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Abstract

We propose a novel robust test to assess whether an estimated new-Keynesian model is
consistent with a unique stable solution, as opposed to multiple equilibria. Our strategy
is designed to handle identification failures as well as the misspecification of the relevant
propagation mechanisms. We invert a likelihood ratio test for the cross-equation restrictions
(CER) that the new-Keynesian system places on its reduced form solution under determinacy.
If the CER are not rejected, we rule out the occurrence of sunspot-driven expectations from
the model equilibrium and accept the structural model. Otherwise, we move to a second-step
and invert, using the same grid considered in the first-step, an Anderson and Rubin-type test
for the orthogonality restrictions (OR) implied by the system of Euler equations. We accept
the hypothesis of indeterminacy if the OR are not rejected. We investigate the finite sample
performance of the suggested two-steps testing strategy by some Monte Carlo experiments.
Finally, we apply our robust test to a new-Keynesian AD/AS model estimated with actual
U.S. post-WWII data. In spite of some evidence of weak identification as for the ‘Great
Moderation’ period, our results offer formal support to the hypothesis of a switch from

indeterminacy to uniqueness occurred in the late 1970s.
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1 Introduction

The U.S. inflation and output growth processes have experienced dramatic breaks in the post-
WWIL. In particular, a marked reduction of the U.S. macroeconomic volatilities has been docu-
mented by Stock and Watson (2002), who coined the popular term ‘Great Moderation’ to indicate
this stylized fact. A possible explanation for such phenomenon hinges upon the hypothesis of
the switch to an aggressive monetary policy conduct occurred with the appointment of Paul
Volcker as Chairman of the Federal Reserve at the end of the 1970s. With his appointment, the
argument goes, the Fed moved from a weakly aggressive reaction to inflation to a much stronger
one. Such a switch anchored private sector’s inflation expectations, therefore leading the U.S.
economy to move from an indeterminate equilibrium to determinacy. This story, popularized
by Clarida et al. (2000), has subsequently been supported by Lubik and Schorfheide (2004),
Boivin and Giannoni (2006), Benati and Surico (2009), Mavroeidis (2010), and Inoue and Rossi
(2011a).

The above mentioned contributions implicitly assume the new-Keynesian model one works
with to be correctly specified and, with the remarkable exception of Mavroeidis (2010), to
feature identifiable parameters. As concerns the first issue, albeit new-Keynesian models can
display several types of misspecifications (An and Schorfheide, 2007), the omission of propaga-
tion mechanisms from the structural equations is a major concern in the empirical assessment of
determinacy/indeterminacy. As discussed by Lubik and Schorfheide (2004) and Fanelli (2012),
indeterminacy generally entails a richer correlation structure of the data. Therefore, the risk run
by an econometrician is to confound a determinate case in which relevant propagation mecha-
nisms are not embedded by the structural model at hand with the indeterminate scenario. In
conducting their Bayesian analysis, Lubik and Schorfheide (2004) tackle this issue by analyz-
ing versions of a small-scale new-Keynesian model featuring different dynamic structures, while
Fanelli (2012) proposes a frequentist test of determinacy/indeterminacy that explicitly controls
for the omission of propagation mechanisms from the specified structural equations.

As concerns the identifiability of the structural parameters, aside from Mavroeidis (2010),
who adopts a single-equation ‘limited-information’ approach, all existing empirical contributions
in which the determinacy/indeterminacy issue of U.S. monetary policy is investigated assume
that the structural parameters are identifiable. In general, both finite sample and asymptotic
distributions for estimators and tests can be strongly affected if identification conditions are not
satisfied, see e.g. Sargan (1983), Phillips (1989), Staiger and Stock (1997) and Stock and Wright
(2000). Many authors have recently argued that estimated new-Keynesian systems like or similar
to the one considered in this paper can be affected by ‘weak identification’ issues. Identification

problems in a system of variables featuring highly nonlinear restrictions may involve the rank



condition of the information matrix or suitable transformation of moments (Iskrev, 2008, 2010;
Komunjer and Ng, 2011), or the relationship between the structural parameters and the sam-
ple objective function, which may display ‘small’ curvature in certain regions of the parameter
space, see e.g. Canova and Sala (2009). The former concept of identification is also referred to
as ‘population identification’ (Canova and Sala, 2009), as opposed to the latter, often termed
‘sample identification’, because it is specific to a particular dataset and sample size. Our paper
is concerned with this second phenomenon, which we characterize as the situation in which the
criterion used to estimate the structural parameters and test hypotheses on these parameters
exhibit ‘little curvature’ in all or some directions of the parameter space with the consequence of
being nearly uninformative about these parameters. Weak identification of all or part of the esti-
mated parameters can affect negatively the finite sample performances of the testing procedures
commonly used by ‘frequentist’ practitioners. Robust inference under possible identification fail-
ure has received increasing attention by the literature on dynamic stochastic general equilibrium
(DSGE) models, see e.g. Canova and Sala (2009), Dufour et al. (2009, 2013), Kleibergen and
Mavroeidis (2009), Mavroeidis (2005, 2010), Guerron-Quintana et al. (2013), Qu (2011) and
Andrews and Mikusheva (2012), among others.!

This paper’s contribution is twofold. On the methodological side, we propose a novel test for
determinacy/indeterminacy in new-Keynesian monetary policy business cycle models that (i)
can be applied regardless of the strength of identification of the model’s structural parameters,
and (ii) that controls for the case of ‘dynamic misspecification’, where by this term we mean
the omission of relevant propagation mechanisms from the specified system of structural Euler
equations. On the empirical side, we use the small scale new-Keynesian model discussed in Benati
and Surico (2009) and apply the proposed identification-robust method to post-WWII U.S. data
to investigate monetary policy determinacy/indeterminacy on our selected ‘pre-Volcker’ and
‘Great Moderation’ samples.

As regards the methodological contribution, the proposed testing strategy is based on two
steps. In the first-step, we use an identification-robust ‘full-information’ method to test the cross-
equation restrictions (CER) that the new-Keynesian model places on its unique stable reduced
form solution under determinacy. This requires the (numerical) inversion of a likelihood-ratio
test for the CER implied by the new-Keynesian model along the lines recently suggested by
Guerron-Quintana et al. (2013) and Dufour et al. (2013). If the CER are not rejected, we
can rule out the occurrence of sunspot-driven expectations and arbitrary nuisance parameters

from the model’s equilibrium. Importantly, in this case we cannot rule out the possibility of a

'Inoue and Rossi (20115) and Andrews and Cheng (2012, 2013) tackle the issue from a more general perspective
but their analysis can be adapted to the context of DSGE models.



Minimum State Variable (MSV) equilibrium (McCallum, 1983), i.e. a solution nested within
the class of indeterminate equilibria but that is observationally equivalent to the determinate
reduced form, see Evans and Honkapohja (1986), Lubik and Schorfheide (2004), and Fanelli
(2012). Notably, however, the non-rejection of the CER amounts to an implicit acceptance of the
hypothesis of correct specification of the new-Keynesian system. If instead the CER are rejected,
we move to a second-step to determine whether the outcome obtained in the first-step depends on
the multiple equilibria hypothesis, or to the omission of relevant propagation mechanisms from
the specified structural equations. To accomplish this task, we apply an identification-robust
‘limited-information’ method and invert a test for the orthogonality restrictions (OR) implied by
the system of Euler equations under the rational expectations hypothesis (and the assumption
of correct specification), using the same grid employed in the first-step. In principle, if the new-
Keynesian system is correctly specified, the OR are valid irrespective of whether the implied
equilibrium is determinate or indeterminate. However, conditional on the result in first-step, in
our framework the non-rejection of the OR is evidence of indeterminacy while their rejection
suggests that the specified structural equations do not capture the dynamic properties of the
data adequately. The test inverted in this second-step is an Anderson Rubin-type (Anderson
and Rubin, 1949) test that can be implemented in our multivariate framework following Dufour
et al. (2009, 2013).2

The tests involved in our two-step methodology are based on asymptotically pivotal test sta-
tistics which have correct size regardless of the strength of identification of the model’s structural
parameters. Overall, the suggested testing strategy is asymptotically correctly sized and consis-
tent against the multiple equilibria hypothesis. We investigate its finite sample performance and
its practical usefulness by some Monte Carlo experiments and find that the procedure displays
reasonable empirical size and reassuring power against some specified indeterminate equilibria
in finite samples.

As regards the empirical contribution, the application of our testing strategy on U.S. quar-
terly data leads us to the following findings. Our identification-robust test for the CER com-
puted in the first step leads us to reject the hypothesis of determinacy on the ‘pre-Volcker’
sample. Conditional on this first step, our identification-robust test for the OR computed in
the second-step does not lead us to reject the new-Keynesian framework at hand. Therefore,
our results support the multiple equilibria scenario, which acknowledges a role for self-fulfilling

expectations as a driver of the U.S. macroeconomic dynamics during the 1970s. Instead, the

2 Alternatively, one can apply the ‘S-test’ approach by Stock and Wright (2000) or the ‘K-LM test’ approach by
Kleibergen (2005), which require the evaluation of the criterion function associated with the continuos-updating
version of the generalized method of moments. Some computational issues, discussed in detail in the Appendix,

make us prefer the approach by Dufour et al. (2009, 2013).



identification-robust test for the CER computed in the first-step clearly supports the CER im-
plied by the hypothesis of determinacy when considering our ‘Great moderation’ sample. While
being unable to interpret this result as conclusive evidence of determinacy (recall the observa-
tional equivalence between the determinate and the indeterminate MSV solution), the case of
sunspot shocks-driven expectations is clearly ruled out by the data. In line with Mavroeidis
(2010), our ‘limited information’-based second step delivers wider projected confidence intervals
for the estimated policy parameters during the ‘Great Moderation’ as opposed to those com-
puted for the ‘Great Inflation’ period. If taken in isolation, the projected confidence intervals of
the policy parameters would be considered as uninformative as for the issue of determinacy. Dif-
ferently, our full-system inferential approach enables us to interpret such evidence as consistent
with an economic system under determinacy, hence not affected by sunspot shocks. This is so
because our first step does not lead us to reject the structure of the system under investigation
when post-1985 data are taken into account. Therefore, our testing procedure is inherently more
informative than a single-equation approach (even when the latter is designed to deal with weak
identification), in that it allows the econometrician to go a step further in assessing (and, in
this case, ruling out) the role of sunspot fluctuations as possible drivers of the U.S. economic
dynamics.

The remained of this paper is organized as follows. Section 2 introduces the reference small
scale new-Keynesian structural model and discusses its reduced form solutions under determi-
nacy and indeterminacy, respectively. Section 3 summarizes the testing strategy. Section 4
investigates the finite sample performance of the testing strategy by some simulation experi-
ments. Section 5 presents our empirical results obtained on U.S. quarterly data. Section 6
relates our work to the literature, and Section 7 contains some concluding remarks. Additional
methodological details are confined in the Appendix. To save space, we have treated some issues

regarding the solution properties of the new-Keynesian model in a Technical Supplement.

2 Model

This Section presents the reference small-scale new-Keynesian business cycle model and discusses

its time series representations under determinacy and indeterminacy, respectively.



2.1 Structural system

Our reference new-Keynesian model is taken from Benati and Surico (2009). It features the

following three equations:

Ut = YE i1 + (L= 7)Ge—1 — 0(Re — Eymegn) +wye (1)
Eymosn + — +RG @
Ty = T 0 Tt— K W
t 1+ﬁatt+1 1+5at1 Yt it
Ry = pRy1 + (1 — p) (o, + %}gt) t WRt (3)
where
Wet = PgeWr t—1 + Ext _1<px<1 ) Exyt ™ WN(O’ Jg) » = g’ i R (4)

and expectations are conditional on the information set F, i.e. Ey-:=FE(-| F;). The variables g,
7, and Ry stand for the output gap, inflation, and the nominal interest rate, respectively; v is the
weight of the forward-looking component in the intertemporal IS curve; « is price setters’ extent
of indexation to past inflation; ¢ is households’ intertemporal elasticity of substitution; x is the
slope of the Phillips curve; p, ¢, and ¢; are the interest rate smoothing coefficient, the long-run
coefficient on inflation, and that on the output gap in the monetary policy rule, respectively;
finally, wg¢, wry and wpry in eq. (4) are the mutually independent, autoregressive of order one
disturbances and ej+, €x; and er; are the structural (fundamental) shocks. This or similar
small-scale models have successfully been employed to conduct empirical analysis concerning
the U.S. economy. Clarida et al. (2000) and Lubik and Schorfheide (2004) have investigated
the influence of systematic monetary policy over the U.S. macroeconomic dynamics; Boivin and
Giannoni (2006), Benati and Surico (2009), and Lubik and Surico (2010) have replicated the U.S.
Great Moderation, Benati (2008) and Benati and Surico (2008) have investigated the drivers of
the U.S. inflation persistence; Castelnuovo and Surico (2010) have replicated the VAR dynamics
conditional on a monetary policy shock in different sub-samples; Inoue and Rossi (2011a) have
analyzed the role of parameter instabilities as drivers of the Great Moderation.
We compact the system composed by eq.s (1)-(4) in the representation
FoXy =T Xpp1 + Tp Xy1 + wy (5)
wy =Ewi—1 +er, e~ WN(0,%,) (6)
E:=dg(py: pr>Pr) » Sei=dg(0}, 0%, 0%)

e (7 / — / R /
where Xy:= (g, 7, Re)', wei=(wgt, wrt,wre), €6:=(€gt,Ents€Rt) and

1 0 0 v 6 0 11— 0 0
Lo:= K 1 0, Ip=10 1+B6a 0 |, Te= g 0
1 =p)py —(1=plez 1 0 0 0 0 0 p



Let 6:=(v,0, 8, a, k, p, s Pres pg,pw,pR,ag, o2, a%)' be the m x 1 vector of structural para-

meters (m:=dim(#)). The elements of the matrices I'g, I'f, I', and Z depend nonlinearly on 6
and, without loss of generality, the matrix FOE::(FO + =I'¢) is assumed to be non-singular. The
space of all theoretically admissible values of 8 is denoted by P.

For future uses, we consider the partition 6:=(6’, 6.)’, where 6. contains the non-zero ele-
ments of vech(X;) and 6, all remaining elements. The ‘true’ value of 8, 0g:=(6; ,, 65 )" is assumed
to be an interior point of P. Given the partition 8:=(6’, 6.)', we also consider the corresponding
partition of the parameter space P:=Py_ x Py_. This distinction is important for two related rea-
sons. First, in the next sub-section we show that the determinacy/indeterminacy of the system
depends only on the values taken by 65, and not by 6.. Second, the sub-vector 6. is not directly
recoverable (identifiable) from the estimation of the system of Euler equations (5)-(6) through
‘limited-information’ methods, and our procedure for testing determinacy/indeterminacy also
relies on the direct estimation of 65 from system (5)-(6).

Throughout the paper, we use the notations ‘M ()’ and ‘M:=M(0)’ to indicate that the
elements of the matrix M depend nonlinearly on the structural parameters 6, hence in our setup
IFo:=T'9(0), I'p:=I"f(0), I'p:=I'p(#) and =:=Z(). Moreover, we call ‘stable’ a matrix that has all
eigenvalues inside the unit disk and ‘unstable’ a matrix that has at least one eigenvalue outside
the unit disk. Thus, denoted with Apax(-) the absolute value of the largest eigenvalue of the
matrix in the argument, we have Ayax(M(0)) < 1 for stable matrices and Apax(M(6)) > 1 for

unstable ones.

2.2 Reduced form solutions

The solution properties of the system of Euler equations (5)-(6) depend on whether 6 lies in
the determinacy or indeterminacy region of the parameter space. We assume that V0, € Py, an
asymptotically stationary (stable) reduced form solution to system (5)-(6) exists, hence the case
of non stationary and ‘explosive’ (unstable) solutions is automatically ruled out. The whole set
of regularity conditions assumed to hold in the specified structural system are reported in out
Technical Supplement. The theoretically admissible parameter space Py, is decomposed into
two disjoint subspaces, the determinacy region, 739[; , and its complement 736{5::7393\739[: . Since
we consider only stationary solutions of the new-Keynesian system, PQIS contains only values of
fs that lead to multiple stable solutions.

Determinacy/indeterminacy is a system property that depends on all elements in 6. There
are cases in which the new-Keynesian system is highly restricted and it becomes relatively
simple to identify the region 779[3 (730[5) of the parameter space. For instance, if system (1)-(4) is

restricted such that v:=1, a:=0, and p:=0, p,:=0, z = g, 7, R, the model collapses to a ‘purely



forward-looking’ model. In this particular case, it can be shown that the inequality

1-p
prt > 1 (7)
is sufficient and ‘generically’ necessary (Woodford, 2003, Proposition 4.3, p. 254) for determi-
nacy. Consequently, the determinacy region of the parameter space is given by
7392 ::{98 € Po., or + %cpg > 1}. However, it is in general not possible to work out a set of
closed-form inequality constraints from system (5)-(6) that are both necessary and sufficient for
determinacy (indeterminacy) and that can potentially be used to test whether 6 lies in 739[; or
Pl 3
It is possible to show that, for values of 65 such that Amax(G(6s))<1, where G(65):=(I'g —
[;®1)71T'; (see Sub-section 2.2), the system (5)-(6) has a unique stable reduced form solution

that can be represented as the finite-order VAR*
[I3 — ®1(0)L — ®2(0) LA X = ur ,  up="(05) e (8)

where L is the lag/lead operator (L"X;:=X;_1,), Xo and X_; are fixed initial conditions, ®1(6,),
®5(05) and Y(0s) are 3 x 3 matrices whose elements depend nonlinearly on 65 and embody the
cross-equation restrictions implied by the small new-Keynesian model (Hansen and Sargent,
1980, 1981). More specifically, the matrices ®;(6s) and ®2(fs) in eq. (8) are obtained as the

unique solution to the quadratic matrix equation
(i):(f‘o — ff‘i))_lfb (9)

where I' 75 r 0, r p and the stable matrix ® are respectively given by

. ' 0 .
Iy:= 0 33 , Dpi=
O3x3 I3

Iy Thy b | 1 P2
I3 O3x3 I3 O3xs
where I'5:=(Tg+Ely), [T :=(Tp+E), [T5:=—ET} and Y(0):=(To—I yP1(0)). The constrained

covariance matrix of the reduced form disturbances u;, denoted with ¥, depends on the entire

Sl

)

T 0 o
f 3x3 7 Fb3:
03x3 0O3x3

0 vector and is given by
S (0)=T(0,) 712 ()Y (6,) L. (10)

3The following example shows that the condition in eq. (7) is not necessary for determinacy if the structural
model (1)-(4) involves lags of the variables, other than leads. Consider the system based on §:=0.99, x:=0.085,
0:=0.40, 7:=0.25, a:=0.05, p := 0.95, ;:=2, . :=0.77, p;:=p_ 1=pr:=0.9. In this case, ¢, + %(pg > 1, but
the rational expectation-solution to system (1)-(4), while being stable, is not unique. Recall that we assume the

existence of at least a solution under rational expectations.
*A detailed derivation is confined in our Technical Supplement. The Technical Supplement also contains a

detailed derivation of the class of indeterminate reduced form solutions reported in eq.s (11)-(12) below.



Equations (9) and (10) define the cross-equation restrictions implied by our new-Keynesian
structural model on its reduced form solution under determinacy.
Conversely, for values of ¢ such that Amayx(G(6s))>1,% the class of reduced form solutions

associated with the new-Keynesian system (5)-(6) takes the VARMA-type form:
[I3 — TL(6s) L][I3 — ®1(05) L — @2(05) L) Xy = [M(05,9) — TL(05) L]V (05, 9) 'er + 74 (11)
Te=[M (05, ¢) — TL(0,) L]V (65, ¢) "' P(0,)¢; + P(85)C, (12)

and corresponds to the situation in which the matrix G(65) has representation

Al On1 Xng

P7H(0;)
Oannl A2

where P(0s) is a 3 X 3 non-singular matrix, Ay is the n; x n; (n; < 3) Jordan normal block
that collects the eigenvalues of G(0s) that lie inside the unit disk and Ag is the ng X ng (ng < 3)
Jordan normal block that collects the eigenvalues of G(65) that lie outside the unit disk. Notice
that ny + ng:=3, where ny:=dim(Az) determines the ‘degree of multiplicity’ of solutions. In
system (11)-(12), the matrices ®1(05) and P2(0s) are defined and constrained likewise the case
of determinacy, see eq. (9), while II(0;), M (0s,1¢) and V(0s,1)) are given by

In1 0n1 XNy

OTL2 XNy \IJ

Onl Xn1 0n1 Xng

P~Y0,) , M0, v):=P(0,
Onns AL (05) (0s,9):=P(05)

P=H(0;)

V(0s,9):=(Lo(0s) — Lp(05)P1(0s)) — Z(0s)(0s) (L3 — M(0s,))

where U is a ny X ng matrix (ny < 3) containing arbitrary auxiliary parameters unrelated to 6
and 1:=vec(¥). Finally, the ‘additional’ moving average term 7, depends on the 3 x 1 vector
(¢, of ‘sunspot shocks’, whose first n; elements are zero and the remaining ns elements are MDS
with respect to F; independent on ;. We denote with 3¢ the covariance matrix of (;; X, will
be in general singular unless ni:=0. We assume that Y is time-invariant.

While the determinate equilibrium in eq. (8) depends only on the state variables of the
structural system (5)-(6), there are two sources of indeterminacy that characterize the model
equilibria in eq.s (11)-(12). The first one is the ‘parametric indeterminacy’ that stems from the
presence of the auxiliary parameters in the vector ¢. Such parameters index solution multiplicity,
and they contribute to amplify or dampen the fluctuations of X; induced by MA part of the
reduced form solution. Importantly, such parameters are not identifiable under determinacy.

The second on is the ‘stochastic indeterminacy’ that stems from the presence of the sunspot

’The case in which the matrix G(0;) has eigenvalues equal to one is deliberately ignored because it can be

associated with the case of non-stationary processes.



shocks in the vector (; (when 3¢ # 03x3). These shocks may arbitrarily alter the dynamics and
volatility of the system (see Lubik and Schorfheide (2003, 2004) and Lubik and Surico (2009)
for discussions).

Under indeterminacy, the parameter space associated with the new-Keynesian model is
‘larger’ compared to the case of determinacy. Indeed, in addition to the structural parame-
ters #, we must consider also the auxiliary parameters in the vectors ¢:=vec(¥) and 0'2_, where
azr collects the free elements of the covariance matrix ¥¢. Both 1) and 02 are unrelated to 6 and
are not identified under determinacy. Let A/ be the open sub-space of R(M2)* of all possible values
taken by 1/, and let Z be the open sub-space of RS of all possible values taken by the elements
in azr; the ‘complete’ parameter space associated with the class of VARMA-type indeterminate

reduced form solutions generated by the new-Keynesian system is given by
T— {9*;:(9',«,@’, o), 0, €PL b EN, ot € z} : (13)
It can be observed that when v and 0'2_ are restricted such that
w::vec(l(m)z) (= M(0s,¢):=I3) , 0'2_::06><1 (= T71:=03x1 a.s. V 1), (14)

system (11)-(12) collapses to a MSV solution (McCallum, 1983), i.e. a reduced form solution
which has the same representation as the determinate VAR solution in eq. (8), and it is subject

to the same set of cross-equation restrictions, see Evans and Honkapohja (1986), Lubik and
Schorfheide (2003, 2004), and Fanelli (2012).6

3 Testing strategy

Let X4, ..., X7 be a sample of T" observations that is thought of as being generated by a solution
of the new-Keynesian system (5)-(6). Our task is to decide whether the observations Xj, ..., X1
support the hypothesis of a unique stable solution or the hypothesis of multiple stable equilibria,
controlling for two factors: (i) the possible identification failure, where by this term we mean

the case in which the objective functions used to estimate the structural parameters and derive

S Observational equivalence between determinate and indeterminate reduced form solutions may be also ob-
tained from system (5) when the vector of structural shocks is absent, i.e. when ¥.:=03x3 (£¢:=03x1 a.s. V t).
In this case, under a set of restrictions (including E:=0y,xn ), the structural model can be solved as in eq. (8).
Thus there exists a findamental problem of identification which roughly says that an indeterminate equilibrium
of an ‘exact’ DSGE model (i.e. based on e+:=03x1 and Z:=0,x») corresponds to the determinate equilibrium of
some more general DSGE model, see Beyer and Farmer (2007) and Fanelli (2012) for a comprehensive discussion.
While being interesting from a theoretical standpoint, the case of absence of fundamental disturbances in the

structural equations is empirically unpalatable, and will not be considered in our analysis.
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the test statistics may be poorly informative about 6 or some of its components; (ii) the data
adequacy of system (5)-(6).

In principle, an ‘ideal’ test for the null Hy : 0p s € 7392 against the alternative Hy : 6o s € 739]5
should be based on testing the set of inequality restrictions that identify the region Pég (73(53) of
the parameter space.” In our framework, a general characterization of the indeterminacy region
of the parameter space 73(58 is given by 7355::{193 € Py, Amax(G(05))>1}, (see Sub-section 2.2
and the Technical Supplement). Unfortunately, even under strong identification, the condition
Amax(G(0s))>1 can hardly be used for testing purposes because (aside from very special cases)
it is not easy to map inequality restrictions on the eigenvalues of the G(;) matrix onto a set
of ‘manageable’ restrictions which might be used in practice. Even working out the inequali-
ties associated with the condition Apax(G(0s))>1 on a case-by-case basis, the resulting testing
problem would involve nonstandard inference, see e.g. Wolak (1989) and Silvapulle and Sen
(2005).

Alternatively, one might compare the likelihoods of the determinate and indeterminate re-
duced forms, under the assumption of correct specification of the new-Keynesian system. The
complication, in this case, stems from the already mentioned observational equivalence between
the determinate solution and the MSV solution: even in the absence of sunspot shocks (74:=03x1
a.s. V t), a classical likelihood-based test would call for the comparison of the ‘VAR(2)’ in eq.
(8) with a ‘VARMA(3,1)’ system in eq. (11). As it is known, this would entail a well known
non-standard inferential problem, see e.g. Lubik and Schorfheide (2004) and Fanelli (2012).

To circumvent the above mentioned difficulties and address the testing problem from another

perspective, we follow Fanelli (2012), and consider the two hypotheses
H) : X; is generated by the VAR system (8) under the CER (9)-(10). (15)

and

Hj : X, is generated by the VARMA-type system (11)-(12), with §*€Z° (16)

where Z° is a subset of Z (see eq. (13)) defined by

7Y%= {9*::(0’,¢’,ag’)’, 0 € P, e N\ {vee(Ij,2)}, ol € 2\ {om}} cZ. (17

"For instance, Mavroeidis (2010) uses the standard ‘Taylor principle’ condition in eq. (7) to address the
determinacy/indeterminacy issue in U.S. monetary policy by estimating a Taylor-type monetary policy rule in
isolation from other structural equations. The typical risk with this ‘single-equation’ approach is that the ‘Taylor
principle’ holds with certainty in the form of eq. (7) only if the structural system (5)-(6) fulfills e.g. the restrictions
~v:=1, a:=0, and p:=0, p,:=0, x = §, 7, R. Our estimates reported in Section 5 show that these restrictions are
invalid. Farmer and Guo (1995) use the inequality restriction that identify the indeterminacy region of the
parameter space in their stylized business cycle model, and show that their point estimates of the structural

parameters fulfil the restriction. However, they do not provide any inference.
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Under H{, the new-Keynesian system generates the unique stable solution which is, however,
indistinguishable from the indeterminate MSV equilibrium nested in the system (11)-(12) when
the conditions in eq. (14) is valid. Under Hj, instead, the new-Keynesian system generates
indeterminate non-MSV equilibria, see Sub-section 2.2. A key observation here is that the null
of determinacy, Hy : 0o s € 7792 , implies the hypothesis H{ in eq. (15), while the converse is not
true. Hence, the rejection of H{ in eq. (15) leads to the rejection of the null of determinacy.
The non-rejection of H|, is sufficient to rule out the occurrence of arbitrary parameters unrelated
to 0 (‘parametric indeterminacy’) and of sunspot shocks unrelated to €; from the solution set
(‘stochastic indeterminacy’), but can not be considered as conclusive evidence of determinacy.

We face the problem of testing H), in eq. (15) against H{ in (16) borrowing from the recent
literature on inference in weakly identified DSGE models (Dufour et al. 2009, 2013; Kleibergen
and Mavroeidis 2009; Mavroeidis 2010; Qu, 2011; Andrews and Mikusheva, 2012; Guerron-
Quintana et al. 2013). In particular, we exploit the idea that the construction of the confidence
set is a well known dual problem to hypothesis testing, i.e. confidence sets are obtained by
inverting tests, see e.g. Aitchison (1964) and Lehman (1986).

We maintain that only the sub-vector 0. of 0:=(0’,0.) is strongly identified, while iden-
tification failure may involve the sub-vector €5 or some of its components. We then con-
sider the reduced form VAR solution of the new-Keynesian model in eq. (8) and the vector
ok =(¢,, vech(X,)"), where ¢, :=vec(®,) and ®,:=[P1, P2] collects the VAR unrestricted coeffi-
cients. In our setup, ¢;, is assumed to be strongly identified. The CER that the new-Keynesian
model places on its determinate reduced form solution in eq.s (9) and (10) can conveniently be

compacted in the expression
f(02450) = Odim(g7)x1 (18)

where f(-,-) is a continuous, twice differentiable vector function. By the implicit function theo-
rem, the restrictions in eq. (18) can also be written in explicit form as follows (see Iskrev, 2008,

and our Appendix):
¢p,=9(0) (19)

where g(-) is a nonlinear twice differentiable function and the mapping is valid in a neighbor-
hood of the ‘true’ parameter values. We have used the notation ‘¢y ’ in eq. (19) to remark
that the vector ¢y , which reads as the constrained counterpart of ¢, depends on 05 (other
than the strongly identified parameters in the vector 6.). More precisely, ¢ is the vector of
VAR coefficients under the CER, implied by the hypothesis of determinacy. The log-likelihood
function associated with the reduced form VAR solution depends on € through eq. (19) (see our

Appendix).
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Our identification-robust testing procedure for Hj in eq. (15) against H] in eq. (16) is based

on the two steps presented below.

Step 1: ‘Full-information’ LR test for the CER. We invert a LR test for the null hypoth-
esis

HO,cer : ¢ES: (é&ea) ) és € PGS (20)

(against the alternative Hj ce, : qbgs % g(és, 0:)) in the context of the reduced form VAR
solution in eq. (8). The hypothesis Hy cer specializes the CER in eq. (19) to the case in
which 6 is fixed at the ‘guess’ HS:zéS about the ‘true’ parameter values. Observe that if
Hy cer is valid, also the hypothesis H)) in eq. (15) is valid for 0,:=0,. Likewise, if H in eq.
(15) is valid for 05:=0, Hocer in eq. (20) is automatically valid. Let LRT(%S) be the LR
test for the hypothesis H, in eq. (20), where &555 is defined by &25 :=g(0s, 925) and 955 is the
is the ML

estimates of 6. obtained from the concentrated log-likelihood function associated with the

ML estimate of the sub-vector 8. obtained for fixed Hszzés (in other words, 9?5
determinate reduced form solution); computational aspects are discussed in the Appendix.
In practice, there are many possible choices 0:=0, which might not be rejected by the data.
Since the components of 65 typically lie within bounded (theoretically admissible) intervals,
one can test Ho e for any possible choice of 0, within a fine grid Gy, C Py,, giving rise to
a ‘grid testing’ procedure.® Under Ho,cer in eq. (20), the asymptotic null distribution of
LRT(%S) is Xgl, dy:=dim(¢;,) — dim(.), regardless of the strength of identification, see
e.g. Guerron-Quintana et al. (2013) and our Appendix. The by-product of the grid testing
approach for Hy ., is the identification-robust confidence set for the structural parameters

(or acceptance region)

dy

C1L_R,h:: {és € G, LRT(cAbgs) < 6212 } (21)

which has asymptotic coverage 100(1 — n;), where cZé
1

ated with the X?il distribution, and 0<n;<1 is the pre-fixed nominal level of significance

is the n;-level cut-off point associ-

(or type-I error) of the test in the first-step.” The hypothesis Hp ., is not rejected at the
level n; if ClL*R?h is nonempty, and is rejected if Cfﬁm is empty. In the first case, we accept
the hypothesis H{ in eq. (15) and stop the analysis. In the second case, we move to the

next step.

8 Mikusheva (2010) observes that grid testing makes sense only if one can a priori restrict possible values
of the parameters to belong to a bounded set, which is our case. She shows an alternative method to invert

identification-robust tests which can not be easily applied in our setup.
"Dufour et al. (2013) propose a slightly different version of the test for the CER, see the Appendix for details.
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Step 2: ‘Limited-information’ test for the OR. Conditional on the confidence set in eq.
(23) being empty, we test the hypothesis Hi in eq. (16) indirectly, i.e. focusing on an
auxiliary hypothesis. In particular, we use a ‘limited-information’ approach and invert an

Anderson Rubin-type (Anderson and Rubin, 1949) test for the simple hypothesis
HO,spec : es:és ) és € gGS (22)

(against the alternative Hy spec:0s # és) in the context of the system of Euler equations (5)-
(6). Ho,spec is the hypothesis that the system of Euler equations is valid in correspondence
of the point 05:=0, € Gy, , regardless of whether their reduced form solutions belong to
the determinate equilibrium in eq.s (8)-(10) or to the class of indeterminate equilibria
in eq.s (11)-(12). Let ART(éS) denote any asymptotically pivotal test statistic for the
simple hypothesis in eq. (22) computed in the context of system (5)-(6).!° Under correct
specification, the (unconditional) asymptotic distribution of ART(és) under H spec is XZQ
regardless of the strength of identification (the number of degree of freedom, ds, is discussed
in the Appendix), see, inter alia, Dufour et al. (2010, 2013). However, conditional on
the first-step, Ho spec turns into the hypothesis that the system of Euler equations is
valid in correspondence of the point 0,:=0, € 739[5. Thus, conditional on the first-step,

the grid testing approach for Hy gpe. generates the identification-robust confidence set (or

acceptance region):

_ - o -
C{:ﬁnzﬁm;: {98 € Gy, LRT(¢p,) > CZ% and ARp(05) < cl% } (23)
1 2
where c;]éQ is the my-level cut-off point associated with the X§2 distribution and 7,.; is

such that 79, < 1, (see the Appendix). The set CIL_RW;‘?R

coverage 100(1-75.,)>100(1-1,). All points 6, which lies within ClL_Rn_Q?R are such that the
hypothesis Hj, in eq. (15) is rejected by the LRT(QSZS) test and the hypothesis H] in eq.
(16) is accepted by the AR7(0y) test. If the set Cfﬁn;fR is empty, meaning that none value
of the parameters within Gy, is compatible with the data, we reject the correct specification

is asymptotically valid with

of the new-Keynesian system (5)-(6).

Hereafter, we conventionally denote the testing strategy obtained by combining the two
described steps above with the symbol ‘LR — ARp’. We discuss the computational details

of the two tests in the Appendix, where we also focus on the asymptotic properties of the

0 Our notation emphasizes the dependence of ART(éS) on the fixed value Oszzés Our Appendix shows that the

AR7(60,) test reads as a test for the OR implied by the system of Euler equations.
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procedure. We remark the fact that the hypothesis H{, in eq. (15) is rejected (and hence
determinacy is rejected) if the inversion of the LRT(&SZS) test in the first-step provides an empty
confidence set. In this case, we move to the second-step to decide whether the rejection of the
CER occurs because the hypothesis of indeterminacy Hj is valid, or because the new-Keynesian
system is dynamically misspecified. It turns out that the second-step is run only conditionally
on the rejection of the CER in the first-step and must be based on the same grid Gy, used
in the first-step. We remark that the non-rejection of the null H| is sufficient to rule out
the occurrence of sunspot shocks and arbitrary nuisance parameters from the solution set but
can not be considered conclusive evidence of determinacy. However, since when an hypothesis
is not rejected by a significance test, all hypotheses implied by that hypothesis must also be
considered as non-rejected, the non-rejection of Hf in the first-step amounts to an implicit non-
rejection of the system of structural Euler equations (5)-(6). Table 1 summarizes the logic of
our ‘LRp — ARy’ testing strategy.

It is worth stressing that when the hypothesis Hp spec in eq. (22) is rejected in the second-
step, one should think of alternative structural frameworks to capture the richer dynamics
of the data. Lubik and Schorfheide (2004) work along this line by augmenting their purely-
forward looking baseline new-Keynesian framework with price indexation and habit formation in
consumption to check the robustness of their evidence on indeterminacy/uniqueness in the post-
WWII U.S. economy. Dynamically rich, distributed-lag small scale models have been employed
by Rudebusch (2002), Estrella and Fuhrer (2002,2003), and Fuhrer and Rudebusch (2004),
among others. In general, the knowledge of model misspecification per se is a warning for
the researcher to explore the space of the models adopted in the literature in order to find
empirically supported alternative frameworks. Again, referring to the monetary-macroarea, an
alternative to small scale models (like the one we work with in this paper) is represented by
medium scale frameworks a la Christiano et al. (2005) and Smets and Wouters (2007). These
latter models feature more variables (physical capital and its frictions, among others) as well
as different CER on the variables in common with small scale models (due, for instance, on
non-separable preferences in consumption and labor as in Smets and Wouters, 2007). Hence,
while lacking a unique indication on the alternative framework one should scrutinize when model
misspecification is detected in the second-stage of our methodology, we believe an econometrician
may be willing to implement our testing strategy to have a sense of the reliability of his/her

results on determinacy/indeterminacy.
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Table 1. Summary of the ‘LR7— AR7’ testing strategy for the new-Keynesian system (5)-(6)

Step 1: LRT(dA)gS) test rejects the CER (C{Jﬁnlempty) ?

YES NO

Step 2: AR7p(8,) test rejects the OR (ClLFn;‘?R empty) ?

YES NO H{ in eq. (15) is accepted
Omission of H{ in eq. (16) is accepted
) ) Non conclusive evidence of determinacy
propagation Indeterminacy
(sunspot shocks ruled out)
mechanisms

new-Keynesian model rejected new-Keynesian model accepted new-Keynesian model accepted
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By its design, the size (power) of the ‘LR — ARy’ testing strategy, defined as the probabil-
ity of rejecting the hypothesis H) in eq. (15) when H{ (Hj) is ‘true’, depends on the LRT(&SES)
test alone, thus 7; reads as the pre-fixed type-I error. It can be proved that under the null H
in eq. (15), the asymptotic size of the ‘LR — ARy’ testing strategy is 7, (see Proposition 1
in the Appendix), and that the test is consistent against the hypothesis of indeterminacy Hj
in eq. (16) (see Proposition 2 in the Appendix). However, we can also think of a ‘second-step
size’ associated with the ‘LRr — ARy’ testing strategy, defined as the probability that the
test ART(éS) computed in the second-step erroneously rejects Hj when Hj is ‘true’. In finite
samples, the ‘second-step size’ of the ART(és) test depends on the power of the test LRT(Ebgs)
against H{. It can be proved that under Hj, the asymptotic ‘second-step size’ of the proce-
dure converges to the quantity 7y, (see eq. (23)) which has 7, as nominal upper bound (see
Proposition 3 and Proposition 4 in the Appendix).

It is worth observing that in Guerron-Quintana et al. (2013), whose analysis covers a fam-
ily of DSGE models larger than ours, the confidence set C1L—R771 in eq. (21) is proposed as an
identification-robust confidence set for 6,. As the construction of the identification-robust con-
fidence set ClLfLm in a ‘full-information’ setup requires solving the model under determinacy,
tighter inference can be achieved if the CER are not rejected compared to the inference based

on ‘limited-information’ methods, see also Dufour et al. (2013). Moreover, since Dufour (1997)

LR—AR
1-mg.4

(when the tests reject all parameter points in Gy, ) but also unbounded, which in our framework

corresponds to the situation CIL_RT]Q = Gp, and/or CIL_I%,?;?R = Gp, (when 0, is unidentified).

We finally observe that point estimates of 65 can be obtained from the (nonempty) confidence

sets ClLfm and CFE-AR Indeed, the quantities

it is known that the two identification-robust confidence sets ClLﬁnl and C can be empty

1=m2.4
Uk . ~ % ok . 9
Osnp = argmin  LRp(¢p,) , 0,17 := argmin  ARp(0,) (24)
bsectt bsectt A0

LR—AR
1-m54

largest p-values (or the ‘least rejected’ models at the pre-fixed levels 1; and 75, respectively).!!

can be interpreted as the parameter points within the sets ClL_R;71 and C with associated

The main features of our approach are that (i) it is not necessary to identify the set of
parametric inequality restrictions that define the sub-regions 77913 (779]5) of the parameter space,
with the advantage of not being committed to the use of nonstandard asymptotic inference; (ii)
it is not necessary to specify prior distributions for # and, notably, for the auxiliary parameters 1
(and azf) governing solution multiplicity in eq.s (11)-(12); (iii) the procedure is asymptotically

valid irrespective of the strength of identification, hence it can be applied also under strong

"' The point estimates in eq. (24) can be interpreted as ‘Hodges-Lehmann’ estimates of 5, see e.g. Dufour et
al. (2006, 2009, 2010).
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identification; (iv) the test is explicitly designed to control for the case of omitted dynamics, other
than identification failure, a key issue in the empirical assessment of determinacy/indeterminacy
and, more generally, a crucial challenge in the econometric literature on DSGE models, see
e.g. the discussion in Lubik and Schorfheide (2004), Del Negro et al. (2007), Del Negro and
Schortheide (2009), Curdia and Reis (2010) and Schorfheide (2011).

4 Monte Carlo simulations

In this section, we use the Benati and Surico’s (2009) new-Keynesian system in eq.s (1)-(4) as
model to investigate the finite sample properties of the ‘LRr — ARyp’ testing strategy by some
Monte Carlo simulations.

Artificial data sets are generated from the reduced form solutions discussed in Sub-section
2.2 which serve as data generating process (DGP). In all experiments, we consider M = 1,000
replications and samples of length 7" = 100 (not including initial lags). The chosen sample size
corresponds roughly to the number of quarterly observations we consider for the ‘pre-Volcker’
(1954q1-1979¢2) and ‘Great Moderation’ (1985q1-2008¢2) samples in the empirical section using
U.S. data (see Section 5). For each generated data set, we treat the output gap as observable,
reproducing the situation we face in Section 5.

To evaluate the empirical size of the ‘LR — AR7’ test, the Monte Carlo design is calibrated
to match the model estimated by Benati and Surico (2009) using U.S. data with Bayesian
methods. The discount factor §:=0.99 is treated as known and estimation involves 13 free
parameters, 10 of which are collected in the sub-vector 8; and 3 in the sub-vector 6.. The
‘true’ vector fp s:=( 678, 675)/ is calibrated at the medians of the 90% coverage percentiles of the
posterior distribution reported in Table 1 of Benati and Surico (2009) (see the ‘After the Volcker
stabilization’ column). The data are generated from the reduced form VAR solution in eq.s (8)
subject to the restrictions in eq.s (9)-(10) using a Gaussian distribution for the structural shocks
¢ and a diagonal covariance matrix Y. (hence the elements of the sub-vector . correspond
to the diagonal components of ¥.). With this choice of 0y, the largest eigenvalue of the
matrix G(0gs):=(I'5 — I'y®1)"'T'; (see Sub-section 2.2 and the Technical Supplement) is equal
t0 Amax(G(60,5))=0.964. For each simulated dataset, the numerical inversion of the LRT(Q?)ES)
test is obtained by considering 300 points 0, randomly chosen using the uniform distribution
from the grid Gy, described in detail in the caption of Table 1; the inversion procedure (or
grid-testing) generates the identification-robust confidence set ClL_Rnl in eq. (38). The empirical
size of the ‘LR — ARy’ test corresponds to the empirical rejection frequency of the LRT(QSES)
test and is evaluated by fixing the type-I error of the test at the level n;:=0.05.

18



Table 2. Empirical size of the ‘LRp— ARy’ testing strategy when the data are generated from the
new-Keynesian business cycle monetary system (28)-(5) under the hypothesis H(, in eq. (15).

‘true’ O T=100 1;=0.05
Amax(G(0 ¢)):=0.964  Interpret. é:,ML Med. int. length [with true]
vYo:=0.744 IS, forward look. term (0.718) 0.060 [0.13]
0.159
009:=0.124 IS, inter. elast. of sub. (0.121) 0.030 [0.061] Rej(LRT(qAﬁg ))=0.045
0.031 s
ap:=0.059 NKPC: index. past infl. (%(O)gi:}) 0.038 [0.069]
Ko:=0.044 NKPC: slope 0.043 0.011 [0.021]
(0.011)
Po:=0.834 Rule, smoothing term (0.7;7) 0.063 [0.377]
0.175
go:=1.146 Rule, react. to out. gap (()61%1)1 0.563 [1.310]
Vr0:=1.749 Rule, react. to inflation (1.557) 0.712 [1.87]
’ 0.591
Py7,0:=0.796 Out. gap shock, persist.  0.755 0.058 [0.105]
: (0.166)
Pr0:=0.418 Inflation shock, persist. ((()).%32) 0.110 [0.220]
’ .105
PR.0:=0.404 Pol. rate shock, persist. (0.385) 0.103 [0.229]
’ 0.106

NOTES. Results are obtained using M=1,000 replications. Each simulated sample is initiated with
200 additional observations to get a stochastic initial state and then are discarded. The structural
parameters are calibrated to the medians of the posterior distributions reported in Table 1 of Benati and
Surico (2009), column ‘After the Volcker stabilization’. The numerical inversion of the LRT(&ZS) test
for the CER (step 1 of Section 3 and Appendix) is obtained on each generated dataset by considering
300 points 0, randomly chosen using the uniform distribution from the grid Gy, given by the rectangle
formed by the Cartesian product of the following intervals: [0.688, 0.822] for ~y, [0.09, 0.16] for &, [0.03,
0.099] for «, [0.035, 0.056] for &, [0.515, 0.877] for p, [0.383, 1.61] for py, [0.70, 2.57] for ., [0.738,
0.834] for py, [0.30, 0.52] for p, and [0.289, 0.518] for pp. ‘5;ML’ is the point estimates of 05 derived from
the identification-robust confidence set C&gg,, see eq. (24), and the associated values in parentheses are
the corresponding Monte Carlo standard errors. ‘Med. lengths [with true]’ reports the median interval
length of the projected 95% confidence intervals across simulations contrasted with the actual interval

lengths. Rej(-) stands for ‘rejection frequency’.
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The results are reported in Table 2. Here we summarize the rejection frequency of the
LRT(gAng) test and the average point estimates of the structural parameters derived from the
generated identification-robust confidence sets C(jié%, see eq. (24), along with the Monte Carlo
standard errors. We notice that the LRT(qAng) test is slightly conservative (0.045 in samples
of length T'=100 as opposed to the nominal size 7,:=0.05) and that the grid-testing procedure
delivers point estimates of the structural parameters relatively close to the true values. A
reasonable concern here is the role played by the grid used to invert the LRT(&SES) test: in the
limiting case of no identification, one would expect appropriately sized intervals to cover the
support of the structural parameter, i.e. ClL_R771 = Gp,. To address this issue, the fourth column
of Table 1 contrasts the median interval length obtained for the projected parameters with the
actual grid length of the intervals for the individual parameters. The results show that the
projected identification-robust intervals are often wide, but not excessively so.

To investigate the power of the ‘LRp — ARy’ procedure against the hypothesis H] in
eq. (16) and the ‘second-step size’ of the ARp(0,) test under H/, we must consider specific
DGPs obtained from the VARMA-type reduced form solutions in eq.s (11)-(12). We can only
provide limited Monte Carlo experimentation because given the structural parameters and the
fundamental shocks, the choice of ¢ and a? from system (11)-(12) is completely arbitrary. To
simplify the analysis, we follow Lubik and Schorfheide (2004) and Fanelli (2012), and focus on the
case of ‘indeterminacy without sunspots’, which corresponds to the situation in which sunspot
shocks do not enter the reduced form solution, i.e. a?:zOGM (= 74:=03x1 a.s. ¥V t) in eq.s (11)-
(12). The ‘true’ vector of parameters 0o s:=(0p 5,0y .)" is calibrated at the medians of the 90%
coverage percentiles of the posterior distribution reported in Table 1 of Benati and Surico (2009),
‘Before October 1979” column. With this choice of 0 s , the largest eigenvalue of the matrix
G(0o,s) is equal to Amax(G(6o,5))=1.0051, hence only one eigenvalue lies outside the unit circle
and the vector of auxiliary parameters ¢:=vec(¥) which governs the ‘parametric indeterminacy’
of the system collapses to a scalar. We consider three possible values for ¥: 0.95, 1.05 and
0.5, respectively, where 0.95 and 1.05 are relatively close to the point ¥:=1 which generates an
indeterminate MSV solution observationally equivalent to the unique stable solution, see Sub-
section 2.2. Given these three possible choices of v, artificial dataset are generated from system
(11) which reads as a pure ‘VARMA(3,1)’ system with highly restricted parameters. Also in
this experiment, for each simulated dataset, the numerical inversion of the tests LRT(qAbgs) and
ART(és) is conducted by considering 300 points 0, randomly chosen by employing the uniform
distribution from the same grid Gy, used for the size experiment in Table 2. The ART(éS)
test is computed by following the method described in the Appendix. The empirical power
and ‘second-step size’ of the ‘LR — ARy’ testing strategy are evaluated by fixing n; and 7,
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at the levels 1;:=0.05 and 7,:=0.05, respectively. Other than documenting the joint empirical
rejection frequency of the LRT(&SES) and AR7(0,) tests (as required by the second-step of the
‘LRp — AR7’ procedure), we also report the (marginal) empirical rejection frequency of the
AR7(0) test, i.e. computed by disregarding the outcome of the LRT(Eng) test in the first step
(see our Appendix). As noticed in the previous section, the ‘second-step size’ associated with
the ‘LR — AR7’ testing strategy is bounded by construction by the unconditional rejection
frequency of the ARy (f,) test under Hj.

The results are summarized in Table 3. We observe that the power of the test against the
hypothesis Hf in eq. (16) is reasonably good even when the indeterminate equilibrium is close
to the MSV solution (the empirical power is 61.5% for 1:=0.95 and 70.5% for ¢:=1.05). The
finite sample rejection frequency of the ART(éS) test, instead, seems to be influenced to some
extent by the value taken by the nuisance parameter ¢ which, recall, amplifies or dampens the
oscillations of the reduced form solution in addition to what implied by the fundamental shocks
through the moving average part of system (11). In samples of size T=100, the empirical size
of our computed version of the AR7(0;) test ranges from 0.064 (1:=0.50) to 0.025 (¢:=0.95)
as opposed to the pre-fixed nominal size 751 < 19:=0.05, so that we can conclude that the
under(over)-rejection phenomenon is confined to admissible levels.

Overall, the results of our Monte Carlo experiment summarized in Tables 2 and 3 suggest that
the ‘LR — AR7’ testing strategy delivers reasonable empirical size coverage with respect to
the null H{ in eq. (15) and reassuring empirical power against the hypothesis of indeterminacy.
Furthermore, also the ‘second-step size’ coverage of the testing strategy, i.e. its tendency to
erroneously reject the hypothesis of indeterminacy, appears under control in samples of lengths

typically available to practitioners.
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Table 3. Empirical power and ‘second-step size’ of the ‘LRp— AR7’ testing strategy when the data
are generated from the new-Keynesian business cycle monetary system (5)-(6) under the hypothesis H. {

in eq. (16) (with sunspot shocks absent).

‘true’ O

Amax(G (6 ,)):=1.0051 T=100  1,=0.05, 75=0.05

Yg:=0.744 Indet. param: :=0.95

50:=0.124 Rej(LR7(¢5.))=0.615
@0:=0.059 Rej(ARr(6,))=0.033
ro:=0.044 Rej(ARr(8,) ; LRT(éﬁgs))zo.O%
Po:=0.595

Pg,0:=0.527

P 0:=0.821 1:=1.05

py.0:=0.796 Rej(LRr(5,))=0.705
Pr.0:=0.418 Rej(ARr(6,))=0.038
PRr,0:=0.404 Rej(AR7(8,) ; LRT(¢> .))=0.03

$:=0.50 Rej(LRr(dp,))=1
Rej(AR (és)) 0.064
Rei(ARz(0,) ; LRr(d,))=0.064

NOTES. Results are obtained using M=1,000 replications. Each simulated sample is initiated with
200 additional observations to get a stochastic initial state and then are discarded. The structural
parameters are calibrated to the medians of the posterior distributions reported in Table 1 of Benati
and Surico (2009), column ‘Before October 1979’. The numerical inversions of the tests LRT(gAng) (step
1 of Section 3 and Appendix) and ART(éS) (step 2 of Section 3 and Appendix) are obtained on each
generated dataset by considering 300 points 0, randomly chosen using the uniform distribution from the
same grid Gg, used in the size experiment in Table 2. 1) is the auxiliary parameter which governs the
‘parametric indeterminacy’ of the system, see Sub-section 3.2. ART(és) is computed as a quasi-LR test
as detailed in the Appendix, using Z;:=(X[_1, X{_5,..., X{_,)" and 7 =6 in the auxiliary multivariate
regression system (32). Rej(-) stands for ‘rejection frequency’; Rej(ARy (6 $) LRT(¢9 )) denotes the

joint rejection frequencies of the two tests.
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5 Empirical evidence

We now turn to the implementation of our two-step investigation as for the post-WWII U.S.
economic system. We employ U.S. quarterly data, sample 1954q3-2008q3, and three observable
variables, X;:=(4, m¢, Rt)’. The output gap ¢ is computed as percent log-deviation of the real
GDP with respect to the potential output estimated by the Congressional Budget Office.'> The
inflation rate m; is the quarterly growth rate of the GDP deflator. For the short-term nominal
interest rate R; we consider the effective Federal funds rate expressed in quarterly terms (averages
of monthly values). The source of the data is the Federal Reserve Bank of St. Louis’ web site.
The beginning of the sample is due to data availability (in particular, of the effective Federal
Funds rate. The end of the sample is justified by our intention to avoid dealing with the ‘zero-
lower bound’ phase began in December 2008, which triggered a series of non-standard policy
moves by the Federal Reserve whose effects are hardly captured by our standard new-Keynesian
framework.

Our reference structural model is given by the new-Keynesian system (1)-(4).!3 Following
most of the literature on the ‘Great Moderation’, we divide the post-WWII U.S. era in two
periods, roughly corresponding to the ‘Great Inflation’ and the ‘Great Moderation’ samples. We
take the advent of Paul Volcker as Chairman of the Federal Reserve to identify our first sub-
sample, i.e. 1954q3-1979q2, which we call ‘pre-Volcker’ sample. As for the ‘Great Moderation’
sample, we consider the period 1985q1-2008q3. McConnell and Pérez-Quirés (2000) find a break
in the variance of the U.S. output growth in 1984ql. Our empirical investigation deals with a
measure of the output gap, inflation, and the federal funds rate. Signs of the "Volcker disinflation’
are still evident in 1984. This is possibly due to the ‘credibility build-up’ undertaken by the
Federal Reserve in the early 1980s, a period during which private agents gradually changed
their view on the Federal Reserve’s ability to deliver low inflation (Goodfriend and King, 2005).
Moreover, the first years of Volcker’s tenure (until October 1982) were characterized by non-

borrowed reserves targeting. Hence, the fit of our policy rule would substantially worsen if

"2 This measure of the output gap is the one used by, among others, Benati and Surico (2009). In theory,
different proxies of the output gap may lead to different answers to our research question. Canova and Ferroni
(2011) propose a method to combine different proxies of the business cycle in a likelihood-based estimation of
a modern new-Keynesian model for the U.S. economy. We leave the investigation of the impact of alternative

proxies of the output gap for the determinacy/indeterminacy issue to future research.
13 A limit of our investigation is the absence of any consideration regarding the possible impact that fiscal policy

may exert on determinacy. Since Leeper’s (1991) contribution, we have known that the assessment of equilibrium
determinacy in new-Keynesian monetary policy models of the business cycle should involve monetary and fiscal
policies jointly. Our test may very well be applied to more sophisticated models dealing with the fiscal-monetary

policy mix, an idea that belongs to our research agenda.
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we included the Volcker disinflation (Estrella and Fuhrer, 2003; Mavroeidis, 2010), a fact that
would carry consequences on the estimates of all parameters of the system.!® To circumvent
this problem, we postpone the beginning of our second sub-sample to 1985q1. A similar choice
is undertaken by Christiano et al. (2013). Thus, our ‘Great Moderation’ sample is given by the
period 1985q1-2008q3 and will be denoted as ‘post-1985’" sample throughout this Section.

The first-step of the ‘LRr — AR7’ testing strategy requires the computation of the ‘full-
information’ likelihood-based test of the CER that the new-Keynesian model implies under
determinacy, i.e. the LRT(gEbgs) test discussed in Section 3. As it is common in the literature,
we pre-fix the nominal level of significance at the 10% level (n;:=0.10). We report in Table 4
the results of the LRT(Q%ES) test on the ‘pre-Volcker’ and ‘post-1985’ samples, respectively.

A detailed description of the grid Gy, used to invert the test numerically may be found in the
caption of Table 4. In the upper panel of Table 4, we summarize the projected 90% confidence
intervals for the individual elements of 85 derived from the identification-robust confidence set
CHEt (see eq. (21)) and the point estimate of s, é:ML, see eq. (24). In the lower panel of Table
4, we indicate whether the grid-testing procedure leads to an empty or nonempty identification-
robust confidence set and report the value of LRT(gAbgs) associated with é: az and corresponding

p-value.

“Our results, however, are robust to the employment of a shorter ‘pre-Volcker’ sample (1966q1-1979q2) and,
with qualifications, to a longer ‘Great Moderation’ sample (1979q4-2008q3). The results obtained on these samples

are available upon request to the authors.
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Table 4. Projected 90% identification-robust confidence intervals, point estimates of the structural pa-
rameters 05:=(7, d, a, K, p, s P> Pgs Pres pr) and results of the first-step of the ‘LRp— AR7p’ testing
strategy on U.S. quarterly data.

1954q3-1979q2 ‘pre-Volcker’ 1985q1-2008¢3 ‘Great Moderation’

ik Uk

Parameter Interpret. Os pmr  Proj. 90% c.i. Os iz, Proj. 90% c.i.
¥ IS, forward look. term - - 0.729 0.652-0.772
1) IS, inter. elast. of sub. - - 0.082 0.082-0.154
a NKPC: index. past infl. - - 0.020 0.020-0.059
K NKPC: slope - - 0.048 0.042-0.098
p Rule, smoothing term - - 0.666 0.569-0.697
o Rule, react. to out. gap - - 0.339 0.127-0.479
O Rule, react. to inflation - - 5.439  2.318-.5.445
Py Out. gap shock, persist. - - 0.920 0.720-0.978
Pr Inflation shock, persist. - - 0.925 0.748-0.970
PR Pol. rate shock, persist. - - 0.794 0.730-0.806
identification-robust c.s. C(%%o empty nonempty
(card(CEHE)=15)
)\max(G(éz,ML)) - 0.946
LRT(&)ES) test (first-step) — 19.54

[0.36]

NOTES. The projected 90% identification-robust confidence intervals (proj. 90% c.i.) have been
obtained from the 90% identification-robust confidence set COLgb (see eq. (21)) by computing, in turn, the
smallest and largest values of each parameter included in the set COLS])% The set COLé% has been obtained
by inverting numerically the LRT(c%gs) test (step 1 of Section 3 and Appendix) considering 5,000,000
points 0, randomly chosen using the uniform distribution with support given by the rectangle formed by
the Cartesian product of the following intervals: [0.65, 0.85] for ~y, [0.08, 0.16] for 4, [0.02, 0.10] for «,
0.04, 0.10] for &, [0.50, 0.70] for p, [0.05, 1.5] for ¢y, [0.5, 5.5] for ¢, [0.40, 0.98] for py, pr and pg,.
‘és,ML’ is the point estimate derived from Cég%, see eq. (24), and Apax(+) denotes the modulus of the
largest eigenvalue of the matrix in the argument. LRT(%S) in the lower panel reports the value of the
test statistics obtained in correspondence of the ‘least rejected’ model within C(%%o- P-values in brackets.

Estimation on each sub-period is carried out by considering within-periods initial values and variables

are demeaned within each sub-period.
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Table 4 suggests two important facts. First, the CER that the new-Keynesian system implies
under determinacy are firmly rejected on the ‘pre-Volcker’ sample (the set C(%% is empty),' and
are firmly accepted on the ‘post-1985" sample by the data (the set C(%%O is nonempty and the
p-value associated with the ‘least rejected’ model is 0.36). We thus reject the hypothesis of
determinacy on the ‘pre-Volcker’ sample and do not reject the hypothesis Hy in eq. (15) on
the ‘post-1985" sample. Despite we can not interpret the result relative to the chosen ‘Great
Moderation’ regime as conclusive evidence of determinacy (see the discussions in Sub-section
2.2 and Section 3),'0 the inference is sufficient to rule out the scenario according to which the
U.S. business cycle was driven by sunspot expectations extraneous to fundamental shocks. In-
terestingly, the fact that the CER entailed by the hypothesis of determinacy are not rejected
on the period 1985q1-2008q3 suggests an implicit non-rejection of the new-Keynesian system
(1)-(4) on that sample.!” Second, the 90% projected identification-robust confidence intervals
for the policy (feedback) parameters 5 and ¢, are surprisingly tighter than the confidence sets
documented by other authors using frequentist methods. In particular, the estimation of the
value of the parameter ¢, which captures the systematic reaction of the Federal Reserve to
inflation, has attracted a lot of attention. The debate has been intense also because of the lack
of precision surrounding the estimates of such parameter. A prominent example in the literature
is represented by Mavroeidis (2010). He convincingly shows that, in a single-equation context,
the estimation of ¢ tends to be imprecise, and the formal evidence in favor of an aggressive
systematic policy response to inflation is scant. Possible reasons include (a) the absence of
sunspot shocks under determinacy, which implies a lower volatility of inflation and output and,
therefore, a harder identification of the systematic relationship between the policy rate and the
policy relevant-macroeconomic variables, and (b) a higher degree of interest rate smoothing,

which limits the reaction of the policy rate in presence of shocks hitting inflation and output.'®

1% Also using the level 7,:=0.05 we find that CEE is empty. Results available upon request.
16 A merely descriptive indicator that the equilibrium we have estimated and tested on the ‘post-1985’ sample

in Table 4 is not a MSV solution which might occur under the multiple equilibria case is given by the largest
eigenvalues of the estimated matrix G(é:,ML). We obtain /\max(G(é:’ML)):0.946, a value that would encourage

one to rule out the MSV hypothesis and consider the uniqueness scenario seriously.
17 According to Pesaran (1987), this evidence also implies the non-rejection of the rational expectations hypoth-

esis.

8 Mavroeidis (2010) also points to the ‘Volcker-experiment’, which implies a larger volatility of the residuals of
the Taylor rule during the period 1979-1982, as another possible reason for the imprecise estimates he finds with
his single-equation approach. When experimenting with the sample 1979g3-1997q4, our procedure found evidence
in favor of indeterminacy. This result may be due to the fact that the period 1979q3-1997q4 includes the ‘Volcker
experiment’ and the subsequent Volcker disinflation, which are hard to describe with our model under uniqueness.
Interestingly, our procedure favors indeterminacy with respect to model misspecification in this case. A possible

interpretation is the ‘flexibility’ of the model under indeterminacy, which features extra shocks and parameters
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Interestingly, our result, collected in Table 4, allows us to formally support an aggressive policy
conduct by the Federal Reserve in the ‘post-1985’ period ruling out the role of sunspot fluc-
tuations on the one hand, and under a fair amount of interest rate smoothing (ranging from
0.73 to 0.81, according to our 90% confidence interval) on the other hand. Hence, our analy-
sis suggests that ‘full-information’ methods designed to deal with identification failure provide
more precise information than ‘limited-information’/single-equation approaches. Importantly,
our identification-robust approach does not lead us to reject the correct specification of the
specified new-Keynesian model during the ‘Great Moderation’. Our findings are particularly
important in light of a recent paper by Cochrane (2011), who has argued that the parameters of
Taylor-type rules like that in eq. (3) are not identifiable in prototypical new-Keynesian models.
Cochrane (2011), however, considers formulations of the new-Keynesian system which are ‘less
involved’, from a dynamic standpoint, than our ‘hybrid’ specification in eq.s (1)-(4). Our results
in Table 4 show that the ‘full-information’ approach delivers relatively tight confidence sets not
only for ¢; and ¢,, but also for § (intertemporal elasticity of substitution), a (indexation to
past inflation) and x (slope of the NKPC), which are notoriously difficult to estimate precisely
from the data.

We then proceed with the second-step of the ‘LR — AR7’ testing strategy, which requires
the inversion of the Anderson and Rubin-type ART(éS) test for the OR implied by the system of
Euler equations (1)-(4) on the ‘pre-Volcker’ sample. Note, indeed, that the CER implied by the
new-Keynesian model under the hypothesis of determinacy have been rejected by the data on
the ‘pre-Volcker’ sample. Therefore the second-step ‘limited-information’ evaluation approach is
conducted to establish whether the rejection of the hypothesis of determinacy must be ascribed
to the multiple equilibria hypothesis or to the inability of the estimated system to capture the
propagation mechanisms at work in the data. For completeness, we invert the ART(éS) test
not only on the ‘pre-Volcker’ sample but also on the ‘post-1985’ sample, albeit this calculation
would not be required by the ‘LRp — ARy’ testing strategy (recall that we have accepted the

new-Keynesian system on the ‘post-1985’ sample in the previous step).

and a richer dynamic structure.
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Table 5. Projected 90% identification-robust confidence intervals, point estimates of the structural
parameters 05:=(7, 9, a, K, p, 05, Prs Pgs Pr» pr) and results of step 2 of the ‘LRp— ARy’ procedure
on U.S. quarterly data.

195493-1979q2 ‘pre-Volcker’ 1985q1-2008q3 ‘Great Moderation’

vk vk

Parameter Interpret. Os 1 proj. 90% c.i. Os 1 proj. 90% c.i.
¥ IS: forward look. term 0.841  0.660-0.845 0.821 0.650-0.85
0 IS: inter. elast. of sub. 0.088 0.084-0.160 0.132 0.080-0.160
a NKPC: index. past infl. 0.025  0.020-0.070 0.097  0.020-0.099
K NKPC: slope 0.042  0.040-0.058 0.087 0.040-0.10
p Rule, smoothing term 0.520  0.500-0.698 0.699  0.500-0.700
o Rule, react. to out. gap 0.138 0.05-0.325 0.295 0.05-1.043
©n Rule, react. to inflation 0.687 0.50-0.906 2.123 0.50-5.499
Py Out. gap shock, persist. 0.900 0.620-0.964 0.911 0.400-0.980
Pr Inflation shock, persist. 0.578  0.414-0.793 0.907  0.400-0.980
PR Pol. rate shock, persist. 0.798 0.565-0.916 0.795 0.674-0.980
identification-robust c.s. CLE=AR (Cgllt) nonempty nonempty
(card(CEEAR)=26) (card(Cg)=41891)
Amax(G (0] ;1)) 1.012 0.965
ok
AR7(0, 15) test (second-step) [204..144% [109'3277}
NOTES. The projected 90% identification-robust confidence intervals (proj. 90% c.i.) have been
LR—AR

obtained from the 90% identification-robust confidence set Cy'g (see eq. (23)) computed on the
‘pre-Volcker sample’ and from the 90% identification-robust confidence set Céé%o (see eq. (38) in the
Appendix) computed on the ‘Great Moderation’ sample by considering, in turn, the smallest and largest

values of each parameter included in the set Céf gO_AR (66450) These confidence sets have been obtained

by inverting the test ART(éS) (step 2 of Section 3 and Appendix); in practice, ART(éS) is computed as a
quasi-LR test using Zy:=(X/_;, X]_,)’ in the auxiliary multivariate regression system (32), considering
5,000,000 points 0, randomly chosen using the uniform distribution with support given by the rectangle
formed by the Cartesian product of the same intervals as in Table 4. ‘é: 11 is the point estimate derived
from Cé:_ gO_AR , see eq. (24), and Apax(+) denotes the modulus of the largest eigenvalue of the matrix in
the argument. ART(é: 1) reports the value of the test statistics obtained in correspondence of the ‘least
rejected’ model within Cég&AR. P-values in brackets. Estimation on each sub-period is carried out by

considering within-periods initial values and variables are demeaned within each sub-period.
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In this latter case, however, the identification-robust confidence set resulting from the inver-

v

sion of the ARy () test must be interpreted as detailed in eq. (38) of the Appendix. We pre-fix
19 at the level 15:=0.10 and invert the test using the same grid Gy, employed to invert the test

v

for the CER in the first-step (recall that 1y, < n,). The ARp(65) test is computed as detailed
in the Appendix.
The results of the second-step are summarized in Table 5. In the upper panel, we report the

projected confidence intervals for the individual elements of 05 derived from the identification-

LR—AR
1-m5.4

the point estimate (see eq. (24)). In the lower panel, we indicate whether the grid-testing

robust confidence set C produced by the grid-testing procedure (see eq. (23)) along with
procedure leads to an empty or nonempty identification-robust confidence set and, in the second
case, we report the value of the test statistic associated with the point estimate é: 17 and
corresponding p-value.

Table 5 shows that the new-Keynesian model is not rejected by the ART(éS) test on the ‘pre-
Volcker’ sample (the set C(jigb_AR is nonempty and the p-value associated with the ‘least rejected’
model is 0.14). As expected, we also find that the new-Keynesian model is not rejected by the
ART(éS) test on the ‘post-1985’ sample (the set C&gofAR is nonempty and the p-value associated
with the ‘least rejected” model is 0.37). This is a ‘reassuring’ result, as it corroborates the
outcome obtained with the LRT(gAng) test in the first-step. Moreover, if we compare the projected
identification-robust confidence intervals built with the ‘full-information’ method (sixth column
of Table 4) with the corresponding intervals built with the ‘limited-information’ method (sixth
column of Table 4), we find that the former are remarkably more informative than the latter.

By combining the evidence in Table 5 with that in Table 4 we conclude that the ‘LR —
ARy’ testing strategy leads us to accept the hypothesis of indeterminacy (Hj in eq. (16)) on the
‘pre-Volcker’ sample on which the set C(%%o is empty and the set Cégb_AR is nonempty, see Table
1, and not to reject the hypothesis H) in eq. (15) on the ‘Great Moderation’ sample on which the
set C(%%o is nonempty, see Table 1. Thus, our conclusions point towards a policy switch in the late
1970s. This result is not new in the literature, as it corroborates the one proposed by Clarida et
al. (2000), Lubik and Schortfheide (2004), Boivin and Giannoni (2006), Benati and Surico (2009),
Mavroeidis (2010), and Inoue and Rossi (2011a), among others. The novelty of our analysis
is that our conclusions have been derived with a formal testing strategy with (i) a robustness
check for identification failure and model misspecification, a crucial information when conducting
inference in the class of monetary policy new-Keynesian models, and on (ii) a full-system context
without appealing to any a-priori distribution or any calibration of nuisance parameters. Clearly,

our prior-free approach maximizes the role attached to the data in determining our results.

An approximate and purely indicative measure of the extend of the change characterizing
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the parameters of the model across the two regimes can be broadly obtained by comparing the
identification-robust confidence intervals and the point estimates reported in Table 4 and Table
5. For instance, we find that as for the parameters § (intertemporal elasticity of substitution)
a (indexation to past inflation), ¢, (long run reaction to inflation) and p, (inflation shock
persistence), the ‘full-information’ point estimates computed on the ‘post-1985’ sample (see the
fifth column of Table 4) do not lie within (or lie on the border of) the corresponding ‘limited-
information’ identification-robust confidence intervals computed on the ‘pre-Volcker’ sample (see
the fourth column of Table 5). Evidence of instability in the parameters of the private sector,
other than the policy parameters, has also been found, among others, by Canova (2009), Inoue
and Rossi (2011a), Canova and Menz (2011), Canova and Ferroni (2012), Castelnuovo (2012a),
and Cantore et al. (2013).

6 Relation to the literature

Our findings support the role played by variations in the structure of the economic system in
driving the U.S. economy from indeterminacy to a unique equilibrium under rational expecta-
tions. Both policy and non-policy parameters are found to be unstable across sub-samples. Our
evidence on variations of the policy parameters provides fresh support to the story popularized
by Clarida et al. (2000) on the aggressive monetary policy implemented by the Federal Reserve
to engineer a deflation in the early 1980s and maintain inflation to low levels afterwards. Our
results, which are obtained with a frequentist approach and by dealing with identification issues
in a full-system context, confirm the findings obtained by Lubik and Schorfheide (2004) with
their Bayesian analysis. Recent empirical investigations show that changes in both policy and
non-policy structural parameters may be behind the U.S. ‘Great Moderation’. Our estimates,
obtained with the ‘limited-information’ approach, also suggest the possibility of variations in
our private sector’s parameters. Hence, our findings are consistent with those documented by
previous contributions on the instability in the private sector’s parameters in the U.S. economy
(see, among others, Canova, 2009; Inoue and Rossi, 2011a; Canova and Menz, 2011; Canova and
Ferroni, 2012; Castelnuovo, 2012a; Cantore et al., 2013). Admittedly, our analysis does not take
any stand on the relevance of the ‘good luck’ explanation supported by, among others, Stock
and Watson (2002), Sims and Zha (2006), Smets and Wouters (2007), Justiniano and Primiceri
(2008), Canova et al. (2009), and Canova and Ferroni (2012). Such interpretation suggests a
reduction in the volatility of the shocks hitting the economy. An elaboration of our proposal
aimed at identifying the relative importance of these two drivers of the ‘Great Moderation’ is

left to future research.
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On the methodological side, our paper is connected to the recent work of Guerron-Quintana
et al. (2013) on ‘full-information’ frequentist inference in DSGE models, see also Dufour et al.
(2013). Indeed, the first step of our testing procedure is essentially based on the pointwise inver-
sion of the likelihood ratio test proposed by these authors as a tool to build identification-robust
confidence sets for the structural parameters of DSGE models. In our setup, the likelihood ratio
test is used to obtain an identification-robust ‘acceptance region’ for the structural parameters
which fulfil the CER the new-Keynesian system places on its reduced form solution under de-
terminacy. Likewise, our methodology is connected to the contributions by Stock and Wright
(2000), Kleiberger and Mavroeidis (2009) and Dufour et al. (2006, 2009, 2010, 2013), among
others. Indeed, conditional on the first-step, the second-step of the suggested testing strategy
requires the pointwise inversion of an Anderson Rubin-type (Anderson and Rubin, 1949) test
for the OR implied by the system of Euler equations. Finally, compared to Fanelli (2012), who
also proposes a test for determinacy /indeterminacy in new-Keynesian models controlling for the
omission of propagation mechanisms, our procedure is robust to identification failures and can
be applied regardless of the strength of identification.

On the empirical side, Lubik and Schorfheide (2004) test for determinacy in the U.S. economy
with a model similar to ours by undertaking a Bayesian investigation in which posterior weights
for the determinacy and indeterminacy regions of the parameter space are constructed and
compared. Our paper implements a frequentist approach, which neither requires the use of a-
prior distributional assumptions nor the commitment to non-standard inference. In particular,
we are not forced to choose a prior distribution for some arbitrary auxiliary parameters that index
the multiplicity of solutions under rational expectations as in Lubik and Schorfheide (2004).
With respect to Boivin and Giannoni (2006), our method is based on the direct estimation of
the structural new-Keynesian model and provides a direct control for the cases of identification
failure and dynamic misspecification. Hence, we need not minimize the distance between some
selected impulse responses taken from a VAR modeling the macroeconomic variables of interest
and the structural model-based responses, a methodology which is unfortunately bias-prone as
for expectations-based models like ours (Canova and Sala, 2009). More importantly, we need
not make restrictive assumptions on the solution under indeterminacy, as opposed to the MSV
solution assumed by Boivin and Giannoni (2006). While being plausible, such solution is anyhow
arbitrary, and it may importantly affect the simulated moments of interest (Castelnuovo, 2012b).
Mavroeidis (2010) applies identification-robust ‘limited-information’ methods to investigate the
determinacy/indeterminacy of U.S. monetary policy conditional on the estimation of the policy
rule in isolation. Compared to Mavroeidis (2010), we (i) investigate the issue of macroeconomic

stability of U.S. monetary policy by using a fully specified ‘hybrid new-Keynesian model’ of
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Benati and Surico (2009), and (ii) apply a testing strategy which is robust to identification failure.
Mavroeidis (2010) conjectures that the difference between the (precise) confidence intervals in
the ‘pre-Volcker’ period and the (imprecise) ones in the ‘post-Volcker’ phase may be interpreted
as (a) absence of sunspot fluctuations during the ‘Great Moderation’; (b) increase in the policy
inertia; (c¢) larger variability of the policy shocks during the first years of the Volcker era. Our
methodology formally shows that sunspot fluctuations are unlikely to have played a role during
the ‘Great Moderation’. We therefore offer statistical support to Mavroeidis’ conjecture (a).
Differently, we do not find clear evidence in favor of an increase in the policy inertia when
moving from our first to our second sub-sample. However, the confidence interval surrounding
the point estimate of the degree of interest rate smoothing during the ‘Great Moderation’ does
not exclude Mavroeidis’ second conjecture (b) either. Finally, our ‘Great Moderation’ sub-
sample begins in 1985, i.e., after the end of the ‘Volcker experiment’ related to the targeting
of non-borrowed reserves by the Federal Reserve. Hence, our results are not necessarily driven
by a large volatility of the policy shocks, whose volatility has drastically reduced since 1985
(see Mavroeidis (2010), Figure 3 - left panel). More importantly, however, we show that, when
applying a system based ‘full-information’ approach designed to handle weak identification, the
precision of the estimates obtained for the ‘Great Moderation’ sample is higher than the one

achieved via a single-equation approach.

7 Concluding remarks

This paper has proposed and implemented a novel approach to test for monetary policy de-
terminacy/indeterminacy in the United States in the context of a fully specified small-scale
new-Keynesian model. Importantly, our test is robust to identification failures and model dy-
namic misspecification. Identification failures are characterized as the situation in which the
criterion function used to estimate the new-Keynesian model is nearly uninformative (or even
uninformative) about the structural parameters, whereas dynamic misspecification is interpreted
as the omission of relevant propagation mechanisms from the specified structural system, which
may render the identification of indeterminacy (vs. determinacy) unreliable. The proposed
testing strategy relies on the principle that the construction of identification-robust confidence
sets for the structural parameters requires the inversion of asymptotically pivotal test statistics
which have correct asymptotic size regardless of the strength of identification. Our method-
ology can be applied regardless of the strength of identification of the structural parameters
and requires neither the use of prior distributions nor that of nonstandard inference, hence the

degree of arbitrariness of our empirical results is substantially reduced. The provided Monte
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Carlo experimentation suggest that the ‘LRr — ARy’ testing strategy can fruitfully be applied
in empirical work.

When applied to U.S. data using the new-Keynesian framework a la Benati and Surico (2009)
as reference structural model, our testing strategy finds formal support in favor of a switch from
indeterminacy to a framework consistent with uniqueness roughly corresponding to the advent
of Paul Volcker as Chairman of the Federal Reserve. Importantly, we obtain formal evidence in
favor of an aggressive monetary policy during the Great Moderation period by controlling for the
effects of weak identification and the possible misspecification of the propagation mechanisms of
the shocks. This result differs from the one documented by Mavroeidis (2010) with his single-
equation approach. We attribute this difference to the ‘full-information’ nature of the first step
of our robust test and to the fact that the estimated new-Keynesian model is not rejected by
the data on the ‘Great Moderation’ period.

Our findings, which line up with a number of previous contributions in the literature, are
consistent with, but not necessarily pointing to, the ‘good policy’” explanation of the U.S. Great
Moderation. We plan to elaborate further on our methodology to assess whether other drivers,
in addition to the change in the conduct of monetary policy documented in this paper, have
contributed significantly to the ‘Great Moderation’ phenomenon.

In light of the recent financial crisis, the uniqueness scenario supported by our analysis as
for the period mid-1980s-onwards may very well be over. When enough data become available,
our methodology will help to shed further light on this issue. We also believe our methodology
may be fruitfully applied to understand if other economic realities have experienced changes
in their macroeconomic environment of the type documented here. Benati (2008) documents a
reduction in inflation persistence in a variety of countries under stable monetary regimes with
clearly defined nominal anchors, e.g., official inflation targeters. We plan to apply our formal

testing strategy to these countries in future research.

Appendix

In this Appendix, we focus on some computational aspects and asymptotic distributions of the
tests LRT(&)ES) and AT(éS) discussed in Section 3, and then formalize the asymptotic properties
of the ‘LR — AR7’ testing strategy.

Computation issues and asymptotic properties: the LRT(&)ES) test
The test LRT(qAbgs) for the CER obtained under determinacy is computed as follows. Consider
the VAR model of lag order two
Xy =D, 7 + uy, (25)
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where ®,:=[®1, P3], ®; and Py are unrestricted 3 x 3 matrices, Z;:=(X[_1,X;_,) and u; is
assumed to obey a 3-dimensional Gaussian white noise process with covariance matrix 3,,.
System (25) reads as the unrestricted counterpart of the determinate reduced form solution
of the new-Keynesian model in eq. (8). Assuming Gaussian disturbances, the log-likelihood

function of the unrestricted VAR system is given by

T
— ) (X = ®uZy) SN (X — uZy) (26)
t=1

log L7(¢;,):=const — — 10g(det

l\')\»i

where ¢ :=(¢!,,vech(X,)’)" and ¢,:=vec(®,). Obviously, in our framework ¢, is strongly iden-
tified. We refer to Guerron-Quintana et al. (2013) and Andrews and Mikusheva (2012) for the
analysis of more involved situations, especially for cases in which not all components of X; are
observed.

As observed in Section 3, the CER that the new-Keynesian system implies under the hy-
pothesis of determinacy can conveniently be compacted in implicit form as in eq. (18). It can
be proved that, in our setup, the following condition holds (see Iskrev, 2008; Fanelli, 2011):

. [6f<¢a,u,eo>
o

(in correspondence of neighborhoods of the ‘true’ values of ¢; and #). By the implicit function

| = dim(s) (27)

theorem, the CER can be represented in explicit form as in eq. (19), i.e. ¢p =g(f), where the
nonlinear function ¢(-) is differentiable. Thus, the log-likelihood of the reduced form solution of
the new-Keynesian model under the hypothesis H{, in eq. (15) is obtained by replacing ¢’ with
¢y,=g(0), i.e. by imposing the restrictions that the structural model places on on ®, and ¥, by
eq.s (9)-(10). The log-likelihood function of the constrained VAR is denoted with log L1 (¢, ).
First we assume temporarily that 6 (and hence ¢y ) is strongly identified as in Fanelli (2012).
The maximization of log L1 (¢, ) requires the use of numerical (iterative) techniques based on
various approximations of the quadratic matrix equation in (9). Departures from the normality
assumption imply that the estimator of 0 is actually a quasi-ML (Q-ML) estimator. Given the
Q-ML estimate of 6, 6, the (quasi-)LR test for the cross-equation restrictions is given by

LRy:=—2(log L1(dy,) — log L1(6,)) (28)
where gAb;S::g(é) is the ML estimator of the VAR coefficients subject to eq.s (9)-(10). Under
the assumptions reported in the Technical Supplement and the null that the CER in eq. (19)
are valid, the test statistic LRy is asymptotically x?(dim(¢}) — dim())-distributed, see Fanelli
(2012).

We now relax the assumption of strong identification of 8, and consider the situation in which

it is known that only the sub-vector 6. of 0:=(0,,0.)" is strongly identified. In this framework,

srve
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the shape of log L7 (¢, ) might be poorly informative (or uninformative) about 6, or some of
its components, violating one the standard regularity conditions underlying ML estimation, see,
inter alia, Andrews and Mikusheva (2012). However, for fixed 95::é5, the CER correspond
to the hypothesis Hp cer in eq. (20) and the (concentrated) log-likelihood function log LT(¢23)
depends on 6. alone. Moreover, under the assumptions reported in the Technical Supplement,
log LT(qﬁgs) fulfills the conditions discussed in e.g. Guerron-Quintana et al. (2013). We denote
with &555 the ML estimator of the constrained VAR coefficients given by (Aﬁgs::g(és, @zs), where
0

€

is the ML estimate of the sub-vector . obtained for fixed Hszzés (in other words, @; is the
ML estimates of 8. obtained from the concentrated log-likelihood function associated with the
VAR system (8)). If Hszzés::t%’s € 739[5) (which implies that it is valid the hypothesis Hj, in eq.
(15)), by Proposition 3a in Guerron-Quintana et al. (2013) we have

LRy (¢p,):= — 2(log L1(d5,) — log Lr(¢,,)) — x*(d1) (29)

where dp:=dim(¢;)-dim(6.). If instead 95:255::9075 € 7755 (i.e. it is valid the hypothesis of
indeterminacy HY in eq. (16)) or 0,:=0, # 6y € Pgs (i.e. the selected vector of parameter
does not fulfil the CER), LRT(%S) is Op(T). Indeed, in the first case the DGP is given by the
VARMA-type system (11)-(12) and accordingly the VAR in eq. (8) omits relevant propagation
mechanisms; in the second case, instead, the constrained reduced form VAR solution obtained
for Os:zés is not consistent with the data.

Dufour et al. (2013) have proposed another identification-robust ‘full-information’ approach
for the structural parameters of DSGE models based on the (numerical) inversion of a test for
zero coefficients in the multivariate regression of the quantity ug (6, ):=[Is—®1 (0,)L—®2(05) L2 X,
(which correspond to the disturbance of the VAR system (8) under the CER) on the regressors
Zy=(Xj 1, X} o).

Computation issues and asymptotic properties: the ART(éS) test

The test ART(és) for the hypothesis Ho spec in eq. (22) can be computed by following the
approach proposed by Dufour et al. (2006, 2010) in a single-equation framework and then
extended by Dufour et al. (2009, 2013) in the multi-equational setup. Alternatively, one can use
the ‘S-test” method by Stock and Wright (2000), or the ‘K-LM test’” by Kleibergen (2005), both
based on the evaluation of the criterion function corresponding to the continuos-updating version
of generalized method of moments. Some computational issues make us prefer the approach in

Dufour et al. (2009, 2013).1

19Kleibergen and Mavroeidis (2009) discuss weak instrument robust statistics for testing hypotheses on 65 or

its subset in the GMM framework and then apply these methods to the new-Keynesian Phillips curve.
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The test works as follows. By simple algebraic manipulations, we re-write the system of

Euler equations (5)-(6) in the form
I5X: =TpXpp1 + 05 Xy + D5 Xy o + EDpE + 80 — Ty,
where &,:=X; — Fy_1 X is a vector MDS. Then we define the 3 x 1 vector function
0(X4, 05):=T5X; — Ty Xp1 — T51 X1 — T50 X2 (30)

Under correct specification, the vector v(Xy, 0y ) in eq. (30) follows a VMA(1)-type process and
fulfills the OR:
E(v(X¢,00,) | Fio1) = 031 (31)

Given eq. (31), consider the hypothesis Hg spec in eq. (22) and the multivariate linear regression
model

v

v(Xt,Gs) = HéSZt +e , ZreF ,t=1,....T (32)

where II; is a 3X7 matrix of coefficients, Z; is a r x 1 vector of regressors selected from the
information set F;_; (i.e. contains variables dated ¢ — 1 and earlier) and ¢; is a term whose
covariance matrix, ¢, can possibly be non-diagonal. We have used the notation ‘Hés’ for the
regression coefficients to remark that a system like that in eq. (32) is associated to the choice
0 Szzé s- Under Ho gpec:0 Szzé s :=00 s, additional information from predetermined variables should

be irrelevant in the multivariate regression system (32), hence the associated problem
H{ spec I =03y against Hj ..t Iy # Ogxr (33)

should lead us to accept Hj spec- WWe have thus transformed the problem of testing Ho spec in eq.
(22) in the context of the structural new-Keynesian system (5)-(6) into the problem of testing
the hypotheses in eq. (33) in the context of the multivariate linear regression system (32), for
which standard asymptotic distributional theory applies irrespective of whether the structural
parameters are identifiable or not.

More precisely, if system (5)-(6) is correctly specified and H spec is valid we have
AR7(05) — x*(d2) , dp:=3r (34)

irrespective of whether 0y, € 739’2 (determinacy) or #g s € 736{5 (indeterminacy). Obviously
AR7(0,) is Op(T) if the system (5)-(6) is affected by an ‘omitted variable’ issue. Given the
rejection of the CER in the first-step, the inversion of the test at the level of significance 7,

generates the identification-robust confidence set reported in eq. (23).
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In practice, the AR7(0,) can be a Wald-type, a Lagrange Multiplier or (quasi-)LR test.?’
Since the ¢; term follows a VM A-type process in system (32), HAC-type (Newey and West, 1997)
versions of the tests can be applied as suggested by Dufour et al. (2013). Our simulation studies
(part of which are reported in Table 2) show that even in the case of ‘indeterminacy without
sunspots’ (see Sub-section 2.2), the finite sample rejection frequency of the ARz (6,) (AR%(@S))
test may be to some extent affected by the values of the nuisance parameters 1):=vec(¥) in eq.s
(11)-(12), which are the only drivers of the multiplicity of the solutions when sunspot shocks are

absent, as well as by the chosen number of lags r in the auxiliary multivariate regression system

(32).

Asymptotic properties of the ‘LRr — ARy’ testing strategy
Let P(;LRT [-] be the probability measure associated with the distribution of the LRT(&SES) test
in eq. (29) in a sample of length 7. Thus, the asymptotic size of the ‘LRp — AR7p’ testing
strategy is given by
=i = PR [LRy(¢5.) > & (35)
Meo:=UMSUP My 7 7= SUP I T[ 1(0p,) = CT]
T—o00 GSEPBDS ’
where 7 7 is the size in a sample of length 7" and ¢ is the critical value of the test at nominal

level 0<n;<1 in a sample of length 7. The next proposition establishes that the test has correct

size asymptotically.

Propostion 1 [Asymptotic size] Consider the new-Keynesian system (5)-(6) and the ‘LR —
ARy’ testing strategy. Under the null Hj in eq. (15) and for 95:255:250,5 € 776,12, Moo = M-

Proof. The result follows trivially from eq. (29) and eq. (35).1H

Borrowing notation from Mikusheva (2010) and Andrews and Cheng (2012), an equivalent
way of stating the result in Proposition 1 is
liminf inf P(;LR [hypothesis Ho cer:0% :g(és, 0.) is accepted] = 1 — 1
T—oo g.epp T ’ 9s
which is equivalent to the claim that the confidence set C1L—R771 defined in eq. (21) (or the
acceptance region of the test) has asymptotic coverage 1 — 7.
Likewise, the finite sample power of the ‘LR — ARy’ testing strategy against the hypothesis
Hj is given by

. o
Proci=limsup prr, piri=  sup  P{ILRp(¢5,) > ] (36)
T—o0 boepl o

20Dufour et al. (2013) discuss F-type approssimations for the asymptotic null distribution of the ARz (6,) test.
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where recall that the set Z" is defined in eq. (17) and contains all model’s parameters (including
the auxiliary parameters ¢ and a?) which lead to multiple equilibria but the MSV equilibrium,

see Sub-section 2.2. The next proposition establishes the consistency of the test.

Proposition 2 [Consistency against indeterminacy] Consider the new-Keynesian system
(5)-(6) and the ‘LRp — ARy’ testing strategy. Under the hypothesis H in eq. (16) and
for 93::5’5::@075 € 739]5, Pl,oo = L.

Ak

Proof. Under H} and for 0,:=0,:=0 , € Pj.. LRy (¢p,) is Op(T); the result follows from
eq. (36).1

To analyze the asymptotic behaviour of the ‘LRy — ARy’ testing strategy in the second-
step, we temporarily focus on the unconditional behaviour of the ART(éS) test, i.e. we ignore
the fact that the test ART(és) is computed conditional on the rejection of the CER by the
LRT(&);S) test in the first-step.

Let Pg:f;[-] be the probability measure associated with the distribution of the ARz (f;) test

in a sample of length 7". Given the null Hg gpec in eq. (22), the asymptotic size of the AR7(0)
test is given by

Moo =lmsup ny g, My pi= sup PyL[ART(05) > ¢f] (37)
T—o0 05€Pg, ’

where 7 7 is the size in a sample of length 7" and ¢77 is the critical value of the test at nominal

level 0<7,<1 in a sample of length 7. The next proposition establishes that the test ARy ()

is correctly sized.

v

Proposition 3 [Asymptotic size of the ARy (f;) test] Consider the new-Keynesian system
(5)-(6) and assume that its reduced form solution belongs either to the finite order VAR
system in eq. (8) or to the class of VARMA-type solutions in eq.s (11)-(12). Under the

null HO,spec in €q. (22)7 N2,00 = T2-
Proof. The result follows trivially from eq. (34) and eq. (37).H

Also in this case, an equivalent way of stating the result in Proposition 3 is that

liminf _inf PéAI; [hypothesis Ho,speczﬁs::és is accepted] = 1 — 1)
T—oo f,epy, 7%

which is equivalent to the claim that the confidence set (acceptance region)

da

Citft = {és € Go., ARr(65) < ¢T3 } (38)
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has asymptotic coverage 1 — n,.

Now we take into account the fact that the second-step of the ‘LR — AR7’ testing strategy
is run conditional on the rejection of the CER in the first-step. Let PéLs I;’AR[- ; -] be the probability
measure associated with the joint distribution of the test statistics L7RT($2S) and AR7(f,) in a
sample of length T'. The proposition that follows shows that the asymptotic ‘second-step size’
of the test is bounded by the fixed 7,.

Proposition 4 [‘second-step’ asymptotic size] Consider the new-Keynesian system (5)-(6)
and the ‘LRp — ARy’ testing strategy. Under the hypothesis H] in eq. (16) and in
particular for QSzzéS::éQS € Pés, the asymptotic ‘second-step size’ of the ART(éS) test,
denoted 75,1, is such that 751 < 1.

Proof. It holds the inequality
sup  PrUEARLRr(g5,) > ¢ s ARp(0,) > ¢ < sup P [AR(0,) > o]

bsep} czo 77 bsepf czo 7
(39)

where the term on the left-hand-side denotes the ‘second-step size’ in a sample of length 7.
By applying the limsup to both sides of the inequality in eq. (39) and using Proposition

3 one has

limsup  sup  PEEARLRA(35) = s ARp(B,) > ¢ <limsup  sup  PAR[ARp(D,) > ]
T—oo geep) cz0 ™ T—oo f,epf cz0

and the result is obtained.l

From Proposition 4 it follows that the identification-robust confidence set CILFT];?R defined

in eq. (23) has asymptotic coverage 1 — 15,1 > 1 — 1,.
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