[0.80,0.87)

Ty T. Rule, output gap N(0.125,0.05) 0.05
[0.02,0.09]
Ay T. Rule, output growth N (0.125,0.05) [ (1).10620}

0.11,0.

T St. state inflation rate G(0.625,0.10) 0.64
[0.55,0.73]

100(B~' —1) St. state interest rate G(0.25,0.10) 0.25
- [0.10,0.40]

St. state hours worked N(0,2) 0.87
[~0.84,2.57]

5 Trend growth rate N(0.4,0.1) 0.42
[0.37,0.47)

a Share of capital in prod. ~ N(0.3,0.05) 0.32
[0.25,0.39]

Table Al: Bayesian estimates of the Smets and Wouters’ (2007) DSGE
model - Structural Parameters. 1984:1-2008:11 U.S. data. Legend: (N, B, G, IG)
stand for (Normal, Beta, Gamma, Inverse Gamma) densities. Prior densities: Fig-
ures indicate the (mean,st.dev.) of each prior distribution. Posterior densities: Figures
reported indicate the posterior mean and the [5th,95th] percentile of the estimated den-
sities. Details on the estimation procedure provided in the text.



Param. Interpretation Priors Poste[rior %eans
5h,95¢
Ta TFP shock, st.dev. 7G(0.1,2) 0.41
[0.36,0.46]
o) Risk-premium shock, st.dev. 7G(0.1,2) 0.16
0.10,0.21]
gy Gov. spending shock, st.dev. 7G(0.1,2) 0.41
[0.36,0.46]
or Invest.-specific tech. shock, st.dev. 7G(0.1,2) 0.35
[0.27,0.42]
o Mon. policy shock, st.dev. 7G(0.1,2) 0.12
0.10,0.14]
op Price mark-up shock, st.dev. 7G(0.1,2) 0.10
[0.08,0.12]
Ow Wage mark-up shock, st.dev. 7G(0.1,2) 0.29
[0.23,0.35]
Pa TFP shock, AR(1) coeftf. B(0.5,0.2) 0.95
0.92,0.97]
O Risk-premium shock, AR(1) coeff. B(0.5,0.2) 0 94%262]
Py Gov. sp. shock, AR(1) coeff. B(0.5,0.2) [083%%7]
pr Invest.-spec. tech. shock, AR(1) coeff. 5(0.5,0.2) o %704851
0y Mon. pol. shock, AR(1) coeff. B(0.5,0.2) 0 (1)5.%(214]
Py Price mark-up shock., AR(1) coeff. B(0.5,0.2) o (s)i%ggs]
P Wage mark-up shock, AR(1) coeff. 5(0.5,0.2) 0 gg%%g]
Iy Price mark-up shock, MA(1) coeff. B(0.5,0.2) 0 %((5)%5]
Loy Wage mark-up shock, MA(1) coeff. B(0.5,0.2) o (5)5,?)188]
Pya Gov.spending-TFP shocks, correlation 5(0.5,0.2) o (2)5.;%46 .

Table A2: Bayesian estimates of the Smets and Wouters’ (2007) DSGE
model - Shocks’ persistence and variance.
(N, B, G, IG) stand for (Normal, Beta, Gamma, Inverse Gamma) densities. Prior
densities: Figures indicate the (mean,st.dev.) of each prior distribution. Posterior
densities: Figures reported indicate the posterior mean and the [5th,95th] percentile of

1984:1-2008:11 U.S. data.

the estimated densities. Details on the estimation procedure provided in the text.
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Figure A7. Impulse responses to a monetary policy shock: Smets and
Wouters’ DSGE model vs. VAR. Realizations conditional on sign restrictions
imposed for K=2 and concerning the monetary policy shock only. Red dashed lines with
diamonds identify the reaction to a monetary policy shock conditional on the DSGE
model calibrated with posterior-mean values. Blue dashed lines represent the median
response across all the VAR impulse responses meeting the imposed sign restrictions.

Magenta lines with circles represent the median VAR responses computed as suggested
by Fry and Pagan (2011). Figure based on 1,000 draws.
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