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Abstract

The OGARCH specification is the leading model for a class of multivariate GARCH (MGARCH)
specifications that are based on linear combinations of univariate GARCH specifications. Most
MGARCH models in this class adopt a spectral decomposition of the covariance matrix, allowing
for heteroskedasticity on at least some of the principal components, while the loading matrix,
which maps the conditional principal components to the asset returns, is constant over time.
This paper extends the OGARCH model class to allow for time-varying loadings. Our approach
closely parallels the DCC modelling approach, introduced as an extension of the CCC model, to
allow for dynamic correlations. After introducing an auxiliary process that captures the relevant
features of the unobservable loading dynamics, we compute the time-varying loading matrix from
the auxiliary process, subject to the necessary orthonormality constraints. The resulting model
(the Dynamic Principal Components, or DPC, model) preserves the OGARCH models ease of
interpretation and feasibility. In particular, we show that the eigenvectors of the sample covari-
ance matrix can consistently estimate the time-varying loadings intercept term. This property
extends to the dynamic framework the well-known analogous property of the OGARCH model.
Empirical examples demonstrate the benefits to the loading matrix of introducing time-varying
properties.
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1 Introduction

One strand of the financial econometrics literature has focused during the last decade on introducing

new Multivariate Generalized Auto Regressive Conditional Heteroskedasticity (MGARCH) models

and developing feasible estimation approaches for MGARCH specifications. The main purpose of

the latter efforts has been to overcome the well-known curse of dimensionality that affects the

MGARCH model class by maintaining the ease of estimation and the interpretability of the model

outcomes.1 In that framework, the use of linear transformations of univariate conditionally orthog-

onal GARCH processes has received increasing attention by researchers (e.g., Kariya 1988, Van der

Weide 2002, Lanne and Saikkonen 2007, Fan et al. 2008, and Boswijk and Van der Weide 2011).

The leading model in this class may be the Orthogonal GARCH (OGARCH) model, introduced by

Alexander and Chibumba (1997) and Alexander (2001). In the OGARCH model the matrix that

maps the orthogonal processes to the asset returns (the loading matrix) is orthonormal. Moreover,

the orthogonal processes coincide with the principal components of the asset returns, the loading

matrix coincides with the eigenvector matrix of the asset’s unconditional covariance matrix, and

the loading matrix can be consistently estimated with no real effort from the asset-sample covari-

ance matrix (first estimation step). The principal components follow univariate GARCH models.

Their parameters are estimated in a separate step by means of univariate quasi-maximum-likelihood

(QML) methods, leading to the OGARCH estimator. The number of parameters estimated in the

second step is OpNq, where N is the number of assets.

As the principal components variances are recovered within a univariate framework, the second

step is feasible irrespective of the number of assets. In addition, because of the orthogonality of

the principal components, the second step is equivalent to the joint QML estimator of the compo-

nent GARCH parameters, so the second step is QML-efficient, conditional on the first step. The

OGARCH model is attractive because of the ease of estimation and the estimation outputs inter-

pretability in terms of principal component analysis. However, as Ding and Engle (2001) pointed

out, “[. . .] it may not be reasonable to assume that the loading matrix is constant over time.” In this

paper, we suggest an extension of the OGARCH model that allows for time-varying loadings. Our

proposed extension has no effect on most of the desirable properties that characterize the OGARCH

1See Silvennoinen and Teräsvirta (2009) for a discussion of the optimal features of MGARCH models.
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model.

The main challenge of building a model that allows for time-varying loadings lies in obtaining

the two goals of ensuring the orthonormality of the time-varying loading matrix and getting a

meaningful interpretation of the loading dynamics. We achieve these goals by means of a modelling

approach that closely parallels the Dynamic Conditional Correlation (DCC) approach Engle (2002)

adopted in extending Bollerslev’s (1990) Constant Conditional Correlation (CCC) model. The DCC

model introduces an auxiliary process, the correlation driving process, with the purpose of capturing

the relevant features of the underlying correlation dynamics. Then the correlation-driving process

is suitably rescaled to recover the proper conditional correlation matrices.

We introduce in the principal component framework an auxiliary process, the loading-driving

process, to capture the relevant features of the underlying loading dynamics. Then we extract the

time-varying loading matrix from the loading-driving process under the required orthonormality

constraints. The simplest specification for the loading-driving process is an Exponentially Weighted

Moving Average (EWMA) of the cross-products of the asset returns, which captures possible struc-

tural breaks in the OGARCH unconditional covariance matrix and provides a first answer to the

Ding and Engle’s (2001) doubts. In the EWMA case, the eigenvector matrix of the loading-driving

process reflects the related structural breaks in the OGARCH loading matrix. A natural extension

of the EWMA model is given by a loading-driving process structured as a BEKK recursion or filter2

(e.g., Engle and Kroner 1995, Engle and Mezrich 1996, Ding and Engle 2001). Once dynamic load-

ings are available, they can be used to recover conditional principal components, which are later

modelled as univariate GARCH processes. We call the resulting model Dynamic Principal Com-

ponent (DPC), highlighting the term “dynamic ”in the model name to refer to the time-varying

nature of the linear mapping from the principal components to the asset returns. We stress that

the components can follow any univariate GARCH specification, so the DPC model has a flexible

modular structure that is similar to the modular structure of the DCC model.

We can estimate the DPC model parameters by a three-step estimator, which is similar to that

used in the DCC model. In its simplest specification, which we call Scalar DPC, this estimator

reduces to a set of N � 1 Op1q estimations, thus overcoming the curse of dimensionality and main-

2BEKK stands for Baba, Engle, Kraft, and Kroner (Engle and Kroner 1995). We refer to this extension of the
EWMA model as a recursion or filter, not as a BEKK model, for reasons explained later in the paper.
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taining model feasibility irrespective of the number of variables. The first and second steps of the

estimator consider fitting a (possibly misspecified) BEKK recursion, the loading-driving process,

to a collection of asset returns under a variance-targeting-like constraint. The variance-targeting

constraint fixes the BEKK intercept and takes into account a sample estimator. Despite being

OpN2q, this first step is not computationally demanding.3 Conditional on targeting, the BEKK

estimation of the dynamic loading parameters might be made simple by imposing, for instance, a

scalar parameterization. The BEKK recursion estimation, the second step of our approach, has a

complexity of order Op1q. The BEKK filter estimation is used just to recover the dynamic con-

ditional loadings that are required to compute the conditional principal components. In the third

step, the volatilities of the conditional principal components are fitted one at a time via univariate

QML. Each univariate maximization is Op1q, leading to the OpNq third step. As with the OGARCH

estimator, the OpNq estimation of the component volatilities is feasible irrespective of the number

of assets, and it is QML-efficient conditional on the estimation of the conditional loadings.

As a major theoretical result, we show that, under normal conditions the eigenvectors of the

loading-driving process’s intercept coincide with those of the asset unconditional covariance matrix.

We call this property of the DPC model loading targeting. The name stems from the fact that the

eigenvector matrix of the unconditional covariance matrix is the unconditional principal components’

loading matrix. Loading targeting implies that the OpN2q term of the DPC parameterization is

consistently estimated by the sample covariance matrix’s eigenvectors. This property extends the

well-known analogous property of the OGARCH model to the dynamic framework. However, the

first two steps of the DPC estimator might suffer inconsistency problems like those that affect Engle’s

(2002) DCC model (Aielli 2013.)4 Nevertheless, as a second consequence of loading targeting, the

inconsistency, if present, of the first two estimation steps would affect at most OpNq parameters:

the eigenvalues of the intercept term and the loading dynamic parameters. Such an inconsistency

problem can be at least partially mitigated by the flexibility of the OpNq third step of estimation.

This property is an advantage of the DPC modelling approach with respect to the DCC modelling

approach, where the inconsistency of the second step, which involves OpN2q parameters (Aielli

3We assume that the sample size is sufficiently large to allow for an appropriate estimation of the unconditional
covariance matrix.

4While the joint estimation of all model parameters will avoid inconsistency problems, it will expose the estimation
to the curse of dimensionality.

4



2013), is generally followed by a less flexible Op1q third step of estimation. Allowing for feasible

OpNq third steps in the DCC estimator is possible via, for example, composite likelihood (Engle et

al. 2009) but at the cost of efficiency. In addition, we introduce a specification test to determine

whether there is model misspecification in the loadings. The DPC properties imply that, under

correct model specification and with consistent estimates, the conditional principal components are

conditionally orthogonal. Therefore, accepting this null hypothesis implies both the appropriateness

of the fitted model and the absence of inconsistency issues. A Monte Carlo experiment verifies

the test’s asymptotic properties. We also report results from a set of empirical applications that

demonstrate the advantages of the DPC modelling and estimation approach. By using two datasets,

each with its own cross-sectional dimension, we show that DPC specifications perform well in terms

of model fit and provide easy-to-interpret model outcomes.

The remainder of the paper is organized as follows. The next section introduces the DPC

modelling approach. Section 3 describes the DPC estimator and an easily implemented test of

correctly specified loading dynamics that requires only the estimation of a restricted VAR. Section

4 reports a set of empirical applications. Finally, Section 5 concludes the paper. Figures, tables,

some technical material, and the proofs of the propositions are reported in the appendices.

2 The DPC model

Let yt � ry1,t, . . . , yN,ts1 denote the vector of the asset returns at time t � 1, 2, . . .. We assume that

Et�1ryts � 0, where Etr � s is the expectation operator conditional on the information set at time t,

denoted as It. We set Ht � rhi,j,ts � Et�1ryty1ts, with Ht the conditional covariance matrix (CCM)

of yt. If Ht is finite, let

Ht � LtDtL
1
t (1)

denote a spectral decomposition (SD) ofHt. The diagonal elements ofDt � diagpd1,t, d2,t, . . . , dN,tq
are the eigenvalues of Ht, and the columns of Lt � rli,j,ts are the associated eigenvectors. By the

properties of the SD of a positive semi-definite (PSD) matrix (see Gruber, 2013, among many oth-

ers), Lt is orthonormal (i.e., LtL
1
t � L1tLt � IN , where IN denotes the N -dimensional identity

matrix). The elements of the vector
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ut � L1tyt (2)

are the conditional principal components (thereafter components) of yt. The components are

conditional since they are computed conditional on It�1. The components are conditionally orthog-

onal with conditional covariance matrix given by Dt. From (2), the asset returns can be written

as

yt � Ltut. (3)

We name the matrix Lt, which maps the conditional components into the asset returns, the

conditional loading matrix. In correlated systems, a few components can explain most of the

conditional volatility dynamics. We are interested in building a model for a SD of Ht, which is

i) directly readable in terms of loading and component dynamics and ii) possibly endowed with

desirable theoretical and empirical properties. Differently from the approach of Alexander (2001)

and that of many other studies inspired by the OGARCH model, we aim to provide a specification

for a SD of the conditional covariance matrix where both the eigenvalues (the diagonal elements of

Dt) and the eigenvectors matrices (the Lt) are allowed to vary over time.

2.1 Conditional loadings modelling

In constructing the Lt model, we first introduce an auxiliary process, the loading-driving process,

which can capture the relevant features of the underlying loading dynamics. Then we extract the

time-varying loadings from the auxiliary process so the time-varying loading matrix has the required

orthonormality property. We define the auxiliary process as a Scalar BEKK recursion based on the

asset returns, or

Qt � p1� a� bqS � ayt�1y
1
t�1 � bQt�1, (4)

where py0, Q0q P I0, while the scalars a and b and the matrix S are parameters to be estimated.

The matrix of the conditional loadings, Lt, is defined as the eigenvector matrix of Qt, that is,
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Qt � LtGtL
1
t, (5)

where Gt � diagpg1,t, . . . , gn,tq contains the eigenvalues of Qt. We then make the following

assumption:

Assumption 2.1.1. 0 ¤ a, 0 ¤ b, a� b   1, S and Q0 are positive definite (PD).

Under Assumption 2.1.1, the matrix Qt is PD, so the SD of Qt exists for any t. However, we

require an identification condition to achieve the uniqueness of the SD of Qt in (5). We start by

imposing a uniqueness condition on the SD of S. Let

S � LDL1 (6)

denote the SD of S, where L � rli,js and D � diagpd1, d2, . . . , dN q.

Assumption 2.1.2. The eigenvalues of S are arranged in strictly decreasing order; the sign of the

associated eigenvectors is such that the diagonal elements of L are positive.

Assumption 2.1.2 requires that S has distinct eigenvalues and that the diagonal elements of L

are different from zero. This is an inconsequential restriction, as the set of PD matrices ruled out

by Assumption 2.1.2 has a null measure.

Assumption 2.1.3. The eigenvalues of Qt are arranged in strictly decreasing order; the sign of the

associated eigenvectors is such that the diagonal elements of L1tL are positive.

The uniqueness condition in Assumption 2.1.3 implicitly requires that Qt has distinct eigenvalues

and that the diagonal elements of L1tL are different from zero. Such a restriction is mild as, in the

dynamic case, it holds almost surely (a.s.). In the constant case, which implies that Qt � S,

Assumption 2.1.3 reduces to Assumption 2.1.2. In Section 2.6 we show that the columns of L are

the directions of RN , along which the unconditional principal components of yt move. Therefore,

the sign condition in Assumption 2.1.3 can be interpreted as minimizing the angle between the

directions of RN , along which corresponding pairs of conditional and unconditional components

move.
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To provide a first motivation of the suggested model for Lt, consider a switching regime data-

generating process (DGP) such that Ht P
 
S̄i, i � 1, 2, . . . ,K

(
. In the i-th regime it holds that

Ht � S̄i � L̄iD̄iL̄
1
i, where the right-hand side denotes a SD of S̄i. If a � b � 1 in (4), the loading-

driving process approximates an EWMA of outer products of yt. In that case, Qt � S̄i, or Lt � L̄i,

where L̄i is the current loading matrix. Therefore, for a � b � 1, the matrix Lt can be seen as

an approximation of the current regime of the conditional loading matrix. We can thus interpret

model (4-5) as a natural extension of the EWMA model, including the EWMA model as a limiting

case. Alternatively, we might consider model (4-5) as the true DGP of the loading process, with

the aim of modelling smooth loading dynamics. The latter perspective is adopted in most of the

present work.

The identification conditions in Assumption 2.1.3 do not ensure the existence of a unique loadings

sequence for a given data set. We require an additional constraint on S. As an example, consider

a value c ¡ 0 be such that ca� b   1. Multiplying both sides of (4) by c yields

Q�
t � p1� a� � bqS� � a�yt�1y

1
t�1 � bQ�

t�1,

where a� � ca, S� � Scp1� a� bq{p1� ca� bq, and Q�
t � cQt, for t � 0, 1, . . .. Given the observed

series, the loading-driving processes Qt and Q�
t differ only by a scale factor, so they provide the

same time-varying loadings. If the process is covariance-stationary,5 a way to get identification is

to restrict the magnitude of S by imposing that

tracepSq � tracepS̄q, (7)

where

S̄ � Eryty1ts

(S̄ is the unconditional covariance matrix of yt). The next section introduces a model for the

components that, among other desirable properties, implies that the identification condition (7)

holds.

5We discuss the structural properties of the model in Section 2.6.
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2.2 Components conditional variance modelling

Following Alexander and Chibumba (1997) (see also Alexander, 2001), we propose that a possible

model for the conditional variances of the components is Bollerslev’s (1986) GARCH(1,1) model

with variance targeting (Engle and Mezrich, 1996); that is:

Et�1ru2
i,ts � di,t, di,t � p1� αi � βiq γi � αiu

2
i,t�1 � βidi,t�1, i � 1, 2, . . . , N, (8)

where pui,0, di,0q P I0. If a � b � 0, by combining 8 with 4 ,we note that the eigenvalues of S

are not identified. As a natural identification condition, we impose that γi � di, i � 1, 2, . . . , N ,

where di is the i�th largest eigenvalue of S. The restriction a � b � 0 in (4) leads to the OGARCH

model. In this case, Qt � S, which implies that Lt � L, or the loadings are constant. We then set

the following assumption:

Assumption 2.2.1. γi � di, αi ¥ 0, βi ¥ 0, αi � βi   1, and di,0 ¡ 0, for i � 1, 2, . . . , N.

Since di ¡ 0, (from Assumption 2.2.1), it follows that di,t ¡ 0, which ensures that Ht � LtDtL
1
t

is PD. Moreover, since αi � βi   1, the components are covariance stationary with unconditional

second moment equal to

Eru2
i,ts � Erdi,ts � di, (9)

(Bollerslev 1986). Since the di’s are arranged in strictly decreasing order (Assumption 2.1.2), it

follows that

Eru2
1,ts ¡ Eru2

2,ts ¡ � � � ¡ Eru2
N,ts. (10)

Therefore, the components are arranged in decreasing order according to their unconditional

variances.

Definition 2.2.1. The model defined by equations (3), (4-5), and (8) and Assumptions 2.1.1-2.2.1

is called the Scalar DPC model.

The term scalar in “Scalar DPC model”refers to the Scalar BEKK recursion6, adopted for Qt.

6The expression “Scalar BEKK recursion”for Qt is used in place of “Scalar BEKK model”because Qt is the CCM
of yt only if the loadings are constant and the components are conditionally homoskedastic.
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The Scalar DPC model includes OpN2q parameters in the loading-driving process (because of the

presence of S in the intercept) and OpNq parameters in the conditional component volatility models.

Section 2.6 introduces a more general specification of Qt and discusses the curse of dimensionality

issue. The following property holds for the Scalar DPC:

Proposition 2.2.1. Under weak stationarity conditions, the loading process of the Scalar DPC

model is identified.

Proof. See Appendix D.

This paper focuses on the GARCH(1,1) specification for the components. However, the com-

ponents could follow any univariate GARCH specification, possibly including exogenous regressors

and/or leverage effects, (see, e.g., Bollerslev 2010 and Francq and Zaköıan 2010.) The resulting mod-

ularity of the Scalar DPC structure is a modelling advantage that is shared with the DCC model

in Engle (2002). In the Engle model, the asset conditional variances, rather than the components,

can follow any GARCH specification. Irrespective of the GARCH specification of the components,

under stationarity (of the GARCH) both the ordering of the components according to equation

(10) and Proposition 2.2.1 hold provided that the unconditional variances of the components are

set equal to the eigenvalues of S.

2.3 An illustrative example

For pa, bq � 0 the Scalar DPC model yields the OGARCH model.7

With the OGARCH model we can write

S̄ � Eryty1ts � ErLtutu1tL1ts � LErutu1tsL1 � LDL1 � S.

The constant loading matrix L, and the unconditional covariance matrix of the components D, are

both provided by the SD of the second moment of the asset returns. Since Qt can capture switching

7In its general definition the OGARCH model allows for reduced rank Ht. Since di,t ¡ 0 for i � 1, 2, . . . , N, the
DPC model includes only the case of the full-rank OGARCH model. The defining equations of the DPC model can be
modified easily to include the OGARCH model in its general specification. In order to simplify the exposition in this
paper, we do not consider such an extension. In addition, the assumption of reduced rank Ht is difficult to motivate,
and it typically results in poor empirical performances.
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regimes in the second moment of yt, we can interpret the DPC as a model that can capture switching

regimes in the unconditional structure of the OGARCH model.

As an illustration, consider the impact of the Greek debt crisis that began at the end of 2009

on the Greek/German bond volatility/covolatility dynamics reported in Figure 1.8 The sample

statistics computed before and after the break date, which we fix at the end of 2009, show that

the crisis resulted in a dramatic increase in the Greek bond index’s volatility. (See Table 1.) The

German bond index’s volatility was unaffected by the crisis. The Greek debt crisis also led to Greek

bond index dynamics’ drifting away from the German bond index’ dynamics, as shown by the sample

unconditional cross-correlation; in fact, the correlation collapsed from 0.79 before the break date to

-0.15 after the break date. The estimate of l21,1 (squared first loading hereafter), which measures the

contribution of the first conditional component volatility against the volatility of the Greek bond

index, moved from 0.53 before the crisis to 0.99 during the crisis. Orthonormality implies that,

during the crisis the loading matrix approaches the identity. As a consequence, during the crisis

the bond series coincides with the components, which are conditionally uncorrelated, suggesting a

kind of flight-to-safety effect for the German market.

The OGARCH estimation output computed from the whole sample period essentially ignores

the break and is dramatically biased toward the crisis period. (The OGARCH squared first loading

is close to 1.) On the other hand, the DPC estimation output correctly detects the impact of the

crisis: the average DPC squared first loading before and after the break date is substantially equal

to the corresponding sample statistics. Accordingly, the average DPC estimated cross-correlations

drops to -0.14 during the crisis, as compared to the value of 0.85 observed before the crisis, and is

similar to the corresponding sample statistics. The estimates of the loading dynamic parameters are

equal to pâ, b̂q � p0.065, 0.935q. The presence of a dramatic structural break in the loading process

causes the estimated loading dynamic to be “integrated”(â� b̂ � 1).

With the OGARCH model, the component volatilities overlap before the crisis. The DPC

model’s correct detection of the break allows for a more realistic picture of the hierarchy of the

component volatilities and simplifies their association with known/observed risk sources. In most

applications the structural breaks in the OGARCH unconditional structure, if present, would be less

8The example uses changes in the five-year benchmark bond redemption yield for Germany and Greece. The time
series were recovered from Thomson Datastream.
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evident than they are in the Greek/German bond example. In addition, when structural breaks are

absent, we would expect similar pictures from the DPC and the OGARCH estimation outputs. A

second example supports this expectation. Similar to the previous case, we consider the UK/German

bond index series before and during the Greek crisis. (See Figure 2.) The plots of the bond returns

suggest the absence of structural breaks. The graphic comparison of the OGARCH and the DPC

confirms that there is no apparent break in the evolution of squared conditional loadings or in the

component volatilities. The OGARCH and DPC estimation outputs are similar apart from the

presence of limited dynamic in the squared conditional loading.

2.4 Some remarks on the DGP of the Scalar DPC model

The DGP of the Scalar DPC model has the following structure:9

Definition 2.4.1. DGP of the Scalar DPC model. Given the initial information, I0 � pQ0, D0, u0q,
set y0 � L0u0, where L0 is the eigenvector matrix of Q0 computed under the identification condition

in Assumption 2.1.3. Then

1. for t � 1, 2, . . . , T, set ut � D
1{2
t zt, where zt|It�1 � Np0, IN q, and the diagonal elements of

Dt are defined as in (8);

2. for t � 1, 2, . . . , T, set Qt � p1 � a � bqS � aLt�1u
1
t�1ut�1L

1
t�1 � bQt�1, where Lt�1 is the

eigenvector matrix of Qt�1, computed under the identification condition in Assumption 2.1.3;

3. for t � 1, 2, . . . , T, set yt � Ltut.

Remark 2.1. The DPC CCM is reconstructed as

Ht � LtDtL
1
t. (11)

There is a logical difference between (1) and (11). In (1), the pair pLt, Dtq is defined as a

function of Ht; to be precise, pLt, Dtq is the pair of eigenvectors/eigenvalues of Ht. Based on the

orthonormality of Lt and the diagonality of Dt, as ensured by the defining equations of the DPC

model, LtDtL
1
t in (11) is a SD of Ht. Roughly speaking, we will never compute the SD of Ht with

the DGP of the DPC model; on the contrary, we will always obtain Ht from its SD, as provided by

9We consider the Gaussian case for simplicity, but other distributions can be used.
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the DPC recursions.

Remark 2.2. The conditional components are arranged in decreasing order according to their

unconditional variances; see (10). This does not imply that the components are also arranged in de-

creasing order according to their conditional variances. The conditional variances of the components

(i.e., the di,t) can fall in any order at each point in time. This property, which merely extends the

analogous property of the OGARCH model to the dynamic framework, should not be interpreted as

a drawback. In fact, in a conditional analysis, the interest points at the possibility that things are

different conditionally than they are unconditionally. Consider, for example, a bivariate model in

which the first component and the second component are given the interpretation of market factor

and interest rate factor, respectively. Consistent with the factor model literature (e.g., Elton et

al. 2009 and the references cited therein), the market factor will explain most of the unconditional

system volatility. A conditional analysis should be able to reveal periods in which a crisis in the

bond markets can temporarily become the main driver of the system’s volatility dynamics. This

behavior is accounted for by allowing the conditional variance of the second component to exceed

the conditional variance of the first component temporarily.10

Remark 2.3. The i-th component comes from the eigenvector that is associated with the i-th

largest eigenvalue of Qt. Therefore, from a geometrical perspective, ui,t moves along the i-th longest

axis of Qt, which is time-varying. The fact that the conditional components move along time-

varying axes does not prevent the interpretation of the components as economic, well-identified,

underlying factors. Consider, for instance, a switching regime DGP of Ht. If one gives the first

component the interpretation of market factor, the first eigenvector of Ht, which is used to compute

the market factor, should change depending on the underlying regime. A natural extension of such

a modelling perspective is to think of the eigenvectors of Ht (i.e., the definition of the components)

as a smooth process. Most MGARCH models are implicitly characterized by smooth eigenvector

and eigenvalue dynamics. The DGP of the Scalar DPC model is characterized by such a feature,

10A model in which the components are arranged in decreasing order according to their conditional variances can
easily be implemented by modelling the increments between the component volatilities. For example, one can set
κi,t � di,t � di�1,t, where ki,t � p1 � αi � βiq pi � αiu

2
i,t�1 � βiki,t�1, pi � di � di�1, and dN�1,t � 0. Since pi ¡ 0

(recall that the di’s are arranged in decreasing order), the ki,ts are positive, so the di,t’s are arranged in decreasing
order.
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with the additional property that the smooth eigenvector and eigenvalue dynamics are explicitly

modelled.

2.5 Factor GARCH representation

In their Generalized Orthogonal Factor GARCH (GOF-GARCH) model, Lanne and Saikkonen

(2007) suggested setting as conditionally homoskedastic a subset of factors in order to get a model

that is closely related to a traditional factor representation with idiosyncratic and systematic errors

(GOF-GARCH). Silvennoinen and Teräsvirta (2009) pointed out that the GOF-GARCH model can

be seen as combining the advantages of both the factor models (which have a reduced number of

heteroskedastic factors) and the orthogonal models (which have relative ease of estimation because

of the orthogonality of factors). Similar advantages can be obtained by a factor representation of the

DPC model. Let Vt and Zt denote, respectively, the N �M and N �pN �Mq matrices obtained by

collecting the first M and last N �M columns of Lt. M is the number of the unconditionally most

volatile components that can explain a given (large) amount of unconditional volatility. Suppose

that the last N � M components are conditionally homoskedastic (i.e., αi � βi � 0 for i �
M � 1,M � 2. . . . , N). The DPC model can be written as

yt � Vt ξt � εt, (12)

where ξt � ru1,t, . . . , uM,ts1, and εt � ZtruM�1,t, . . . , uN,ts1. The vector ξt can be seen as a vector

of conditionally heteroskedastic factors. The vector εt, which is conditionally orthogonal to the

factors, can be interpreted as a vector of idiosyncratic errors. If the loading process is constant

(i.e., if a � b � 0), the model coincides with a static GARCH(1,1) factor model with a constant

orthogonal weight matrix and a reduced number of idiosyncratic errors (Lanne and Saikkonen

2007). This model closely parallels the GOF-GARCH model. The basic difference is in the matrix’s

mapping of the factors to the asset returns: in the GOF-GARCH model this matrix comes from

the polar, rather than spectral, decomposition of the second moment. Allowing for time-varying

weights (i.e., for a ¥ 0 and b ¥ 0) is a natural extension of the constant weight model.
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2.6 Extension and structural properties

This section demonstrates that, under usual conditions, the columns of L are the eigenvectors of

the stationary second moment of yt, or

S̄ � LD̄L1, (13)

where D̄ is diagonal. We refer to this property as the loading targeting of the DPC model. The

loading targeting can be equivalently expressed by stating that the vector

ūt � L1yt, (14)

is the vector of the unconditional principal components (unconditional components hereafter) of yt.

Taking advantage of the loading targeting, we can replace the OpN2q term of the DPC parameteri-

zation in (4) and (6): those corresponding to the eigenvectors of S, by means of the eigenvectors of

the asset’s sample covariance matrix. The remaining model parameters, which we have to estimate

- the eigenvalues of S, the loading dynamic parameters, and the component volatility parameters -

are jointly OpNq, thus avoiding the curse of dimensionality. Before proving the loading targeting,

it is convenient to extend (4) in order to allow for more flexible loading dynamics. Let us set

Qt � pS �ASA1 � BSB1q �Ayt�1y
1
t�1A1 � BQt�1B1, (15)

where

A � LAL1, B � LBL1, (16)

A � diagp?a1,
?
a2, . . . ,

?
aN q, B � diagp

a
b1,

a
b2, . . . ,

a
bN q. (17)

Equation (15) looks like a Full BEKK(1,1,1) recursion with restricted parameter matrices (Engle

and Kroner 1995). The restrictions included in the constraints (16-17) act on the dynamic parameter

matrices and give a peculiar expression of the intercept term.

Assumption 2.6.1. In equation (15), Q0 is PD, S is PD, ai ¥ 0, bi ¥ 0, and ai � bi   1, for

i � 1, . . . , N.

Clearly, the intercept ofQt can be re-written as LpD�ADA�BDBqL1. Therefore, under Assumption
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2.6.1, the intercept of Qt is PD, ensuring that Qt is PD (Engle and Kroner 1995) and that the SDs

of Qt exist. The dynamic parameter restrictions required by Assumption 2.6.1 are easy to impose.

On the other hand, the PD constraints that would be required on a traditional Full BEKK equation

with targeting would imply a non-linear (quadratic) function of the elements of A and B.11 The

following definition is based on the general specification just introduced:

Definition 2.6.1. The model defined by equations (3), (5), (8), and (15-17) and Assumptions

2.1.2, 2.1.3, 2.2.1, and 2.6.1 is called the DPC model.

By setting ai � a and bi � b, for i � 1, 2, . . . , N, we obtain the Scalar DPC model. We can then

derive the structural properties of the DPC model.

Proposition 2.6.1. Stationarity. In the DPC model (see def. 2.6.1), suppose that: i) the pro-

cess yt starts infinitely far in the past; ii) ui,t � d
1{2
i,t zi,t, where the processes tzi,tut��8,�8, for

i � 1, 2, . . . , N, are iid with zero mean and unit variance and mutually independent; and iii)

Erlogpαiz2
i,t � βiqs   0, for i � 1, 2, . . . , N. Then yt is strictly and weakly stationary.

Proof. See Appendix D.

Given the mutual independence of the components, the stationarity of the univariate component

processes is the essential element for the stationarity of the vector process yt. We focus on a simple

GARCH(1,1) case, but the extension of the proof to other GARCH specifications for the components

is straightforward, provided that the univariate independent processes, pdi,t, ui,tq, for i � 1, 2, . . . , N,

are strictly and weakly stationary. (See the proof of the proposition.) Conditions for strict and

weak stationarity of several univariate GARCH specifications adopted in practice can be found in

Francq and Zaköıan (2010) and elsewhere. We also consider the introduction of targeting in the

loading-driving process.

Proposition 2.6.2. Loading targeting. In the DPC model (see def. 2.6.1), suppose that the

assumptions of proposition 2.6.1 hold. In addition, suppose that the conditional distribution of zi,t

is symmetric for i � 1, 2, . . . , N. Then the columns of L are the eigenvectors of S̄ � E ryty1ts .
11A restriction strategy of the Full BEKK parameter matrices similar to (15-16) was first suggested by Noureldin

et al. (2014).
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Proof. See Appendix D.

The proof of the proposition uses symmetry arguments. The extension to the general case of

GARCH specification of the components is straightforward provided that di,t does not depend on

the sign of zi,t�m, m � 1, 2, . . .. (See the proof of the proposition.) The latter condition rules out,

for example, the possibility of asymmetry/leverage effects in the component variance equations.

However, for the loading targeting to hold, the assumptions of the proposition are only sufficient,

not also necessary. By modelling the loading-driving process as a restricted Full BEKK(P,Q,K)

recursion, we obtain a general extension of the DPC model:

Qt � C �
Q̧

q�1

Ķ

k�1

Aq,k tyt�qy
1
t�quA1q,k �

P̧

p�1

Ķ

k�1

Bp,kQt�p B1p,k, (18)

C � S �
Q̧

q�1

Ķ

k�1

Aq,k SA1q,k �
P̧

p�1

Ķ

k�1

Bp,k S B1p,k. (19)

Aq,k � LAq,kL
1, Bp,k � LBp,kL

1, (20)

where Aq,k � diagp?aq,k,1,
?
aq,k,2, . . . ,

?
aq,k,N q, Bp,k � diagpabp,k,1,

a
bp,k,2, . . . ,

a
bp,k,N q, 0 ¤

aq,k,i   1, 0 ¤ bp,k,i   1, for q � 1, 2, . . . ,Q, p � 1, 2, . . . ,P, k � 1, 2, . . . ,K, i � 1, 2, . . . , N. In this

general model, we can easily verify that Qt id PD by construction. Moreover, by P � Q � K � 1,

the model in (18)-(20) yields the DPC model.

2.7 Representation in terms of unconditional components

The DPC model has the following equivalent representation:

yt � Lūt, ūt � L̄tut, (21)

where L̄t is the eigenvector matrix of Q̄t,

Q̄t � pD �ADA�BDBq �Aūt�1ū
1
t�1A�BQ̄t�1B, (22)

Q̄0 � L1Q0L is PD, and ut is defined as in (8). In computing the SD of Q̄t, we must consider the

following uniqueness conditions, which are coherent with those in Assumption 2.1.3:

17



Assumption 2.7.1. The eigenvalues of Q̄t are arranged in strictly decreasing order; the sign of the

associated eigenvectors is such that the diagonal elements of L̄t are positive.

The loading-driving process and the conditional loadings are reconstructed as Qt � LQ̄tL
1 and

Lt � LL̄t, respectively. The matrices Qt and Q̄t share the same eigenvalue matrix; see equation (5).

In fact, the right-hand side of

Q̄t � L1QtL � L1LtGtL
1
tL � L̄tGtL̄

1
t (23)

is the SD of Q̄t computed under the identification conditions in Assumption 2.7.1. Noting that

the CCM of ūt is L̄tDtL̄
1
t, we have that the unconditional components follow a Diagonal DPC

model with loading-driving process given by Q̄t and a conditional loading matrix given by L̄t. The

diagonality restriction imposes a diagonal form for the intercept and for the dynamic parameter

matrices of Q̄t. Thus, the DPC model of yt can be seen as a rotation of the Diagonal DPC model

of the unconditional components of yt, where the rotation matrix is L. The representation in (21)-

(22) extends straightforwardly to the case of the general model in (18)-(20). A special case of the

resulting specification is the Diagonal VECH form of Q̄t, which can be written in Hadamard form

as

Q̄t � pιι1 �
Q̧̄

q�1

Āq �
P̧̄

p�1

B̄pq dD �
Q̧̄

q�1

Āq d tūt�qū
1
t�qu �

P̧̄

p�1

B̄p d Q̄t�p,

where ι is the N � 1 vector of unit elements, and d denotes the element-wise matrix product. If

the intercept and the parameter matrices are PD, Q̄t is PD (Ding and Engle 2001).

3 Estimation and specification testing

3.1 Joint and two-step Quasi-Maximum-Likelihood

When discussing the estimation strategy, we focus on the DPC model of Definition 2.6.1. Let ψ

denote the vector that stacks the diagonal elements of A and B. Recalling that A � LAL1 and

B � LBL1, where L is the eigenvector matrix of S, we parameterize the model of the conditional

loadings in terms of pS, ψq. The SD of the loading-driving process evaluated at pS, ψq is denoted as

QtpS, ψq � tLtpS, ψquGtpS, ψqtLtpS, ψqu1,
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under the identification conditions 2.1.2 and 2.1.3. The CCM of the components evaluated at

pS, ψ, φq is denoted as DtpS, ψ, φq, where φ � pφ1, φ2, . . . , φN q, φi � pαi, βiq, i � 1, . . . , N. The

parameter pS, ψq enters DtpS, ψ, φq through the eigenvalue matrix of S, or D, whose diagonal ele-

ments are the unconditional variances of the components, and ut � utpS, ψq � tLtpS, ψqu1yt. See

Assumption 2.2.1 and equations (3) and (8). Finally, the model of the CCM is written as

HtpS, ψ, φq � tLtpS, ψquDtpS, ψ, φqtLtpS, ψqu1.

Given our semi-parametric specification, we suggest the use of a QML approach for the estimation of

the DPC model parameters. Taking into account that tLtpS, ψqu�1 � tLtpS, ψqu1, and |LtpS, ψq| �
�1, the DPC quasi-log-likelihood (QLL) can be written as

LT pS, ψ, φq �
Ņ

i�1

#
1

2

Ţ

t�1

N log 2π � log di,tpS, ψ, φq � u2
i,tpS, ψq{di,tpS, ψ, φq

+
, (24)

where the right-hand side is the sum of the components’ (univariate) QLLs. The number of pa-

rameters entering the QLL is NpN � 1q{2� 2N � 2N, where NpN � 1q{2 is the number of distinct

elements of S, 2N is the number of diagonal elements in A and B, and 2N is the number of compo-

nent volatility parameters. If the number of assets is small, the parameters can be estimated jointly

via QML, and standard errors can be computed by means of the usual sandwich formula (e.g.,

Bollerslev and Wooldridge 1992).12 For three reasons the QML estimation with more than a few

assets becomes difficult. First, as is common in the MGARCH framework because of the presence

of the OpN2q intercept term, the number of model parameters increases rapidly with the number

of assets. This problem can be alleviated, at the cost of efficiency, by replacing the eigenvectors of

S with the eigenvectors of Ŝ, the sample (unconditional) covariance matrix. Such a replacement

is consistent with the loading targeting previously introduced. The remaining model parameters

(i.e., the eigenvalues of S and pψ, φq) can be estimated in a second step via QML with a param-

eter number of order OpNq. The standard errors for the second step, adjusted for the first step,

can be computed following Newey and McFadden’s (1994) and Pagan’s (1986) method-of-moments

approach. See Noureldin et al. (2014), among others, for empirical applications. Second, the esti-

12The bivariate estimation outputs in sections 2.3 were obtained using such an approach.
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mated loading process is typically highly persistent, in which case S is poorly identified from the

data. This is particularly evident in the case of the Scalar DPC model, where, for a�b � 1, the scale

factor p1�a�bq, that multiplies S in the intercept term is close to zero. However, this identification

problem is not peculiar to the DPC model; it also affects, for example, the joint estimation of the

BEKK model’s parameters in the variance-targeting re-parameterization when the volatility process

is highly persistent. Similar problems usually affect all models that have a targeting-like intercept,

including Engle’s (2002) DCC model. Third, the QLLs of both the joint and the two-step QML

estimators, though regular, are highly multimodal, which makes it difficult to maximize the QLL by

means of standard gradient-based algorithms. In fact, with more than a few assets, the probability

of nearly coincident eigenvalues of Qt for some t increases rapidly, making the computation of Qt’s

eigenvectors unstable. Even though maximization of the QLL can be addressed via gradient-free

optimizers like the Nelder-Mead simplex method (Nelder and Mead 1965), computing standard er-

rors remains difficult. Alternatively, the approach suggested by Paolella and Polak (2014) could be

adopted, but computational time can easily explode.

3.2 Large-scale estimation: The DPC estimator

We suggest a three-step procedure as a solution to the numerical problems that arise when using

(possibly two-step) QML estimators for the DPC model parameters with more than a few assets.

We call this procedure the DPC estimator. The idea behind the DPC estimator stems from the

empirical fit of Qt, which we interpret to be a misspecified CCM of the asset returns. Then, the

eigenvectors of Q̂t are used as estimators of the conditional loadings. Therefore, the components

are estimated as ût � L̂1tyt, where L̂t is the eigenvector matrix of Q̂t. Finally, the GARCH models of

the components are fitted to the elements of ût one at a time. Since Qt is not usually the CCM of

the asset returns, L̂t can be inconsistent. However, if L̂t is a good estimate of the loading process,

the null hypothesis that the elements of ût are conditionally orthogonal should not be rejected. The

next section provides further insight on this aspect and introduces a test that serves as a tool for

model specification. Let Ŝ denote the assets sample covariance matrix. Its spectral decomposition

is

Ŝ � L̂D̂L̂1,
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where D̂ � diagpd̂1, . . . , d̂N q. The uniqueness is ensured by an identification condition similar to

that in Assumption 2.1.2. The DPC estimator is then defined as follows.

Definition 3.2.1. DPC estimator

(1) Estimate S with Ŝ;

(2) conditional on step 1, estimate pA,Bq, fitting a BEKK model by QML methods, and recover the

Qt sequence;

(3) conditional on steps 1-2, for i � 1, . . . , N estimate pαi, βiq via univariate QML.

Remark 3.1. Step (1) implies that the eigenvectors and the eigenvalues of S are replaced by

the eigenvectors and the eigenvalues of Ŝ. Since the eigenvectors of S are equal to the eigenvectors of

S̄ (loading targeting), the eigenvectors of Ŝ are consistent estimators of the eigenvectors of S. Since

the eigenvalues of S are not usually equal to the eigenvalues of S̄, step (1) may be inconsistent,

although the inconsistency is, at most, OpNq, (not OpN2q). The joint and two-step estimators

in the previous section do not suffer from this inconsistency problem, as they do not replace the

eigenvalues of S with the eigenvalues of Ŝ; instead, they estimate the eigenvalues.

Remark 3.2. Conditional on step (1), step (2) may be inconsistent because, even for known

pS,A,Bq, the matrix Qt is not usually the CCM of yt. However, since A and B are diagonal, the

inconsistency is, at most, OpNq, and in the Scalar DPC model, the inconsistency is, at most, Op1q.
Therefore, the appropriateness of steps (1) and (2) must be evaluated by means of the test intro-

duced in the next section.

Remark 3.3. Because of the orthogonality of the components, conditional on step (2), step

(3) coincides with the joint QML estimator of the components’ GARCH(1,1) dynamic parameters,

so it is QML-efficient. Conditional on step (2), the asymptotic properties of step (3) follow as a

direct consequence of the univariate QML estimator of the dynamic parameters of the GARCH(1,1)

model’s asymptotic properties. (See Lee and Hansen 1994, Lumsdaine 1996, Berkes et al. 2003,
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Berkes and Horvàth 2003 and 2004, Francq and Zaköıan 2004, and Boussama et al. 2011).

Remark 3.4. The conditioning of step (2) on step (1) implies that Ŝ and L̂, replace S and L

in (15) and (16), respectively. The conditioning of step (3) on step (2) implies that ui,t and di are

replaced by the corresponding estimated BEKK quantities. Therefore, if L̂t denotes the eigenvector

matrix of the estimated BEKK CCM, computed under the identification condition in Assumption

2.1.3, the components are replaced by the elements of ût � L̂1tyt, and di is replaced by d̂i, for

i � 1, 2, . . . , N.

Remark 3.5. Steps (1) and (2) coincide with the variance-targeting QML estimator of the

BEKK model Et�1ryty1ts � Qt. The univariate estimations at step (3) are two-step QML GARCH(1,1)

estimators of the dynamic conditional variance parameters, where the first step consists of replacing

the GARCH(1,1) intercept term di with d̂i, the i-th eigenvalue of Ŝ.

Remark 3.6. Since we replace S with Ŝ, any problem associated with the identification of S

when the loading process is near integrated is circumvented.

Remark 3.7. The QLLs that are maximized at steps (2) and (3) are smooth, so they can be

efficiently maximized by standard gradient-based optimizers likes Newton-Raphson optimizers.

Remark 3.8. In the case of the Scalar DPC model, the DPC estimator reduces to N � 1 Op1q
estimations, where only the estimation of the dynamic loading parameters requires matrix inversions.

Remark 3.9. If A � B � 0 (OGARCH model), step (2) is not required. In this case, the DPC

estimator is similar to the two-step OGARCH estimator. The only difference is that the compo-

nents’ univariate GARCH(1,1) models are estimated via two-step variance-targeting QML, rather

than via joint univariate QML.13 The sample variances of the estimated components are given by

the eigenvalues of Ŝ. Since with the OGARCH model the sample variances of the estimated com-

13Francq et al. (2011) showed that, if the model is misspecified, the variance-targeting estimator of the GARCH(1,1)
model can be superior to the QML estimator for long-term prediction or Value-at-Risk calculation.

22



ponents are given by the eigenvalues of Ŝ, Step (1) is consistent because S coincides with S̄.

The DPC estimator is attractive because of its intuitiveness and because the three steps coincide

with estimators that are widely used in practice. Given any code for MGARCH estimations, a few

minor changes will suffice to allow the DPC estimator to be computed. Alternatively, the DPC

estimator can be computed from the representation in terms of unconditional components as follows.

(See section 2.7.)

(a) estimate the unconditional components as ũt � L̂1yt;

(b) conditional on step (a), estimate pA,Bq by fitting the BEKK model Et�1rūtū1ts � Q̄t via QML,

subject to variance targeting;

(c) conditional on steps (a) and (b), estimate the component volatility parameters, pαi, βiq, for

i � 1, . . . , N, via univariate QML.

The conditioning of step (b) on step (a) implies that ūt in (22) is replaced by ũt. The variance

targeting at step (b) implies that D in (22) is replaced by D̂. The conditioning of step (c) on steps

(a) and (b) implies that ut in (8) is replaced by ût � L̃1tũt, where L̃t is the eigenvector matrix of the

estimated Q̄t provided by step (b), and that di in (8) is replaced by d̂i. In computing the SD of the

estimated Q̄t, identification conditions similar to that in Assumption 2.7.1 are applied. By loading

targeting, step (a) is consistent. Step (b) is potentially inconsistent because i) D is not, in general,

the second moment of ūt, and ii) even for known pD,A,Bq, the matrix Q̄ is not usually the CCM

of ūt. With the OGARCH model,step (b) coincides with the replacement of di by d̂i.

Following Engle (2009), we derive an approximate asymptotic distribution for the DPC estimator by

focusing on the method-of-moments framework. (See Newey and McFadden 1994 and Pagan 1986).

The moment conditions for the t-th observation are given by mtpθq � rm1
S,t,m

1
ψ,t,m

1
φ,ts1, where θ �

rvechpSq1, ψ1, φ1s1, mS,t � vechpS�yty1tq, mψ,t � pB{BψqLtpS, ψ, φq, andmφ,t � pB{Bφq°N
i�1 Li,tpS, ψ, φiq,

where LtpS, ψ, φq is the contribution to the joint DPC QLL by the t-th observation, and Li,tpS, ψ, φiq
is the t-th contribution to the joint DPC QLL by the i-th component; see equation (24). Assuming

that, at the true parameter values,

Et�1rmt pθqs � 0, (25)
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under standard regularity conditions, as T Ñ8 we have

?
T pθ̂ � θ0q dÝÑ Np0, I�1J I 1�1q,

where

J � V AR

�
1?
T

Ţ

t�1

mtpθ0q
�
, I � E

� B
Bθmtpθ0q

�
.

The estimation of J requires an HAC estimator. (See, e.g., Newey and West 1987). The upper

left block of I, corresponding to vechpSq, is simply �2INpN�1q{2. In practice, using the OGARCH

model does not require second step, as only the relevant moment conditions are considered in the

construction of mt pθq . Since the OGARCH model is a BEKK model, for the OGARCH model,

Assumption (25) holds (Bollerslev and Wooldridge 1992). In the general case, Assumption (25)

could be misspecified because of the first two blocks of the moment conditions. (See remarks (3.1

and 3.2)). The third block is correctly specified. (See remark 3.3.) However, since the third step

estimator depends on the previous steps, the third step estimator could also be inconsistent. This

problem does not affect the joint and two-step estimators. (See remark 3.1.)

To verify the small sample performances of the DPC estimator we conduct a Monte Carlo study.

The data-generating process takes Gaussian innovations and simulates the Scalar DPC model for

different cross-sectional dimensions. We set the latter to N � 2, 3, 5, 10, 30, while for the series

length we consider T � 500, 1000, 1500. Moreover we define the loading dynamic parameters by

combining a � .005, .01, .02, .03, .05, .09, with b � 0, .90, .94, .95, .97, .98, .99 and excluding the pairs

pa, bq, such that a� b ¥ 1. The GARCH dynamic parameters have been extracted from a set of 30

pairs of α and β kept fix for all the cross-sectional sizes. The model unconditional covariance has

been set equal to the unconditional covariance of the 30-asset empirical dataset described in Section

(4.2). For each value of the set pN,T, a, bq, we perform 500 replications to take a balance between

computational time and the large number of parameter combinations. On each simulated series

we estimate the Scalar DPC model. Tables with Biases and Mean Squared Errors are available

upon request. They suggest a proper convergence to the true parameter values, and a presence of

limited distortions on the parameter a that increase with a going to zero and a � b approaching

one. Therefore, the consistency problems we previously highlighted are present but have a reduced

impact.
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3.3 Testing for correctly specified conditional loadings

The main innovation of the DPC modeling framework is the introduction of dynamic loadings.

However, despite the intuition in Ding and Engle (2001), there are no theoretical reasons to exclude

the possibility of empirical data that is characterized by constant loadings. To allow one to dis-

tinguish between those two possibilities, we introduce a test designed to detect the null hypothesis

of constant conditional loadings against an alternative hypothesis of dynamic conditional loadings.

More generally, we test for possible misspecifications of the conditional loadings dynamic. Loading

misspecifications might also arise as a product of the multi-stage estimation approach because of the

potential inconsistency of the first two stages, and the test also sheds light on this issue. The testing

approach we suggest mimics Engle and Sheppard’s (2001) test for dynamic conditional correlations.

We start by introducing a test that is robust to misspecifications in the components’ conditional

variances. Under the null hypothesis of correctly specified conditional loadings, the cross-product

of the components has a conditionally zero mean at the true loading parameter values, that is,

Et�1rui,tuj,ts � 0, for i � j � 1, 2, . . . , N. Let Ut denote the NpN � 1q{2 � 1 vector, stacking the

distinct cross-products of the components evaluated at the true parameter values. Moreover, the

process Ut is orthogonal to any function of It�1, given the construction of a loading dynamic that

is conditional on the past. Therefore, we introduce a test by considering the following system of

equations

Ut � δ0 � δ1Ut�1 � � � � � δKUt�K � ξt, (26)

where δ0, δ1, . . ., δK are scalar parameters and ξt is a heteroskedastic innovation process.14 Under

the null hypothesis of a correctly specified loading process, the intercept and all the model param-

eters in the regression should be zero. In order to estimate the test statistic, for each element in

Ut, υi,t � uj,tul,t, i � 1, 2, . . . pNpN � 1q{2, j � l, and j, l � 1, 2, . . . N , we need the T � 1

vector, containing the cross-product time series, and the T � pK � 1q matrix of explanatory vari-

ables (including the constant), containing lags of the cross-product. Then the parameters can be

estimated by stacking the NpN � 1q{2 univariate equations and performing a restricted, seemingly

unrelated regression.15 The test statistic, which is of a Wald-type, verifies the null hypothesis of

14Heteroskedasticity is a certainty, given that conditional components are heteroskedastic.
15The underlying SURE model is a restricted one since the parameters are common across equations.
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zero coefficients in the auxiliary regression (26), where a heteroskedasticity consistent estimator

(White 1980) is required for the covariance matrix of the estimated coefficients.16 Under the null

hypothesis, the test statistic asymptotically follows a chi-square distribution with K � 1 degrees of

freedom. However, the asymptotic distribution might deviate from a chi-square distribution since

we replace the vector of conditional components, ut, with the estimated conditional components,

ût � L̂tyt, where L̂t is the estimated conditional loading matrix. We analyzed this possibility by

means of Monte Carlo simulations. In order to verify the null hypothesis of constant conditional

loadings, we set L̂t � L̂, where L̂ is the vector of unconditional loadings. Therefore, rejection of

the null hypothesis will signal the presence of misspecification in the loadings, as the conditional

components are not conditionally orthogonal, thus calling for the introduction of dynamism in the

loadings. The rejection of the null hypothesis of correct model specification - the test focuses on

estimated conditional components - can be due both to an incorrect model specification and to

the presence of inconsistency in the first two stages of the DPC estimator. On the other hand, if

the test does not reject the null hypothesis, then the model is correctly specified and there are no

biases that are due to inconsistency. Under the null hypothesis, inconsistency problems arise only

when the DPC estimator is used. However, those problems but are not present under the joint

estimation of all model parameters. In addition, the test performances are not affected by incon-

sistency issues when one tests for constant conditional loadings, as the components are estimated

from an OGARCH model. The test does not depend on the components’ volatility, so it is robust

to misspecifications of the components’ conditional variances.17 For this reason, we label robust

the test in (26). Even though less efficient than other, more sophisticated procedures, our testing

approach is simple to compute and is viable in most econometric software. Notably, if it is used in

testing the null hypothesis that a � b � 0 in the DPC loading-driving process, our test circumvents

the difficulties that arise when testing for parameters that are on the boundary and/or are not

identified18 (Andrews and Ploberger 1994). Following Engle and Sheppard (2001), we design an

16The White estimator is needed due to the potential heteroskedasticity of components.
17Heteroskedasticity is taken into account in the computation of the test statistic’s parameters covariance matrix

by means of White-type standard errors.
18If a � 0, the parameter b in Qt is not identified.
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alternative test by replacing Ut in the auxiliary regression (26) with the NpN � 1q{2 vector

Ũt � vechpztz1t � IN q,

where zt � D
�1{2
t L1tyt is the vector of the variance standardized conditional components. Since

zt has, by construction, a conditionally zero mean with covariance matrix IN , the vector Ũt is

orthogonal to any function of It�1. However, the resulting test depends on the models adopted

for the conditional components variances, which might be misspecified. Even if the components

conditional variances are correctly specified, the power of the test is likely to be affected by the

need to replace Dt with an estimate. Given that the test is not robust to conditional component

variance misspecification, we label it non-robust. We conduct a Monte Carlo study to assess the size

and power of the robust and non-robust tests of constant conditional loadings proposed above. We

set the data-generating process to a Scalar DPC model with Gaussian innovations, the same adopted

to analyze the QML estimator small sample performances. We thus consider five cross-sectional

dimensions, setting N � 2, 3, 5, 10, 30. For the loading dynamic parameters we consider the set of

pairs obtained by combining a � 0, .005, .01, .02, .03, .05, .09, with b � 0, .90, .94, .95, .97, .98, .99 and

excluding the pairs pa, bq, such that a � 0 or b � 0 and a � b ¥ 1. For each value of the triple

pN, a, bq, we generate 500 samples of length T � 1000. Then we estimate the OGARCH model on

each simulation and test for dynamics in the loadings. For the robust test only we run a similar

experiment with T � 1500 and N � 2, 3, 5, 10, 30, where 1500 is the length of the rolling window

size of the large dataset used in the empirical analysis section. Table 2 reports the percentages

of rejections for the null hypothesis of constant conditional loadings at the nominal 5% confidence

level. The rejection frequency for the pair pa, bq � p0, 0q gives the size of the test,19 while all other

frequencies evaluate the test’s power. Given the size of the two tests, the non-robust test size

worsens with increasing cross-sectional dimension. The size, which is close to the nominal level

in the five-asset case, then increases, reaching an unacceptable 31.6% with thirty assets. For the

robust test, the size is below the nominal level only for the N � 2 case, and it increases with the

cross-sectional dimension ad for the non-robust test. However, the robust test performs much better

than the non-robust test, with rejection frequencies always below 10%. For both tests the cross-

19In that case, the DGP collapses on the OGARCH model.
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sectional dimension has a relevant impact on performances. In fact, results become acceptable for

some parameter designs beginning when the simulations involve five assets. There is also a difference

between the robust and non-robust tests, with the latter having generally better performances; the

robust test is better only for small cross-sectional dimensions. However, the two tests have similar

power when the ARCH coefficient is not too small; otherwise there is a clear preference for the

non-robust test. As expected, the test power improves with the sample size. Finally, the deviations

from the expected rejection rate might be due to the deviation of the test asymptotic distribution

from the chi-square density. In summary, considering that ARCH coefficients below 0.03 are not

common in the empirical analyses, we think that the robust test presents a good compromise in

terms of size and power. Therefore, we consider only this test in the following sections’ simulations

and empirical examples. The previous simulations assessed the test performances by evaluating

the size under an OGARCH data-generating process. However, we are also interested in the test

outcomes when we estimate the correctly specified model using a DPC data-generating process.

Table (3) reports the rejection frequencies of the test when the data-generating process is the Scalar

DPC of the previous simulation. We set the sample size to T � 1000 and use only the robust test.

The rejection frequencies worsen with increasing cross-sectional dimensions, in particular for values

of the ARCH coefficient a above 0.03 and the GARCH coefficient above 0.98. Nevertheless, the

test performances are acceptable for parameter combinations, suggesting a high level of persistence

and a not-small impact of innovations on the loading dynamic. Therefore, we believe that the test

provides accurate results in the empirical analyses. Moreover, as the test performances of Table (3)

are overall acceptable, inconsistency issues, if present, have a limited impact on the model fit.

In order to shed further light on the model performances, we also fit a Full DPC on the simulated

Scalar DPC series on casesN � 2, 3, 5, 10. (The case withN � 30 is excluded as too computationally

demanding.20) Results are reported in Table (3). Test performances improve slightly, given the

additional flexibility of the loading dynamic. We conclude the simulation experiments by assessing

the tests’ performances in detecting the model misspecification, so we conduct simulations under

a Full DPC with cross-sectional dimensions N � 2, 3, 5, 10, 30 and sample size T � 1000. We

20The computational burden of this test comes from the parameter estimation of the loading dynamic. In fact,
the loading-driving process corresponds to a diagonal BEKK with 60 free parameters. Although the single model
estimation is feasible, the computational complexity increases if we consider the replication number (500) and the
twenty-one specifications we consider for the loading parameters in the DGP

28



randomly generate the loading dynamic parameters and impose a number of persistence levels; that

is, for a given data-generating process, we impose that ai � bi � p for all i � 1, 2, . . . , N , with ai

extracted from a uniform density U p0.005, 0.2q (and bi � p � ai). We consider three persistence

levels p � 0.90, 0.95, and 0.99. Table (4) reports the results that are associated with the estimation

of both a misspecified Scalar DPC and the correctly specified model. As expected, for small cross-

sectional dimensions, the rejection frequencies of the misspecified model and the correctly specified

model are close. However, increasing the values of N improves the test’s ability to detect model

misspecification with a high level of persistence. Nevertheless, results still suggest a lack of power

with large cross-sectional dimensions.

3.4 Explained-variance-based restrictions

In the DPC framework a natural restriction strategy consists of imposing common volatility dy-

namics on the less volatile components, which we call explained-variance-based, or EV-based, re-

strictions. This strategy is implemented by setting pαi, βiq � pαj , βjq for i, j ¡M , where M can be

either selected a priori or determined by means of a model-selection criterion (e.g., BIC or AIC).

The next section includes among the possible specifications a DPC model with M � 3 in an example

with thirty assets. With respect to the unrestricted model, reducing the number of dynamic com-

ponents’ conditional variance parameters from 2N to 2M � 2 provides a computational advantage.

By the orthogonality of the components and conditional on steps (1) and (2), the common volatility

parameters can be efficiently estimated by maximizing the sum of restricted components’ univariate

QLLs. In addition, if the common dynamic parameters are set to zero, αi � βi � 0 for i, j ¡M , we

get a Factor DPC model with M factors. (See Section 2.5 for details on this specification.) In this

case, step (3) reduces to running M univariate GARCH estimations. The EV-based restrictions can

be combined with other restriction strategies. Following Hafner and Franses (2009), we can impose

common smoothing by setting βi � β for all i. Noureldin et al. (2014) provide evidence that com-

mon persistence (CP) can improve on common smoothing. In the DPC model, the CP restriction

is implemented by setting βi � λ � αi for i � 1, 2, . . . , N, where 1 ¡ λ ¥ maxtαiu. In that case,

λ is the CP shared by the conditional volatilities of the components. If we impose CP, step (3) of

the DPC estimator can no longer be split into N separate univariate maximizations. However, the

maximization of the objective function can be significantly simplified by concentrating out the αi
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from the sum of the components’ QLLs. The concentrated log-likelihood thus becomes a function

of the CP parameter only. For the fixed CP parameter, concentrating out the αis reduces the model

complexity, leading to a collection of N scalar maximizations that are free from matrix inversions.

Conditional on steps (1) and(2) of the DPC estimator, the estimated CP parameter and the final

estimates of the αis coincide with the component volatility parameters’ joint QML estimates under

CP.

4 Empirical comparisons with competing models

This section compares the empirical performances of the Scalar DPC model with that of the OG-

ARCH, Scalar BEKK, CCC, and DCC models. It also considers the Corrected DCC (cDCC)

model from Aielli (2013) and the related three-step estimation procedure.21 We include the DCC

model in the comparison because of its similarities with the DPC framework in terms of mod-

elling strategy and with its three-step large-scale estimator (DCC estimator). In its scalar version

the DCC is the natural competitor of the Scalar DPC. In the DCC model an auxiliary process

(the correlation-driving process) is introduced to capture the relevant features of the underlying

correlation dynamics. In its simplest specification, the Scalar DCC model (or DCC model), the

correlation-driving process is defined as a Scalar BEKK recursion:

Qt � p1� a� bqS � a εt�1ε
1
t�1 � bQt�1, (27)

where Q0 is PD, S is PD with ones on the main diagonal and a ¥ 0, b ¥ 0, a � b   1, and

εt � Σ
�1{2
t yt is the vector of the univariate GARCH(1,1) standardized returns.22 The conditional

correlation matrix is computed as Rt � Q��1
t QtQ

��1
t , where Q�

t � diagp?q1,1,t, . . . ,
?
qN,N,tq. The

CCM is reconstructed as Ht � Σ
1{2
t RtΣ

1{2
t . Setting a � b � 0 yields Bollerslev’s (1990) CCC model,

21Several MGARCH models that are related in various ways to the DPC model are not compared with the DPC
model because of the feasibility and/or dis-homogeneity of their feasible estimators with respect to the DPC approach.
Among others, we recall van der Weide’s (2002) and Boswijk and van der Weide’s (2011) GO-GARCH model, the
Lanne and Saikkonen’ (2007) GOF-GARCH model, the Fan et al.’s (2008) Conditional Uncorrelated Components
(CUC) model, and Vrontos et al.’s (2003) Full Factor GARCH model. These models have a common feature in
that they are all linear combinations of univariate orthogonal GARCH processes, where the linear map between the
orthogonal processes and the asset returns can be partially recovered from unconditional information. See Bauwens
et al. (2006) and Silvennoinen and Teräsvirta (2009) for details.

22For economy of notation, we use a unique symbol to denote quantities that play analogous roles in the DCC and
DPC specifications.
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where Rt � S at each point in time. The first step of the DCC estimator is the estimation of the

asset-conditional variances via univariate QML. To maintain a fair comparison with the DPC, we

specify the conditional variances as GARCH(1,1). In the second step, the sample correlation matrix

of the variances’ standardized returns replaces the matrix S. Finally, in the third step, the dynamic

correlation parameters are estimated via QML, conditional on the previous steps. The DCC and

DPC estimators have a common motivation: simplifying (or making feasible) the estimation of

large systems. Both estimators involve the estimation of NpN � 1q{2 location parameters,23 plus

two dynamic parameters for the auxiliary process plus two dynamic parameters for each of the N

univariate volatility processes. If we focus on the number of estimated parameters in each of the

steps, we have a sequence of OpN2q - Op1q - OpNq parameters with the DPC estimator and OpNq -

OpN2q - Op1q with the DCC estimator. As we noted in Section 3.2, the steps (1) and (2) of the DPC

estimator might be affected by the inconsistency problems of OpNq parameters. This shortcoming

could be compensated for in terms of empirical performances by the conditionally QML-efficient

step (3), which has order OpNq. On the other hand, with the DCC estimator, the inconsistency

of step (2), which has order OpN2q (Aielli 2013), is followed by a conditionally QML-efficient step

(3), which has a typical size of Op1q. With the DPC estimator there is more flexibility in the third

step compared to the DCC estimator. This allows mitigating the inconsistency affecting the first

two steps. If one allows for feasible OpNq-order step (3) estimations in the DCC estimator via, for

example, composite likelihood (Engle et al. 2009), step (3) is no longer QML-efficient conditional

on steps (1) and (2). Aielli (2013) suggested replacing the DCC correlation-driving process with a

proper Scalar BEKK model, defined as Et�1rε�t ε�1t s � Qt, where

Qt � p1� a� bqS � a ε�t�1ε
�1
t�1 � bQt�1 (28)

(Corrected DCC, or cDCC, model). By construction, it holds that ε�t � Q�
t εt. The large-scale

estimation of the cDCC model is carried out using a three-step profile estimation strategy that is

computationally equivalent to the DCC estimator (cDCC estimator). Under a correctly specified

model, the cDCC estimator solves the inconsistency problem of the DCC estimator’s step (2).

23In the DPC model the location parameters are the NpN � 1q{2 lower triangular elements of S; in the DCC model
the location parameters are the NpN � 1q{2 lower off-diagonal elements of S plus the N -asset GARCH intercepts. In
the Scalar DCC model, the diagonal elements of S are 1.
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4.1 A simulation study

We assess the performance of the DPC model under misspecification by running a bivariate simu-

lation experiment similar to that proposed Engle (2002) for the DCC model. Figure 3 reports the

conditional loadings’ DGPs. Only l1,1,t is graphically represented because the remaining loadings

are determined by orthonormality and identification conditions. We generate 250 bivariate series

of length 2000 for each of the five loading paths. The component volatilities are randomly drawn

from a set of paths, which, apart from a scale factor, is the same as that in Figure 3. The scale

factor is such that the unconditional variances of the first and second components equal 7 and

3, respectively.24 The simulated series are characterized by a variety of loading and component

volatility dynamics that do not favor the DPC model, as would happen, for instance, if the compo-

nents were generated as GARCH(1,1) processes. An example of simulated paths, together with the

related DPC estimation output, is reported in Figure 4. On each simulated path, we estimate the

OGARCH, Scalar BEKK (SBEKK), Scalar DPC (DPC), CCC, DCC, and cDCC models via QML,

discarding the first 500 observations to eliminate the impact of the simulations’ starting values.

Given that the true values are known, the Mean Squared Error (MSE) is an optimal performance

measure. The quantity is defined as

MSE � 1

1500

1500̧

t�1

vechpĤt �Htq1vechpĤt �Htq,

where Ĥt and Ht are the estimated and true CCMs, respectively. The average MSE is reported in

Table 5 for the various models. Apart from the case of constant loadings, where all models except

the Scalar BEKK perform similarly, the DPC model performs best.25 The reduction in the MSE

with respect to the second-best model is always around 20 percent. OGARCH performances are

significantly worse than those of the DPC.

4.2 Data description and estimated specifications

In order to provide evidence that supports the introduction of the DPC model and its coherence with

the optimal MGARCH properties, we provide two empirical examples with differing cross-sectional

24The scaling factors are purely arbitrary but do not play a role in the simulation experiments. Similar results can
be obtained with other unconditional variance levels.

25As expected, in the case of constant loadings, the OGARCH is the best model.
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dimensions. We consider two datasets of real data: one that has ten constituents of the DJIA index

and is, thus, a small-scale example, and one that focuses on all thirty constituents of the DJIA index

and is, thus, a medium-scale example. The ten-asset dataset is the same as that Noureldin et al.

(2014) used. We recovered from Yahoo!Finance the adjusted close time series. The constituents of

the DJIA index are those at the end of 2009. (See Appendix A.) The returns are computed as daily

close-to-close log returns, and the sample covers the time period from 01/02/2001 to 02/01/2014.

We compare the model performances using an out-of-sample framework and compute one-step-

ahead CCM forecasts using a rolling estimation window of 1500 days. This approach leads to a

total of 1750 one-step-ahead out-of-sample forecasts. The forecast period covers the whole time of

the US financial crisis that exploded in the late 2008 after the Lehman default. We estimate the

following specifications, where each line starts with the model acronym used in the results tables:

• OGARCH: full rank OGARCH model;

• SBEKK: Scalar BEKK model;

• DPC: Scalar DPC model (see def. 2.2.1);

• DPCs: Scalar DPC model with components restricted so they have common volatility dy-

namics (i.e., pαi, βiq � pαj , βjq for all i, j; see def. 2.2.1 and section 3.4);

• DPCr: Scalar DPC model with the last N � 3 components restricted so they have common

volatility dynamics (i.e., pαi, βiq � pαj , βjq, for i, j � 4, 5, . . . , N ; see def. 2.2.1 and section

3.4);

• DPCf : three-factor Scalar DPC model (i.e., αi � βi � 0, for i � 4, 5, . . . , N ; see def. 2.2.1

and section 2.5);

• DCC: Scalar DCC model;

• cDCC: Scalar cDCC model;

• CCC: Scalar DCC (or Scalar cDCC) model, subject to a � b � 0.

For the Scalar DPC specifications, a superscript � denotes the presence of a common persistence

(CP) restriction. This is implemented in the component volatility dynamics as βi � λ � αi, for
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i � 1, 2, . . . ,M. We set M � 3 in the factor specifications, and M � N otherwise. We use the

DPC estimator to recover the parameters for all of the DPC specifications, including the OGARCH

model. The DPC estimator for the OGARCH model almost coincides with the two-step OGARCH

estimator; the only difference is that the components fitted in step (2) are subject to a variance-

targeting constraint. We estimated the SBEKK model via a two-step variance-targeting QML.

We estimate the DCC and cDCC model parameters using the three-step estimation procedures

discussed in Engle (2002) and Aielli (2013). In both cases, we use GARCH(1,1) models for the

conditional variances, subject to variance targeting.26 The CCC estimator coincides with the first

two steps of the DCC (or, equivalently, the cDCC) estimator.

4.3 Model evaluation

We evaluate the model’s performances based on one-step-ahead out-of-sample predictions. We use

the predictive ability pairwise comparison tests (Diebold and Mariano 1995, Amisano and Giacomini

2007) based on several loss functions and the augmented Mincer-Zarnowitz (AMZ) regression-based

tests (Mincer and Zarnowitz 1969; see also Patton and Sheppard 2009).

Let Ĥ
piq
t and Ĥ

pjq
t denote the one-step-ahead out-of-sample estimate of Ht provided by models i and

j, respectively, where i � j. The loss that is due to predicting Ht with Ĥ
piq
t is denoted as loss

piq
t , and

is a function of both the true and the predicted covariances. The null hypothesis of equal predictive

ability is defined as

H0 : E
�
loss

piq
t � loss

pjq
t

�
� 0.

Under regularity conditions, the test statistics,

pcstatpi, jq � T�1
°T
t�1plosspiqt � loss

pjq
t qb{AVARrT�1

°T
t�1plosspiqt � loss

pjq
t qs

, (29)

are asymptotically distributed as a standardized Normal (under H0). We use the Newey-West

HAC estimator (Newey and West 1987) since the computation of {AVAR requires one. A positive

(negative) significant value of pcstatpi, jq will provide evidence in favor of model j (i). The empirical

evaluations use the following loss functions:

26See footnote (13).
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1. Predictive density (PDen) loss (Amisano and Giacomini 2007), defined as the negative of the

QLL, or

loss
piq
t � �1

2

�
N log 2π � log |Ĥpiq

t | � y1ttĤpiq
t u�1yt

	
. (30)

2. Mean square error loss (MSE), defined as losst � x1txt, where xt is a vector of residuals

specified either as

i) xt � vechpyty1t � Ĥtq (generalized residuals, GR) or as

ii) xt � vechpε̂tε̂1t � R̂tq (generalized standardized residuals, SR) or as

iii) xt � vechpûtû1t � D̂tq (generalized component residuals, CR),

where ε̂t, R̂t, ût, and D̂t denote, respectively, the vector of univariate standardized residu-

als, the conditional correlation matrix, the vector of the components, and the CCM of the

components, as implied by the one-step-ahead out-of-sample forecast of Ht.

3. Portfolio MSE loss (Diebold and Mariano 1995), defined as losst � tp2
t � Et�1rp2

t su2, where

pt � π1tyt, where πt is a vector of portfolio weights. In that case, we consider the following

alternative portfolio compositions:

i) the equally weighted portfolio (EQW),

ii) the minimum variance portfolio (MMV) with short selling, where πt � pH�1
t ιq{pι1H�1

t ιq,
and

iii) a minimum-variance hedging portfolio (HDG) with weights πt � pH�1
t τq{pτ 1H�1

t τq, where

τ � r1, 0, . . . , 0s1.

In the hedging portfolio the first asset is hedged against all other assets in the portfolio.27

The EQW weights do not depend on Ht, so they are free of estimation errors. In computing

the portfolio weights, which computation depends on Ht, we replace Ht with the estimated

forecast.

4. Portfolio PDen loss, defined as the univariate version of (30) and computed from portfolio

returns.

27The optimal weights are computed by setting the expected return vector such that the first entry is equal to one
and all others are set to zero; see eq. (1-2) in Engle and Colacito (2006) or Harris and Nguyen (2013).
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Under regularity conditions, if the forecast equals Ht, then the expected loss is minimum. In

computing the MSE loss, the generalized residuals are appropriate for assessing the predictive

performances in terms of CCM,28 the generalized standardized residuals are suggested to assess

the predictive performances in terms of the variance/correlation decomposition of Ht, and the

generalized component residuals are appropriate for assessing the predictive performances in terms

of the eigenvector/eigenvalue decomposition of Ht. The one-step-ahead returns that enter the loss

functions are in deviations from the rolling mean, so the loss functions depend only on estimates

extracted from the rolling window.

The AMZ regression for the i, j-th estimated conditional covariance is defined as

yi,tyj,t � c0 � c1ĥi,j,t � c2yi,t�1yj,t�1 � εi,j,t, (31)

where ĥi,j,t is the one-step-ahead out-of-sample estimated conditional covariance. If ĥi,j,t � hi,j,t, it

holds that pc0, c1, c2q � p0, 1, 0q. The AMZ regression test is an F -test for the null hypothesis that

pc0, c1, c2q � p0, 1, 0q. Computing the test requires heteroskedasticity robust standard errors (White

1980). Including yi,t�1yj,t�1 among the regressors can improve the test’s power, as discussed in

Patton and Sheppard (2009). Therefore, we also consider AMZ regressions of the type

ε̂i,tε̂j,t � c0 � c1ρ̂i,j,t � c2ε̂i,t�1ε̂j,t�1 � ε̄i,j,t, (32)

where i � j, and

û2
i,t � c0 � c1d̂i,t � c2û

2
i,t�1 � ε̃i,t. (33)

In these two equations, ε̂i,t, ρ̂i,j , ûi,t, and d̂i,t denote, respectively, the univariate standardized

residuals, the conditional cross-correlations, the components, and the conditional variances of the

components as derived from the one-step-ahead out-of-sample estimation output of a given model.

The AMZ regression in (32) is appropriate for assessing the prediction performances of the vari-

ance/correlation decomposition of Ĥt, while the regression in (33) is used to assess the prediction

performances of the SD of Ĥt. All of these comparisons are pairwise but we are comparing a large

28In that case, we are aware that returns’ cross-products are a noisy proxy for the conditional covariances. However,
the MSE loss is robust to noise in the proxy adopted for the true and unknown covariance. For additional details, see
Patton and Sheppard (2009), Patton (2011), Laurent et al. (2013), and Caporin and McAleer (2014), among others.
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set of models, so we use the Bonferroni correction when determining the rejections of the null

hypothesis.29

4.4 Results

4.4.1 Testing for dynamic loadings

Before estimating the DPC specification, we address a fundamental question concerning whether the

loadings are really dynamic. To this purpose, Figures (5) and (6) report the estimated parameters of

the fitted Scalar DPC (as well as those of the corresponding DCC specifications) on the two datasets

in a rolling analysis. The parameters suggest a high level of persistence and ARCH parameters

around 0.02, indicating reasonable test properties. Figure (7) provides the rolling p-value of the

test for constant loadings. The OGARCH fit on both datasets leads us to reject the null hypotheses

on almost all of the sample, while the DPC leads us to accept the null hypothesis. The latter

finding also suggests that inconsistency issues should have a limited impact but that a Scalar DPC

specification might be sufficient to capture the loading dynamic.

4.4.2 Ten-asset dataset

Figure 8 reports the boxplots of the F-statistics computed from the AMZ regressions on the ten-

asset dataset. The DPC estimators perform better overall than the dynamic correlation estimators,

DCC and cDCC, do in predicting the variance/covariance processes. (See Figure 8 - Panel A.) As

expected, DCC and cDCC provide better predictions of the conditional variances and conditional

correlation processes than the DPC estimators do (Figure 8- Panels B and D). This result is not

surprising, as the DCC and cDCC directly model the variances and correlations, while the variances

and correlations are indirectly recovered in the DPC specifications we consider. Apart from the fac-

tor specifications, the DPC provide better predictions of the eigenvector/eigenvalue decomposition

of the CCM than the alternative dynamic correlation models do. (See Figure 8 - Panel E.) Given this

result, coupled with the result that DPC specifications focus on the eigenvectors and eigenvalues, it

is not surprising that they beat models like DCC and cDCC, where those elements are indirectly re-

covered. However, if we compare OGARCH to DPC, recalling that DPC is the immediate extension

29We might also have used the Model Confidence Set from Hansen et al. (2003 and 2011), as in Caporin and
McAleer (2014).
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of OGARCH for dynamic loadings, DPC improves with respect to OGARCH when we focus on the

AMZ results for the eigenvector/eigenvalue decomposition. Thus, we have first relevant results in

support of the importance of having dynamic loadings. DPCs performs better overall than SBEKK

across all panels in Figure 8. With respect to SBEKK, the estimation of DPCs requires only one

additional Op1q estimation step that is free from matrix inversions so it is not computationally

demanding. (See Section 3.) Notably, the SBEKK performs better overall than DCC or cDCC do,

which is in line with the empirical evidence in Caporin and McAleer (2008 and 2014) on multivariate

GARCH model ranking when the cross-sectional dimension is small and a noisy proxy of the true

covariance matrix is used. Moving to the pairwise comparisons, there is a large collection of loss

functions that would require a number of tables to report results and make a detailed evaluation

and analyses of results difficult. Therefore, we decided to summarize the pairwise comparisons as

follows.30 For any loss function, pcstatpi, jq (29) that suggests a rejection of the null hypothesis

at the 5% confidence level provides evidence of differences in the predictive ability of models i and

j. Then, if pcstatpi, jq is positive (negative), the rejection is considered to favor model j (i) and

is used to define an indicator variable. We then compute a score of the performances of j against

i as the number of rejections in favor of j, less the number of rejections in favor of i, across all of

the loss functions we consider. The resulting scores are reported in Table 6.31 Based on this overall

performance indicator, DPCr is the best model/estimator (all scores are positive, with a total score

of 22), followed by its CP-restriction specifications, DPC�
r , and DPCs, with scores of 19 and 17,

respectively. The best correlation model is the cDCC, with a score of 15. There is no redundancy

in the computation of the total scores because we are considering out-of-sample forecasts; therefore,

depending on the estimation error, a largely parameterized model could perform worse than a par-

simoniously parameterized model. The benchmark models, OGARCH, SBEKK, and CCC, perform

worse than dynamic extensions when dynamic extensions are included in the set of fitted models.

The score of DPC against OGARCH is 4, suggesting that allowing for dynamic loadings is somewhat

relevant, given that DPC is the simplest extension of OGARCH for dynamic loadings. The factor

specifications DPCf and DPC�
f , where some components are conditionally homoskedastic, have the

smallest total scores among the DPC specifications. (See Section 2.5.) Therefore, we have a second

30The pairwise comparisons are based on rejections of null hypotheses with the Bonferroni correction.
31The web appendix includes the detailed tables for the various loss functions.
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relevant result: in a small-scale empirical example, the introduction of dynamic loadings slightly

improves the forecast models’ performances compared to a case with constant loadings and provide

better results than dynamic conditional correlation models do. If we focus on specific loss functions,

some additional results emerge. For instance, the pairwise comparisons based on the GR MSE loss

indicate that no DPC specifications lose against the dynamic correlation estimators and the sign of

the test statistic is always negative, but none suggests a rejection of the null hypothesis. However,

the DPCs specification has only four dynamic parameters, as all components are restricted in order

to share common dynamic parameters, whereas DCC and cDCC have twenty-two dynamic param-

eters. Therefore, a less parameterized model provides, in our example, forecasting performances

that are equally as good as those of a much more parameterized specification. As for the pairwise

comparisons based on the SR MSE loss, all comparisons between the DPC specifications and the

correlation estimators are significant and favor the DPC. This is an unexpected result. In fact, the

use of the SR MSE loss is expected to favor the estimators that are expressly designed to predict

dynamic correlations, such as the DCC and cDCC estimators. However, the empirical evidence is

opposite, and our proposal performs markedly better.

4.4.3 Thirty-asset dataset

The message from the thirty-asset dataset is in line with, but more explicit than, that from the ten-

asset dataset. The DPC specifications perform better overall in terms of the F-statistics of the AMZ

regressions (Figure 9), apart from the case of the asset variance processes, because the DCC and

cDCC model estimate the conditional variances directly. Unlike the case with the ten-asset dataset,

all DPC specifications outperform the correlation estimators in predicting the correlation processes,

which is surprising, as DPC does not explicitly model correlations. We link this finding on the

additional flexibility of DPC over that of DCC and cDCC to the construction of variance processes

on the conditional components, rather than on the returns. The performances of SBEKK are no

longer as good as they are with ten assets, confirming the results in Caporin and McAleer (2014),

which suggest, in the presence of many assets, the adoption of more flexible parameterizations. The

simplest DPC specification, the DPCs, which requires only a Op1q step that is free from matrix

inversions with respect to SBEKK, improves on the SBEKK performances. Therefore, even minor

changes in the SBEKK model can improve the models’ performances. Moving to the pairwise
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comparisons, the superiority of the DPC estimators is more marked with the thirty-asset dataset

than it is with the ten-asset dataset, as shown in the summary results included in Table ??. Results,

particularly from the poor performances of the factor DPC specifications, DPCf and DPC�
f , confirm

the importance of allowing for a fully conditionally heteroskedastic factor structure. Provided that

all components are conditionally heteroskedastic, the better performances of DPCr and DPC�
r with

respect to DPC and DPC� indicate that the adoption of EV-based DPC restrictions improves model

performances compared to unrestricted DPC specifications. The cDCC correlation model is still the

best of the correlation models, a result that is probably a by-product of the estimation approach

that resolves the inconsistency issues of the DCC three-step estimator. With a pairwise score of 7,

the simplest DPC specification, DPCs, which has only two more dynamic parameters than SBEKK,

largely improves on SBEKK, but it also performs better than the most parameterized models, DPC,

DCC, and cDCC. Finally, when compared to those of the correlation models, the scores of the

DPC specifications using the thirty-asset dataset are higher than they are in the ten-asset dataset.

Overall, the evidence from the ten-asset example are confirmed when the cross-sectional dimension

is enlarged, and the preference for DPC specifications is more marked. At the single loss-function

level, the DPC specifications outperform the DCC and cDCC models also in the thirty-asset case

when standardized residuals’ MSE losses are considered.

4.4.4 Results summary

We have seen that the DPC specifications/estimators perform better overall than the other estimated

models. Among the DPC specifications, the factor specifications DPCf and DPC�
f , perform worst,

suggesting that allowing for a fully conditionally heteroskedastic factor structure is important. Our

results also show that the imposition of EV-based restrictions can profitably reduce the estimation

error without prejudice for estimation flexibility, provided that all components are allowed to be

conditionally heteroskedastic. With the DCC/cDCC model, the imposition of similar restrictions

on the volatilities of the asset returns would require an ad hoc estimation step. This result might

follow, for instance, Aielli and Caporin’s (2014) proposal. Caporin and McAleer (2014) show that

the improved empirical performances of DCC/cDCC over that of SBEKK in the fitting of large

systems are due primarily to the introduction of asset-specific conditional variance dynamics. The

improvement of DPC’s performance over those of SBEKK and DCC/cDCC suggest that allowing
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for specific components’ variance dynamics is a better strategy than is allowing for specific assets’

variance dynamics.

5 Conclusions

This paper introduces a new model class, the Dynamic Principal Component (DPC) Multivariate

GARCH. Built upon a dynamic spectral decomposition of conditional covariance matrices, the

model extends Alexander’s (2001) OGARCH model and has some similarities with Engle’s (2002)

DCC modelling approach. Since the DPC specification improves either the model flexibility with

respect to the data features, the ease of interpreting model outcomes, or the feasibility/scalability

with large cross-sectional dimensions, we believe that the model has all the relevant features outlined

by Silvennoinen and Teräsvirta (2009). Empirical analyses show the benefits of the DPC model

compared to competing specifications. Future research should explore the possible advantages of

the DPC model in empirical applications, taking into account, for instance, portfolio allocation

strategies, risk management problems, or pricing issues.
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A Data description

The 10-dimensional dataset includes Alcoa (AA), American Express (AXP), Bank of America
(BAC), Coca Cola (KO), Du Pont (DD), General Electric (GE), International Business Machines
(IBM), JP Morgan (JPM), Microsoft (MSFT), and Exxon Mobil (XOM).
The 30-dimensional dataset includes the 10-dimensional dataset plus 3M (MMM), AT&T (T),
Boeing (BA), Caterpillar (CAT), Chevron (CVX), Cisco (CSCO), Hewlett-Packard (HPQ), Home
Depot (HD), Intel (INTC), Johnson & Johnson (JNJ), McDonald’s (MCD), Merck & Co. (MRK),
Pfizer (PFE), Procter & Gamble (PG), Travelers Companies (TRV), United Health Group (UNH),
United Technologies (UTX), Verizon Communications (VZ), Wal-Mart Stores (WMT), and Walt
Disney (DIS).
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B Figures

Figure 1: An example on the comparison of DPC and OGARCH models: Greece versus Germany.
Baseline data (upper panels) are the change in the 5 years benchmark bond redemption yields.
The letter B in abscissa denotes the beginning of the Greek debt crisis; the letter J denotes the
downgrade of the Greek bond to junk bond.
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Figure 2: An example on the comparison of DPC and OGARCH models: UK versus Germany.
Baseline data (upper panels) are the change in the 5 years benchmark bond redemption yields.
The letter B in abscissa denotes the beginning of the Greek debt crisis; the letter J denotes the
downgrade of the Greek bond to junk bond.
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Figure 3: Conditional loadings paths used in simulation experiments.
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Figure 4: An example of a misspecified DPC estimation outputs from simulated data.
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Figure 5: 10-assets dataset. Plots of the rolling window estimated ARCH parameter (a), GARCH
parameter (b), and persistence parameter (a� b), of the DPC, DCC, and cDCC Qt-processes.
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Figure 6: 30-assets dataset. Plots of the rolling window estimated ARCH parameter (a), GARCH
parameter (b), and persistence parameter (a� b), of the DPC, DCC, and cDCC Qt-processes.
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Figure 7: Robust Wald test statistic of correctly specified conditional loadings. OGARCH in dashed
line, DPC in straight line, and 5% critical value in dotted line. Rolling window of 1500 observations
shifted every 10 days, for a total of 175 tests over the whole sample period.
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Figure 8: Augmented Mincer-Zarnowit regressions results for the 10-dimensional case. Boxplots of
the F-statistics from the AMZ regressions in (31-33). Small F-statistics provide evidence in favour
of the model specification and/or of the fitting performances. See the legend in Section 4.2 for the
model/estimator acronyms.
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Figure 9: Augmented Mincer-Zarnowit regressions results for the 30-dimensional case. Boxplots of
the F-statistics from the AMZ regressions in (31-33). Small F-statistics provide evidence in favour
of the model specification and/or of the fitting performances. See the legend in Section 4.2 for the
model/estimator acronyms.
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B) F−STATS FOR THE ASSET CONDITIONAL VARIANCES
(30 data each boxplot; logarithmic scale)

OGARCH

SBEKK
DPC

DPC
r

DPC
f

DPC
s

DPC ∗ DPC ∗
r

DPC ∗
f

CCC
DCC

cDCC

C) F−STATS FOR THE ASSET CONDITIONAL COVARIANCES
(435 data each boxplot; logarithmic scale)
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D) F−STATS FOR THE ASSET CONDITIONAL CORRELATIONS
(435 data each boxplot; logarithmic scale)
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E) F−STATS FOR THE COMPONENT CONDITIONAL VARIANCES
(30 data each boxplot; logarithmic scale)
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C Tables

Table 1: Germany and Greece bond example

Greece Germany Squared first loading Cross-correlation

Before the break Sample 4.50 4.29 0.53 0.79
OGARCH 4.54 4.14 0.99 0.01

DPC 4.42 4.09 0.53 0.85

After the break Sample 38.50 4.33 0.99 -0.15
OGARCH 31.96 4.31 0.99 0.07

DPC 32.23 4.23 0.99 -0.14

The third and fourth columns report, for Greece and Germany, the standard deviations of the change in redemption
yields for the 5 year benchmark bond indices (data source is Datastream). The fifth column provides the squared
first loading and the sixth column includes the cross correlations. On the second and fifth rows the tables indicate
the sample values. The third and sixth rows report the average values recovered from an OGARCH model, while the
fourth and seventh rows provide averages coming from a DPC model. The sample data starts in January 2004 and
ends in December 2013. The break date is placed at the end of 2009.
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Table 2: Test of constant loadings: percentage of rejections at the 5% confidence level. The robust
test is based on the artificial regression of Ut, and the non-robust test is based on the artificial
regression of Ũt (see Section 3.3). The DGP is the Scalar DPC with the ARCH parameter of
loading dynamic (a) reported in the rows and the GARCH parameter (b) in the columns. On the
upper left corner (a � b � 0) the DGP collapses on the OGARCH model. In all cases we fit a
OGARCH model on the simulated series.

Non-robust test, T=1000 Robust test, T=1000 Robust test, T=1500

N=2 azb 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99

0 2.4 – – – – – – 4.0 – – – – – – 4.2 – – – – – –
0.005 – 2.8 2.6 3.2 2.4 3.0 2.4 – 13.8 11.4 10.8 9.4 10.2 9.2 – 17.0 15.2 15.6 14.4 15.6 14.0
0.01 – 2.4 3.2 2.8 2.8 1.8 – – 24.4 27.0 22.6 18.6 17.2 – – 34.6 35.2 29.6 27.8 33.2 –
0.02 – 4.4 2.2 4.6 3.8 – – – 46.2 44.4 46.2 48.2 – – – 60.8 62.6 65.0 64.6 – –
0.03 – 4.6 4.4 3.2 – – – – 63.2 66.2 63.2 – – – – 75.4 79.0 79.6 – – –
0.05 – 7.4 7.2 – – – – – 84.2 88.2 – – – – – 92.0 91.8 – – – –
0.09 – 17.4 – – – – – – 94.4 – – – – – – 97.6 – – – – –

Non-robust test, T=1000 Robust test, T=1000 Robust test, T=1500

N=3 azb 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99

0 2.8 – – – – – – 6.2 – – – – – – 4.2 – – – – – –
0.005 – 4.2 3.2 4.4 3.6 5.4 3.8 – 12.8 14.4 13.2 11.8 10.0 6.6 – 23.2 23.2 19.2 19.2 18.8 15.6
0.01 – 4.6 5.2 3.2 4.8 3.6 – – 29.4 31.6 23.6 28.2 21.9 – – 43.6 41.4 40.6 40.4 37.4 –
0.02 – 7.0 4.8 5.8 7.4 – – – 59.2 61.2 61.0 62.6 – – – 77.0 78.2 76.4 82.2 – –
0.03 – 9.0 13.8 10.2 – – – – 77.2 82.8 78.8 – – – – 91.2 90.0 82.2 – – –
0.05 – 24.8 31.2 – – – – – 94.2 94.4 – – – – – 97.0 99.0 – – – –
0.09 – 54.6 – – – – – – 97.6 – – – – – – 98.8 – – – – –

Non-robust test, T=1000 Robust test, T=1000 Robust test, T=1500

N=5 azb 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99

0 5.2 – – – – – – 6.2 – – – – – – 7.0 – – – – – –
0.005 – 9.2 9.2 5.6 8.8 10.2 6.0 – 17.8 15.0 12.0 12.0 11.0 5.8 – 23.8 18.8 22.0 19.4 17.4 10.2
0.01 – 12.0 11.2 11.2 10.8 11.4 – – 35.8 30.4 27.6 28.2 27.2 – – 50.4 51.8 47.2 48.4 44.4 –
0.02 – 23.0 31.8 25.0 27.2 – – – 67.6 70.2 67.0 72.0 – – – 83.4 85.6 88.2 89.2 – –
0.03 – 50.0 47.0 52.0 – – – – 86.2 88.6 89.8 – – – – 95.0 95.0 96.6 – – –
0.05 – 73.6 84.2 – – – – – 98.0 98.6 – – – – – 99.4 99.2 – – – –
0.09 – 96.0 – – – – – – 99.4 – – – – – – 99.9 – – – – –

Non-robust test, T=1000 Robust test, T=1000 Robust test, T=1500

N=10 azb 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99

0 8.6 – – – – – – 7.4 – – – – – – 7.4 – – – – – –
0.005 – 29.0 30.8 30.6 35.6 31.6 33.0 – 20.2 18.6 18.6 13.6 11.8 9.0 – 28.8 27.0 25.4 23.8 20.0 17.0
0.01 – 53.2 61.2 55.2 56.0 63.4 – – 40.4 42.8 43.2 36.6 31.6 – – 61.8 59.0 60.0 61.8 64.2 –
0.02 – 88.2 88.6 89.8 93.2 – – – 84.6 85.2 86.0 89.6 – – – 95.4 95.6 96.2 98.0 – –
0.03 – 96.4 97.6 97.4 – – – – 97.2 97.8 97.4 – – – – 98.4 98.2 99.6 – – –
0.05 – 99.6 99.8 – – – – – 99.4 99.8 – – – – – 99.6 99.8 – – – –
0.09 – 100.0 – – – – – – 100.0 – – – – – – 99.8 – – – – –

Non-robust test, T=1000 Robust test, T=1000 Robust test, T=1500

N=30 azb 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99 0 0.90 0.94 0.95 0.97 0.98 0.99

0 31.6 – – – – – – 8.6 – – – – – – 9.2 – – – – – –
0.005 – 98.4 97.4 97.6 95.0 96.2 98.4 – 24.8 21.0 24.4 20.4 14.2 9.4 – 37.8 34.8 34.0 26.4 30.2 26.6
0.01 – 99.6 99.4 99.4 99.2 99.6 – – 62.6 64.0 60.0 56.8 56.8 – – 80.6 83.8 82.4 83.2 86.0 –
0.02 – 100.0 100.0 100.0 100.0 – – – 99.0 99.2 98.0 98.4 – – – 99.4 99.4 99.0 98.8 – –
0.03 – 100.0 100.0 100.0 – – – – 99.6 99.2 99.6 – – – – 99.8 99.8 99.4 – – –
0.05 – 100.0 100.0 – – – – – 100.0 99.8 – – – – – 100.0 100.0 – – – –
0.09 – 100.0 – – – – – – 100.0 – – – – – – 100.0 – – – – –
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Table 3: Test of constant loadings: percentage of rejections at the 5% confidence level for the robust
test based on the artificial regression of Ut (see Section 3.3). The DGP is the Scalar DPC with
the ARCH parameter of loading dynamic (a) reported in the rows and the GARCH parameter (b)
in the columns. On simulated series we fit the Scalar DPC (left panels) and the Full DPC (right
panels). In all cases the simulated series have length T � 1000.

Scalar DPC Full DPC

N=2 azb 0.90 0.94 0.95 0.97 0.98 0.99 0.90 0.94 0.95 0.97 0.98 0.99

0.005 7.6 7.2 6 8 8.6 8 6 7.2 6.6 7.2 7.2 7.8
0.01 5.4 5.4 8.8 7.4 7.8 – 4.4 6 6.8 6.2 8.2 –
0.02 5 5.4 5.8 5.8 – – 4.6 4.4 6 6.2 – –
0.03 6.6 5.8 3.6 – – – 4.8 5.6 4.2 – – –
0.05 4.6 6.6 – – – – 4.2 6.2 – – – –
0.09 8.6 – – – – – 7.6 – – – – –

Scalar DPC Full DPC

N=3 azb 0.90 0.94 0.95 0.97 0.98 0.99 0.90 0.94 0.95 0.97 0.98 0.99

0.005 4 6.6 6.8 8.6 12.4 11.2 4.6 6.6 8.6 8.8 10.8 10
0.01 7.4 5.6 6.4 9.6 10.8 – 6.2 6.4 5.6 9 12.6 –
0.02 3.8 4.4 6.8 6.6 – – 4.6 5.8 6.8 7.2 – –
0.03 6 3.2 5.6 – – – 4.6 2.2 5.6 – – –
0.05 4.8 6 – – – – 5.4 5.2 – – – –
0.09 11.6 – – – – – 9.4 – – – – –

Scalar DPC Full DPC

N=5 azb 0.90 0.94 0.95 0.97 0.98 0.99 0.90 0.94 0.95 0.97 0.98 0.99

0.005 7 10 8.4 12 12.2 9.8 8 10 9.2 12.8 16 12.2
0.01 5 6.8 7.6 9.4 8.8 – 8.2 9.4 10.6 11 13.4 –
0.02 6 6.6 5.4 5.2 – – 7 7.2 6.4 6.4 – –
0.03 4.6 6.2 4.4 – – – 5.8 5.2 4.8 – – –
0.05 9.2 6.2 – – – – 7.8 5.4 – – – –
0.09 15.4 – – – – – 10 – – – – –
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Test of constant loadings (continued): percentage of rejections at the 5% confidence level for the
robust test based on the artificial regression of Ut (see Section 3.3). The DGP is the Scalar DPC
with the ARCH parameter of loading dynamic (a) reported in the rows and the GARCH parameter
(b) in the columns. On simulated series we fit the Scalar DPC (left panels) and the Full DPC (right
panels). In all cases the simulated series have length T � 1000.

Scalar DPC Full DPC

N=10 azb 0.90 0.94 0.95 0.97 0.98 0.99 0.90 0.94 0.95 0.97 0.98 0.99

0.005 7.2 7.6 10.8 14.8 13.6 10.4 10 13.4 15 15.8 18.4 20.4
0.01 9.8 5 7.8 7 7.8 – 6.8 10.8 10.6 12.6 16.4 –
0.02 6.2 5.8 4.8 6.8 – – 5.4 6.8 5.8 6 – –
0.03 6.8 5.4 7.4 – – – 5.2 4.2 5.6 – – –
0.05 11.2 11.8 – – – – 6.6 6.2 – – – –
0.09 34.6 – – – – – 12.6 – – – – –

Scalar DPC

N=30 azb 0.90 0.94 0.95 0.97 0.98 0.99

0.005 5.0 6.4 6.2 6.2 8.4 25.2
0.01 6.4 5.8 6.2 6.6 10.0 –
0.02 7.6 6.0 5.6 14.4 – –
0.03 8.8 12.6 12.6 – – –
0.05 17.4 54.0 – – – –
0.09 86.8 – – – – –

Table 4: Test of constant loadings: percentage of rejections at the 5% confidence level for the
robust test based on the artificial regression of Ut (see Section 3.3). The DGP is the Full DPC
with the persistence of components reported in the first row. On simulated series we fit the Scalar
DPC (upper panel) and the Full DPC (lower panel). In all cases the simulated series have length
T � 1000.

Fitted model DGP Persistence zN 2 3 5 10 30

0.90 9.2 9.4 10.4 12.8 16.0
Scalar DPC 0.95 11.4 17.2 14.8 18.4 30.0

0.99 10.2 16.6 34.6 52.8 90.4

0.9 3.6 3.8 3.8 6 22.8
Full DPC 0.95 7 5 10 9.4 33.3

0.99 11.2 8.4 16.4 12.6 55.9
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Table 5: Simulation results

OGARCH SBEKK DPC CCC DCC CDCC

Constant 5.21 5.63 5.22 5.37 5.23 5.32
Sine 12.72 8.66 6.68 8.54 8.73 8.93

Fast Sine 12.98 13.30 9.68 13.30 14.34 14.50
Step 13.45 7.30 5.99 7.39 7.70 7.87

Ramp 13.23 9.95 8.01 10.10 10.18 10.37

The table reports the variance-covariance MSE. Smallest values in each row are in boldface.

Table 6: 10-assets case.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -2 4 5 -1 4 4 4 -1 1 2 3
SBEKK 2 4 5 -1 5 2 3 -2 2 4 4
DPC -4 -4 1 -4 1 1 2 -2 -2 -1 -1
DPCr -5 -5 -1 -4 0 0 0 -3 -2 -1 -1
DPCf 1 1 4 4 2 2 3 0 2 2 2
DPCs -4 -5 -1 0 -2 0 0 -2 -3 0 0
DPC� -4 -2 -1 0 -2 0 0 -2 -2 -1 -1
DPC�r -4 -3 -2 0 -3 0 0 -3 -2 -1 -1
DPC�f 1 2 2 3 0 2 2 3 2 2 2

CCC -1 -2 2 2 -2 3 2 2 -2 6 6
DCC -2 -4 1 1 -2 0 1 1 -2 -6 2
cDCC -3 -4 1 1 -2 0 1 1 -2 -6 -2

-23 -28 13 22 -23 17 15 19 -21 -16 10 15

The table reports a summary of the pairwise comparison results for the 10-dimensional case. Baseline results are
included in the web appendix. The pi, jq-th entry is the score of model j against model i, computed as the number
of winning comparisons (significance in favour of model j) minus the number of loosing comparisons (significance in
favour of model i).
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Table 7: 30-assets case.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -2 3 5 -1 2 3 4 -1 -1 0 0
SBEKK 2 6 6 2 7 6 6 2 4 5 5
DPC -3 -6 2 -4 1 3 3 -2 -3 -2 -2
DPCr -5 -6 -2 -4 -1 0 1 -2 -3 -2 -2
DPCf 1 -2 4 4 1 2 2 0 0 1 1
DPCs -2 -7 -1 1 -1 0 1 -1 -2 -2 -2
DPC� -3 -6 -3 0 -2 0 3 -2 -3 -2 -2
DPC�r -4 -6 -3 -1 -2 -1 -3 -2 -3 -3 -3
DPC�f 1 -2 2 2 0 1 2 2 0 1 1

CCC 1 -4 3 3 0 2 3 3 0 8 8
DCC 0 -5 2 2 -1 2 2 3 -1 -8 5
cDCC 0 -5 2 2 -1 2 2 3 -1 -8 -5

-12 -51 13 26 -14 16 20 31 -10 -27 -1 9

The table reports a summary of the pairwise comparison results for the 30-dimensional case. Baseline results are
included in the web appendix. The pi, jq-th entry is the score of model j against model i, computed as the number
of winning comparisons (significance in favour of model j) minus the number of loosing comparisons (significance in
favour of model i).
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D Proofs

Proof of proposition 2.2.1 Applying the properties of the trace operator, the orthonormal-

ity of Lt, and recalling that Erutu1ts � ErDts � D and Eryty1ts � ErEt�1ryty1tss � ErHts, we
can write tracepS̄q � Ertracepyty1tqs � ErtracepHtqs � ErtracepLtDtL

1
tqs � ErtracepDtL

1
tLtqs �

ErtracepDtqs � tracepDq � tracepDL1Lq � tracepLDL1q � tracepSq. Therefore, equation (7) holds,
ensuring that the loading process is identified.

Proof of proposition 2.6.1 We prove the stationarity of ūt (see eq. (21-22)). Since yt � Lūt,
the proof implies the stationarity of yt. By recursively substituting backward for the lagged ūt’s,

and applying ūt � L̄tD
1{2
t zt, we can write Q̄t as

Q̄t � C �
8̧

n�1

AtBn�1uL̄t�nD1{2
t�nzt�nz

1
t�nD

1{2
t�nL̄

1
t�ntBn�1u1A1, (34)

where B0 � IN and

C �
8̧

n�1

tBn�1upS �ASA1 �BSB1qtBn�1u1. (35)

Assumptions i-iii) imply that that the vector rd1,t, . . . , dN,ts1 is strictly stationary (Nelson, 1990).
Convergence of Q̄t, is ensured by the assumption that 0 ¤ bi   1, for i � 1, 2, . . . , n, the strict
stationarity of Dt � diagpd1,t, . . . , dN,tq, and the fact that Lt is bound. The matrix Q̄t is therefore
a measurable function of tztut��8,�8. Since Q̄t is a time invariant function of tztut��8,�8, the
matrix, L̄t is a measurable function of tztut��8,�8. Since Dt is a time invariant measurable function
of tztut��8,�8, the CCM of ūt, that is, H̄t � L̄tDtL̄

1
t, is a time invariant measurable function of

tztut��8,�8. Since tztut��8,�8 is iid, using the ergodicity criterion from Corollary 1.4.2 in Krengel
(1985),the strict stationarity of ūt is equivalent to the condition

tracepH̄tH̄
1
tq   8 a.s.,

where

tracepH̄tH̄
1
tq � tracepH̄2

t q � tracepL̄tD1
tL̄

1
tL̄tD

1
tL̄

1
tq � tracepL̄tD2

t L̄
1
tq � tracepD2

t L̄
1
tL̄tq �

Ņ

i�1

d2
i,t.

From Nelson (1990) di,t   8 a.s. and, therefore,
°N
i�1 d

2
i,t   8 a.s., which proves that ūt is

strictly stationary. Since we assumed αi � βi   1, for i � 1, 2, . . . , N, it holds that ErtracepH̄tqs �
ErtracepDtqs � Er°n

i�1 di,ts �
°n
i�1 di   0. The second moment of ūt is finite and, therefore, ūt is

weakly stationary. �

Proof of proposition 2.6.2 Recall that S̄ � Eryty1ts � ErLūtū1tL1s � LErūtū1tsL1. Therefore,

in order to prove that the columns of L are the eigenvectors of S̄, it suffices to prove that the
second moment of ūt is diagonal. The proof of the proposition is based on symmetry arguments. In
stating the proposition we will make use of the set of the N �N diagonal matrices with diagonal
elements in t1,�1u, which will be denoted as tPjuj�1,2,...,J . This is the set of the so-called signature
matrices.32 We first prove some properties of the signature matrices (LEMMA D.1); we then prove

32There are J �
°N

m�0

�
N
m

�
such matrices. Geometrically, a signature matrix represents a reflection in each of the

axes corresponding to the negative diagonal elements.
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that Proposition 2.6.2 holds under two additional assumptions (LEMMA D.2); we finally prove that
the two additional assumptions hold (LEMMA D.3), which completes the proof of the proposition.

Lemma D.1. Properties of the signature matrices.

1. The product PjX changes the sign of the rows of X indexed by the diagonal positions of the
negative elements of Pj ;

2. the product PjXPj changes the sign of the off diagonal elements of the rows and columns of
X indexed by the diagonal positions of the negative elements of Pj ;

3. PjPj � I;

4. PjXPj has the same diagonal elements as X;

5. if V is diagonal, PjV � V Pj , and PjV Pj � V ;

6. the matrix J�1
°J
j�1 PjXPj is diagonal with the same diagonal elements as X.

Proof As for points 1-5, the proof is immediate. As for the proof of point 6, without loss of gener-
ality, let us arrange the set tPjuj�1,2,...,J such that, for j P t2, 4, 6, . . . , Ju, it holds that Pj � �Pj�1

(J is always an even number). By Lemma D.1 - point 2 and point 4, for j P t2, 4, 6, . . . , Ju it
holds that PjXPj � Pj�1XPj�1 � 2V, where V is diagonal with the same diagonal elements as X.

Therefore,
°J
j�1 PjXPj �

°J
j�2,4,6,...,JpPjXPj � Pj�1XPj�1q � pJ{2q2V � JV. �

For arbitrarily fixed tζtu in the support of tztu, set tzpjqt u � tPjζtu and denote as tūpjqt , Q̄
pjq
t , L̄

pjq
t , D

pjq
t u

the sequence tūt, Q̄t, L̄t, Dtu generated by tzpjqt u, j � 1, 2, . . . , J. By the independence assumptions
and the symmetry of the distribution of zi,t, for arbitrarily fixed tζtu, we have that the sequences

tzpjqt u, for j � 1, 2, . . . , J, are equiprobable. The DGP of tūt, Q̄t, L̄t, Dtu can thus be written as
follows:

I. draw tζtu from the support of tztu;
II. draw j from the uniform distribution on t1, 2, . . . , Ju;

IV. set tūt, Q̄t, L̄t, Dtu = tūpjqt , Q̄
pjq
t , L̄

pjq
t , D

pjq
t u.

We now prove that Proposition 2.6.2 holds under two additional assumptions. We will then prove
that the two additional assumptions are satisfied.

Lemma D.2. Suppose that, for arbitrarily fixed tζtu in the support of tztu, it holds that

D
pjq
t � D

p1q
t , (36)

and
L̄
pjq
t � PjL̄

p1q
t Pj , (37)

for j P t1, 2, . . . , Ju. Then, Erūtū1ts is diagonal.

Proof. The unconditional covariance matrix of ūt for fixed tζtu can be written as

Erūtū1t|tζtus �
1

J

J̧

j�1

ū
pjq
t ū

pjq1
t � 1

J

J̧

j�1

L̄
pjq
t tDpjq

t u1{2z
pjq
t z

pjq1
t tDpjq

t u1{2L̄
pjq1
t �
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� 1

J

J̧

j�1

tPjL̄p1qt PjutDp1q
t u1{2Pjz

p1q
t z

p1q1
t PjtDp1q

t u1{2tPjL̄p1qt Pju1 �

� 1

J

J̧

j�1

tPjL̄p1qt utPjDp1q
t Pju1{2z

p1q
t z

p1q1
t tPjDp1q

t Pju1{2tL̄p1qt Pju1 �

� 1

J

J̧

j�1

PjL̄
p1q
t tDp1q

t u1{2z
p1q
t z

p1q1
t tDp1q

t u1{2L̄
p1q1
t Pj ,� 1

J

J̧

j�1

PjXPj ,

where we applied eq. (36-37), Lemma D.1 - point 5, and X � L̄
p1q
t tDp1q

t u1{2z
p1q
t z

p1q1
t tDp1q

t u1{2L̄
p1q1
t .

From Lemma D.1 - point 6, it follows that Erūtū1t|tζtus is diagonal; therefore, the matrix Erūtū1ts �
ErErūtū1t|tζtuss is diagonal. �.

Lemma D.3. For arbitrarily fixed tζtu in the support of tztu, equations (36-37) are satisfied.

Proof The proof of (36) follows from the fact that di,t does not depend on the sign of zi,t, for

i � 1, 2, . . . , N. As for the proof of (37), by backward substitutions let us rewrite Q̄
p1q
t as in (34).

Then, let us pre- and post-multiply the right hand side and the left hand side of the resulting

equation of Q̄
p1q
t by Pj . Noting that

PjAL̄
p1q
t tDp1q

t u1{2 z
p1q
t �

� APjL̄
p1q
t tPjtDp1q

t u1{2Pju zp1qt � AtPjL̄p1qt PjutDp1q
t u1{2tPjzp1qt u � AtPjL̄p1qt PjutDpjq

t u1{2z
pjq
t ,

where we applied eq. (36), lemma D.1 - points 5-6 (recall that A is diagonal), we can write

Q̃t � C �
8̧

m�1

Bm�1AL̃t�mtDpjq
t u1{2z

pjq
t z

pjq1
t tDpjq

t u1{2L̃1t�mAB
m�1, (38)

where
Q̃t � PjQ̄

p1q
t Pj , (39)

and
L̃t � PjL̄

p1q
t Pj . (40)

If we prove that L̃t in (38) is the eigenvector matrix of Q̃t, computed under the identification

conditions in Assumption 2.7.1, we prove that Q̃t is the loading driving process generated by tzpjqt u,
and, therefore, that (37) holds. Applying Lemma D.1 - point 5, we can write

Q̃t � PjQ̄
p1q
t Pj � PjL̄

p1q
t G

p1q
t L̄

p1q1
t Pj � (41)

� tPjL̄p1qt uPjGp1q
t PjtL̄p1qt Pju1 � tPjL̄p1qt PjuGp1q

t tPjL̄p1qt Pju1 � L̃tG
p1q
t L̃1t,

where G
p1q
t is the diagonal matrix of the decreasing eigenvalues of Q̄

p1q
t , and L̃t is clearly orthonor-

mal. Since L̄
p1q
t has positive diagonal elements, also L̃t has positive diagonal elements (see Lemma

D.1 - point 4). Since G
p1q
t is diagonal with decreasing diagonal elements, L̃t is the eigenvector matrix

of Q̃t computed under the identification conditions in Assumption 2.7.1. �
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A Additional material to the attention of referees and for web
appendix

A.1 Additional Figures

Figure 10: Log-price difference of the DJIA constituents from 01/02/2001 - 02/01/2014.
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Figure 11: Log-price difference of the DJIA constituents from 01/02/2001 - 02/01/2014.
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Figure 12: 10-assets dataset. Plots of the average rolling window estimated ARCH parameters
(αi), GARCH parameters (βi), and persistence parameters (αi � βi), of the DPC and OGARCH
components conditional variances.
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Figure 13: 30-assets dataset. Plots of the average rolling window estimated ARCH parameters
(αi), GARCH parameters (βi), and persistence parameters (αi � βi), of the DPC and OGARCH
components conditional variances.

Jan−2007 Oct−2008 Jul−2010 Mar−2012 Jan−2014
0

0.02

0.04

0.06

0.08

0.1

A) ARCH parameter.
DPC in straight line, OGARCH in dashed line.

Jan−2007 Oct−2008 Jul−2010 Mar−2012 Jan−2014
0.8

0.85

0.9

0.95

1

A) GARCH parameter.
DPC in straight line, OGARCH in dashed line.

Jan−2007 Oct−2008 Jul−2010 Mar−2012 Jan−2014
0.8

0.85

0.9

0.95

1

A) PERSISTENCE.
DPC in straight line, OGARCH in dashed line.

5



A.2 Simulations for loading dynamic and GARCH parameters

The following tables reports bias and mean squared errors for the dynamic loading parameters in the Scalar DPC

model and for the GARCH dynamic parameters associated with the first conditional component. The statistics have

been computed over 500 replications using Gaussian innovations in the DPC data generating process. True parameters

are reported in the first row. Parameters for the intercepts and for the additional conditional components have not

been reported to limit the number of tables but are available upon request.
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A.3 Pairwise comparisons: 10-dimensional dataset

Tables (16)-(25) report the pairwise comparison test statistics for the 10-dimensional dataset computed under the

losses defined in Section 4.4. The test-statistics in boldface (italic) identify 5% significant cases in favour of the model

in column (row). By construction the pi, jq-th entry of each table is equal to minus the pj, iq-th entry, where i � j.

For a given a column in one table, if the number of test-statistics in boldface is greater (smaller) than the number

of test-statistics in italic, there is evidence that, for the considered loss function, the pair model/estimator in column

performs better than the other pairs model/estimator. See the legend in Section 4.2 for the model/estimator acronyms

in the first row.

Table 16: 10-assets case: GR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.36 1.72 1.67 1.45 0.36 1.64 1.67 1.42 0.59 1.05 1.10
SBEKK 1.36 2.22 2.20 2.16 2.85 1.98 2.01 1.98 3.38 3.51 3.50
DPC -1.72 -2.22 -2.14 -2.16 -1.03 -0.34 -0.35 -0.62 -0.30 0.20 0.27
DPCr -1.67 -2.20 2.14 -1.87 -0.99 -0.24 -0.24 -0.52 -0.27 0.24 0.31
DPCf -1.45 -2.16 2.16 1.87 -0.82 0.17 0.23 -0.11 -0.14 0.43 0.50
DPCs -0.36 -2.85 1.03 0.99 0.82 0.67 0.70 0.60 0.65 1.79 1.95
DPC� -1.64 -1.98 0.34 0.24 -0.17 -0.67 0.26 -0.97 -0.18 0.29 0.35
DPC�r -1.67 -2.01 0.35 0.24 -0.23 -0.70 -0.26 -1.11 -0.19 0.29 0.35
DPC�f -1.42 -1.98 0.62 0.52 0.11 -0.60 0.97 1.11 -0.10 0.40 0.46

CCC -0.59 -3.38 0.30 0.27 0.14 -0.65 0.18 0.19 0.10 1.69 1.62
DCC -1.05 -3.51 -0.20 -0.24 -0.43 -1.79 -0.29 -0.29 -0.40 -1.69 1.06
cDCC -1.10 -3.50 -0.27 -0.31 -0.50 -1.95 -0.35 -0.35 -0.46 -1.62 -1.06

Table 17: 10-assets case: SR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.08 2.53 2.21 2.77 1.50 2.12 2.03 2.69 -0.44 -0.37 -0.37
SBEKK 1.08 1.72 1.65 2.68 1.97 1.63 1.59 2.49 1.00 1.02 1.02
DPC -2.53 -1.72 -1.92 2.48 -0.73 0.31 -0.11 2.32 -3.84 -3.76 -3.76
DPCr -2.21 -1.65 1.92 2.66 -0.36 0.99 0.68 2.48 -3.34 -3.25 -3.25
DPCf -2.77 -2.68 -2.48 -2.66 -2.76 -2.64 -2.70 -0.40 -4.42 -4.36 -4.36
DPCs -1.50 -1.97 0.73 0.36 2.76 0.67 0.52 2.47 -2.53 -2.40 -2.40
DPC� -2.12 -1.63 -0.31 -0.99 2.64 -0.67 -1.34 2.59 -3.37 -3.32 -3.32
DPC�r -2.03 -1.59 0.11 -0.68 2.70 -0.52 1.34 2.63 -3.13 -3.07 -3.07
DPC�f -2.69 -2.49 -2.32 -2.48 0.40 -2.47 -2.59 -2.63 -4.07 -4.03 -4.03

CCC 0.44 -1.00 3.84 3.34 4.42 2.53 3.37 3.13 4.07 3.59 3.50
DCC 0.37 -1.02 3.76 3.25 4.36 2.40 3.32 3.07 4.03 -3.59 1.68
cDCC 0.37 -1.02 3.76 3.25 4.36 2.40 3.32 3.07 4.03 -3.50 -1.68

Table 18: 10-assets case: CR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -2.36 -1.46 -1.46 -1.58 -1.60 -1.31 -1.31 -1.38 -0.69 -0.74 -0.75
SBEKK 2.36 2.06 2.06 2.00 2.73 1.87 1.90 1.87 1.47 1.71 1.77
DPC 1.46 -2.06 0.02 -2.92 -0.88 -0.21 -0.17 -0.33 -0.27 -0.25 -0.23
DPCr 1.46 -2.06 -0.02 -3.12 -0.88 -0.21 -0.17 -0.33 -0.27 -0.25 -0.23
DPCf 1.58 -2.00 2.92 3.12 -0.75 0.08 0.16 -0.02 -0.21 -0.18 -0.16
DPCs 1.60 -2.73 0.88 0.88 0.75 0.61 0.65 0.59 0.10 0.22 0.26
DPC� 1.31 -1.87 0.21 0.21 -0.08 -0.61 0.54 -0.42 -0.23 -0.20 -0.18
DPC�r 1.31 -1.90 0.17 0.17 -0.16 -0.65 -0.54 -0.81 -0.25 -0.21 -0.20
DPC�f 1.38 -1.87 0.33 0.33 0.02 -0.59 0.42 0.81 -0.22 -0.18 -0.16

CCC 0.69 -1.47 0.27 0.27 0.21 -0.10 0.23 0.25 0.22 0.29 0.31
DCC 0.74 -1.71 0.25 0.25 0.18 -0.22 0.20 0.21 0.18 -0.29 0.38
cDCC 0.75 -1.77 0.23 0.23 0.16 -0.26 0.18 0.20 0.16 -0.31 -0.38

15



Table 19: 10-assets case: PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 0.90 5.71 5.93 -3.85 5.38 5.91 5.98 -3.88 3.00 4.39 4.53
SBEKK -0.90 3.16 3.43 -4.45 2.97 3.21 3.32 -4.49 1.74 2.77 2.86
DPC -5.71 -3.16 1.14 -4.54 -0.01 1.17 1.29 -4.58 -0.33 1.34 1.47
DPCr -5.93 -3.43 -1.14 -4.57 -1.06 0.08 0.55 -4.61 -0.58 1.10 1.24
DPCf 3.85 4.45 4.54 4.57 4.42 4.52 4.53 0.70 4.06 4.34 4.36
DPCs -5.38 -2.97 0.01 1.06 -4.42 1.18 1.95 -4.45 -0.35 1.48 1.63
DPC� -5.91 -3.21 -1.17 -0.08 -4.52 -1.18 0.49 -4.56 -0.61 1.12 1.26
DPC�r -5.98 -3.32 -1.29 -0.55 -4.53 -1.95 -0.49 -4.57 -0.69 1.07 1.21
DPC�f 3.88 4.49 4.58 4.61 -0.70 4.45 4.56 4.57 4.09 4.38 4.40

CCC -3.00 -1.74 0.33 0.58 -4.06 0.35 0.61 0.69 -4.09 5.55 5.34
DCC -4.39 -2.77 -1.34 -1.10 -4.34 -1.48 -1.12 -1.07 -4.38 -5.55 1.86
cDCC -4.53 -2.86 -1.47 -1.24 -4.36 -1.63 -1.26 -1.21 -4.40 -5.34 -1.86

Table 20: 10-assets case: EQW MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.49 0.32 0.31 0.31 -0.60 0.28 0.30 0.39 -0.41 -0.07 -0.02
SBEKK 1.49 1.91 1.91 1.92 2.36 1.83 1.84 1.86 2.22 2.75 2.79
DPC -0.32 -1.91 -2.63 -0.40 -1.12 -0.01 0.03 0.20 -0.61 -0.23 -0.17
DPCr -0.31 -1.91 2.63 0.35 -1.11 0.01 0.06 0.22 -0.61 -0.22 -0.16
DPCf -0.31 -1.92 0.40 -0.35 -1.12 0.05 0.21 -0.61 -0.22 -0.17
DPCs 0.60 -2.36 1.12 1.11 1.12 0.92 0.95 0.99 -0.07 0.70 0.84
DPC� -0.28 -1.83 0.01 -0.01 -0.92 0.38 1.12 -0.62 -0.23 -0.17
DPC�r -0.30 -1.84 -0.03 -0.06 -0.05 -0.95 -0.38 0.99 -0.63 -0.24 -0.18
DPC�f -0.39 -1.86 -0.20 -0.22 -0.21 -0.99 -1.12 -0.99 -0.66 -0.28 -0.22

CCC 0.41 -2.22 0.61 0.61 0.61 0.07 0.62 0.63 0.66 1.57 1.52
DCC 0.07 -2.75 0.23 0.22 0.22 -0.70 0.23 0.24 0.28 -1.57 1.14
cDCC 0.02 -2.79 0.17 0.16 0.17 -0.84 0.17 0.18 0.22 -1.52 -1.14

Table 21: 10-assets case: MMV MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 1.68 2.13 2.04 1.15 2.10 2.08 1.97 1.13 -0.95 -0.31 -0.12
SBEKK -1.68 -0.94 -0.87 -1.91 -0.95 -0.87 -0.82 -1.87 -1.28 -1.26 -1.25
DPC -2.13 0.94 1.10 -0.16 0.41 1.11 1.11 -0.17 -1.34 -1.35 -1.33
DPCr -2.04 0.87 -1.10 -0.51 -1.18 -0.51 1.08 -0.50 -1.34 -1.35 -1.34
DPCf -1.15 1.91 0.16 0.51 0.23 0.45 0.75 -0.22 -1.09 -0.93 -0.89
DPCs -2.10 0.95 -0.41 1.18 -0.23 1.26 1.21 -0.24 -1.34 -1.36 -1.34
DPC� -2.08 0.87 -1.11 0.51 -0.45 -1.26 0.98 -0.45 -1.35 -1.36 -1.35
DPC�r -1.97 0.82 -1.11 -1.08 -0.75 -1.21 -0.98 -0.74 -1.34 -1.35 -1.33
DPC�f -1.13 1.87 0.17 0.50 0.22 0.24 0.45 0.74 -1.09 -0.92 -0.88

CCC 0.95 1.28 1.34 1.34 1.09 1.34 1.35 1.34 1.09 1.32 1.33
DCC 0.31 1.26 1.35 1.35 0.93 1.36 1.36 1.35 0.92 -1.32 1.46
cDCC 0.12 1.25 1.33 1.34 0.89 1.34 1.35 1.33 0.88 -1.33 -1.46

Table 22: 10-assets case: HDG MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 1.46 1.30 1.41 0.90 1.42 1.37 1.41 0.91 0.67 1.14 1.22
SBEKK -1.46 -1.97 -0.51 -2.57 -0.41 -1.16 -0.59 -2.56 -2.60 -1.63 -1.47
DPC -1.30 1.97 2.29 -1.73 2.39 1.77 2.43 -1.72 -2.18 -1.07 -0.87
DPCr -1.41 0.51 -2.29 -2.23 0.13 -1.05 -0.18 -2.21 -2.37 -1.43 -1.26
DPCf -0.90 2.57 1.73 2.23 2.10 1.96 2.27 0.14 -0.80 0.29 0.47
DPCs -1.42 0.41 -2.39 -0.13 -2.10 -1.54 -0.23 -2.09 -2.65 -1.70 -1.51
DPC� -1.37 1.16 -1.77 1.05 -1.96 1.54 1.32 -1.95 -2.45 -1.40 -1.20
DPC�r -1.41 0.59 -2.43 0.18 -2.27 0.23 -1.32 -2.26 -2.41 -1.45 -1.28
DPC�f -0.91 2.56 1.72 2.21 -0.14 2.09 1.95 2.26 -0.82 0.29 0.47

CCC -0.67 2.60 2.18 2.37 0.80 2.65 2.45 2.41 0.82 3.27 3.36
DCC -1.14 1.63 1.07 1.43 -0.29 1.70 1.40 1.45 -0.29 -3.27 2.93
cDCC -1.22 1.47 0.87 1.26 -0.47 1.51 1.20 1.28 -0.47 -3.36 -2.93

16



Table 23: 10-assets case: EQW PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -4.01 0.52 0.50 0.57 -1.50 0.52 0.58 0.71 -1.02 -0.38 -0.32
SBEKK 4.01 4.14 4.14 4.17 4.80 3.94 3.94 4.07 5.05 5.21 5.24
DPC -0.52 -4.14 -1.62 1.25 -2.16 0.42 0.55 0.91 -1.29 -0.74 -0.68
DPCr -0.50 -4.14 1.62 1.52 -2.15 0.44 0.57 0.93 -1.28 -0.73 -0.67
DPCf -0.57 -4.17 -1.25 -1.52 -2.24 0.34 0.46 0.82 -1.33 -0.79 -0.73
DPCs 1.50 -4.80 2.16 2.15 2.24 2.07 2.06 2.27 0.49 2.45 2.67
DPC� -0.52 -3.94 -0.42 -0.44 -0.34 -2.07 0.32 0.65 -1.32 -0.83 -0.78
DPC�r -0.58 -3.94 -0.55 -0.57 -0.46 -2.06 -0.32 0.48 -1.32 -0.84 -0.79
DPC�f -0.71 -4.07 -0.91 -0.93 -0.82 -2.27 -0.65 -0.48 -1.44 -0.97 -0.92

CCC 1.02 -5.05 1.29 1.28 1.33 -0.49 1.32 1.32 1.44 2.46 2.46
DCC 0.38 -5.21 0.74 0.73 0.79 -2.45 0.83 0.84 0.97 -2.46 1.07
cDCC 0.32 -5.24 0.68 0.67 0.73 -2.67 0.78 0.79 0.92 -2.46 -1.07

Table 24: 10-assets case: MMV PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 1.44 3.02 3.53 -1.41 3.05 3.38 3.67 -1.37 1.28 2.20 2.22
SBEKK -1.44 1.58 2.14 -2.71 2.01 1.92 2.23 -2.68 0.08 1.25 1.26
DPC -3.02 -1.58 2.04 -3.01 0.16 1.34 1.92 -2.98 -1.15 -0.21 -0.21
DPCr -3.53 -2.14 -2.04 -3.12 -1.21 -0.56 0.99 -3.10 -1.54 -0.69 -0.68
DPCf 1.41 2.71 3.01 3.12 2.94 3.04 3.11 0.85 2.52 2.90 2.88
DPCs -3.05 -2.01 -0.16 1.21 -2.94 0.80 1.78 -2.93 -1.26 -0.30 -0.29
DPC� -3.38 -1.92 -1.34 0.56 -3.04 -0.80 1.78 -3.03 -1.44 -0.58 -0.57
DPC�r -3.67 -2.23 -1.92 -0.99 -3.11 -1.78 -1.78 -3.10 -1.69 -0.87 -0.87
DPC�f 1.37 2.68 2.98 3.10 -0.85 2.93 3.03 3.10 2.50 2.88 2.87

CCC -1.28 -0.08 1.15 1.54 -2.52 1.26 1.44 1.69 -2.50 3.38 3.22
DCC -2.20 -1.25 0.21 0.69 -2.90 0.30 0.58 0.87 -2.88 -3.38 0.15
cDCC -2.22 -1.26 0.21 0.68 -2.88 0.29 0.57 0.87 -2.87 -3.22 -0.15

Table 25: 10-assets case: HDG PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 1.86 1.13 2.06 -3.24 2.59 2.03 2.26 -3.15 0.49 1.95 2.07
SBEKK -1.86 -1.14 -0.15 -3.90 0.87 0.02 0.29 -3.82 -1.34 0.24 0.35
DPC -1.13 1.14 3.26 -3.41 3.80 3.26 3.49 -3.32 -0.45 1.27 1.41
DPCr -2.06 0.15 -3.26 -3.53 2.68 0.68 1.87 -3.45 -1.32 0.40 0.53
DPCf 3.24 3.90 3.41 3.53 3.68 3.55 3.61 1.38 3.04 3.44 3.47
DPCs -2.59 -0.87 -3.80 -2.68 -3.68 -2.73 -2.10 -3.60 -2.31 -0.64 -0.51
DPC� -2.03 -0.02 -3.26 -0.68 -3.55 2.73 1.74 -3.47 -1.46 0.23 0.36
DPC�r -2.26 -0.29 -3.49 -1.87 -3.61 2.10 -1.74 -3.53 -1.69 -0.03 0.09
DPC�f 3.15 3.82 3.32 3.45 -1.38 3.60 3.47 3.53 2.96 3.37 3.39

CCC -0.49 1.34 0.45 1.32 -3.04 2.31 1.46 1.69 -2.96 5.04 5.26
DCC -1.95 -0.24 -1.27 -0.40 -3.44 0.64 -0.23 0.03 -3.37 -5.04 2.45
cDCC -2.07 -0.35 -1.41 -0.53 -3.47 0.51 -0.36 -0.09 -3.39 -5.26 -2.45
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A.4 Pairwise comparisons: 30-dimensional dataset

Tables (26)-(35) report the pairwise comparison test statistics for the 10-dimensional dataset computed under the

losses defined in Section 4.4. The test-statistics in boldface (italic) identify 5% significant cases in favour of the model

in column (row). By construction the pi, jq-th entry of each table is equal to minus the pj, iq-th entry, where i � j.

For a given a column in one table, if the number of test-statistics in boldface is greater (smaller) than the number

of test-statistics in italic, there is evidence that, for the considered loss function, the pair model/estimator in column

performs better than the other pairs model/estimator. See the legend in Section 4.2 for the model/estimator acronyms

in the first row.

Table 26: 30-assets case: GR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.96 2.21 2.22 1.98 -0.54 1.04 1.23 1.91 -0.70 -0.45 -0.42
SBEKK 1.96 2.28 2.28 2.27 2.59 2.33 2.33 2.30 3.59 3.44 3.43
DPC -2.21 -2.28 -0.23 -2.60 -1.40 -0.28 -0.17 -1.06 -1.21 -1.01 -0.99
DPCr -2.22 -2.28 0.23 -2.68 -1.40 -0.28 -0.17 -1.06 -1.21 -1.01 -0.99
DPCf -1.98 -2.27 2.60 2.68 -1.34 -0.10 0.03 -0.17 -1.17 -0.97 -0.95
DPCs 0.54 -2.59 1.40 1.40 1.34 1.14 1.21 1.36 -0.75 -0.23 -0.17
DPC� -1.04 -2.33 0.28 0.28 0.10 -1.14 0.94 0.08 -1.19 -0.97 -0.95
DPC�r -1.23 -2.33 0.17 0.17 -0.03 -1.21 -0.94 -0.07 -1.22 -1.01 -0.98
DPC�f -1.91 -2.30 1.06 1.06 0.17 -1.36 -0.08 0.07 -1.19 -0.98 -0.96

CCC 0.70 -3.59 1.21 1.21 1.17 0.75 1.19 1.22 1.19 2.40 2.41
DCC 0.45 -3.44 1.01 1.01 0.97 0.23 0.97 1.01 0.98 -2.40 2.37
cDCC 0.42 -3.43 0.99 0.99 0.95 0.17 0.95 0.98 0.96 -2.41 -2.37

Table 27: 30-assets case: SR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.45 1.83 2.15 3.33 -0.70 1.93 2.33 3.23 -2.30 -2.26 -2.26
SBEKK 1.45 1.57 1.58 2.10 1.55 1.57 1.60 2.08 1.25 1.26 1.26
DPC -1.83 -1.57 1.46 3.37 -1.28 0.86 1.64 3.24 -3.31 -3.29 -3.29
DPCr -2.15 -1.58 -1.46 3.30 -1.37 0.42 1.23 3.17 -3.35 -3.33 -3.33
DPCf -3.33 -2.10 -3.37 -3.30 -3.52 -3.24 -3.14 -3.31 -5.25 -5.23 -5.23
DPCs 0.70 -1.55 1.28 1.37 3.52 1.26 1.39 3.50 -2.43 -2.34 -2.34
DPC� -1.93 -1.57 -0.86 -0.42 3.24 -1.26 2.98 3.08 -3.10 -3.08 -3.08
DPC�r -2.33 -1.60 -1.64 -1.23 3.14 -1.39 -2.98 2.98 -3.25 -3.22 -3.23
DPC�f -3.23 -2.08 -3.24 -3.17 3.31 -3.50 -3.08 -2.98 -5.23 -5.20 -5.21

CCC 2.30 -1.25 3.31 3.35 5.25 2.43 3.10 3.25 5.23 4.18 3.99
DCC 2.26 -1.26 3.29 3.33 5.23 2.34 3.08 3.22 5.20 -4.18 1.15
cDCC 2.26 -1.26 3.29 3.33 5.23 2.34 3.08 3.23 5.21 -3.99 -1.15

Table 28: 30-assets case: CR MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -2.38 -1.14 -1.13 -1.26 -1.72 -0.88 -0.81 -1.25 -0.54 -0.67 -0.67
SBEKK 2.38 2.19 2.19 2.18 2.49 2.23 2.24 2.20 2.06 2.16 2.16
DPC 1.14 -2.19 1.87 -4.40 -1.34 -0.26 -0.14 -0.67 -0.32 -0.43 -0.43
DPCr 1.13 -2.19 -1.87 -4.61 -1.34 -0.27 -0.15 -0.72 -0.33 -0.44 -0.43
DPCf 1.26 -2.18 4.40 4.61 -1.30 -0.17 -0.04 -0.12 -0.29 -0.40 -0.39
DPCs 1.72 -2.49 1.34 1.34 1.30 1.09 1.16 1.32 0.49 0.50 0.51
DPC� 0.88 -2.23 0.26 0.27 0.17 -1.09 0.98 0.18 -0.27 -0.38 -0.38
DPC�r 0.81 -2.24 0.14 0.15 0.04 -1.16 -0.98 0.03 -0.32 -0.44 -0.44
DPC�f 1.25 -2.20 0.67 0.72 0.12 -1.32 -0.18 -0.03 -0.29 -0.40 -0.40

CCC 0.54 -2.06 0.32 0.33 0.29 -0.49 0.27 0.32 0.29 -0.39 -0.31
DCC 0.67 -2.16 0.43 0.44 0.40 -0.50 0.38 0.44 0.40 0.39 0.74
cDCC 0.67 -2.16 0.43 0.43 0.39 -0.51 0.38 0.44 0.40 0.31 -0.74
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Table 29: 30-assets case: PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.52 6.22 6.35 -5.02 5.99 6.46 6.48 -5.00 3.02 3.73 3.79
SBEKK 1.52 4.07 4.15 -6.36 4.08 4.21 4.27 -6.34 2.86 3.31 3.34
DPC -6.22 -4.07 3.37 -5.89 2.33 2.68 3.79 -5.87 -0.03 1.06 1.15
DPCr -6.35 -4.15 -3.37 -5.87 -0.20 -1.09 0.91 -5.85 -0.71 0.43 0.52
DPCf 5.02 6.36 5.89 5.87 5.73 5.88 5.89 2.52 4.98 5.22 5.24
DPCs -5.99 -4.08 -2.33 0.20 -5.73 -0.70 1.12 -5.72 -0.67 0.47 0.56
DPC� -6.46 -4.21 -2.68 1.09 -5.88 0.70 2.54 -5.86 -0.51 0.57 0.65
DPC�r -6.48 -4.27 -3.79 -0.91 -5.89 -1.12 -2.54 -5.87 -0.81 0.32 0.41
DPC�f 5.00 6.34 5.87 5.85 -2.52 5.72 5.86 5.87 4.97 5.21 5.23

CCC -3.02 -2.86 0.03 0.71 -4.98 0.67 0.51 0.81 -4.97 7.61 7.55
DCC -3.73 -3.31 -1.06 -0.43 -5.22 -0.47 -0.57 -0.32 -5.21 -7.61 3.36
cDCC -3.79 -3.34 -1.15 -0.52 -5.24 -0.56 -0.65 -0.41 -5.23 -7.55 -3.36

Table 30: 30-assets case: EQW MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -1.84 0.05 0.05 0.05 -1.11 0.04 0.16 0.08 -1.32 -1.18 -1.17
SBEKK 1.84 1.96 1.96 1.97 2.21 2.01 2.02 1.99 2.64 2.62 2.63
DPC -0.05 -1.96 0.93 -0.09 -1.34 0.02 0.15 0.15 -1.45 -1.32 -1.31
DPCr -0.05 -1.96 -0.93 -0.24 -1.34 0.02 0.15 0.14 -1.45 -1.32 -1.31
DPCf -0.05 -1.97 0.09 0.24 -1.34 0.02 0.16 0.16 -1.45 -1.32 -1.31
DPCs 1.11 -2.21 1.34 1.34 1.34 1.20 1.26 1.38 -1.34 -1.03 -0.99
DPC� -0.04 -2.01 -0.02 -0.02 -0.02 -1.20 0.76 -1.52 -1.39 -1.37
DPC�r -0.16 -2.02 -0.15 -0.15 -0.16 -1.26 -0.76 -0.15 -1.54 -1.42 -1.40
DPC�f -0.08 -1.99 -0.15 -0.14 -0.16 -1.38 0.15 -1.49 -1.36 -1.35

CCC 1.32 -2.64 1.45 1.45 1.45 1.34 1.52 1.54 1.49 2.32 2.33
DCC 1.18 -2.62 1.32 1.32 1.32 1.03 1.39 1.42 1.36 -2.32 2.36
cDCC 1.17 -2.63 1.31 1.31 1.31 0.99 1.37 1.40 1.35 -2.33 -2.36

Table 31: 30-assets case: MMV MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 0.81 1.16 1.79 0.60 1.12 1.65 1.80 0.59 -1.28 -1.23 -1.22
SBEKK -0.81 0.26 0.51 0.02 0.43 0.86 1.04 0.01 -1.45 -1.45 -1.45
DPC -1.16 -0.26 0.61 -0.10 0.03 1.82 1.65 -0.11 -1.41 -1.40 -1.40
DPCr -1.79 -0.51 -0.61 -0.23 -0.32 1.04 1.42 -0.23 -1.42 -1.42 -1.42
DPCf -0.60 -0.02 0.10 0.23 0.09 0.38 0.44 -0.77 -1.21 -1.15 -1.15
DPCs -1.12 -0.43 -0.03 0.32 -0.09 0.94 1.05 -0.09 -1.47 -1.49 -1.48
DPC� -1.65 -0.86 -1.82 -1.04 -0.38 -0.94 0.60 -0.39 -1.45 -1.45 -1.45
DPC�r -1.80 -1.04 -1.65 -1.42 -0.44 -1.05 -0.60 -0.45 -1.45 -1.45 -1.45
DPC�f -0.59 -0.01 0.11 0.23 0.77 0.09 0.39 0.45 -1.21 -1.15 -1.14

CCC 1.28 1.45 1.41 1.42 1.21 1.47 1.45 1.45 1.21 1.41 1.42
DCC 1.23 1.45 1.40 1.42 1.15 1.49 1.45 1.45 1.15 -1.41 1.55
cDCC 1.22 1.45 1.40 1.42 1.15 1.48 1.45 1.45 1.14 -1.42 -1.55

Table 32: 30-assets case: HDG MSE Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH 0.85 1.06 1.36 0.73 1.08 1.28 1.31 0.69 -0.30 -0.16 -0.12
SBEKK -0.85 0.45 1.52 -0.34 0.68 0.60 0.91 -0.40 -0.92 -0.74 -0.70
DPC -1.06 -0.45 1.41 -0.55 0.18 0.38 0.84 -0.60 -0.94 -0.76 -0.72
DPCr -1.36 -1.52 -1.41 -1.49 -1.13 -1.17 -0.78 -1.55 -1.10 -0.93 -0.89
DPCf -0.73 0.34 0.55 1.49 0.60 0.78 0.91 -1.13 -0.69 -0.53 -0.49
DPCs -1.08 -0.68 -0.18 1.13 -0.60 0.17 0.68 -0.66 -0.99 -0.81 -0.77
DPC� -1.28 -0.60 -0.38 1.17 -0.78 -0.17 1.26 -0.84 -0.92 -0.76 -0.72
DPC�r -1.31 -0.91 -0.84 0.78 -0.91 -0.68 -1.26 -0.96 -0.98 -0.82 -0.78
DPC�f -0.69 0.40 0.60 1.55 1.13 0.66 0.84 0.96 -0.67 -0.51 -0.47

CCC 0.30 0.92 0.94 1.10 0.69 0.99 0.92 0.98 0.67 2.16 2.42
DCC 0.16 0.74 0.76 0.93 0.53 0.81 0.76 0.82 0.51 -2.16 2.64
cDCC 0.12 0.70 0.72 0.89 0.49 0.77 0.72 0.78 0.47 -2.42 -2.64
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Table 33: 30-assets case: EQW PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -4.59 1.15 1.14 1.14 -2.14 1.15 1.51 1.50 -2.08 -1.76 -1.75
SBEKK 4.59 4.68 4.68 4.69 5.39 4.69 4.75 4.70 5.75 5.76 5.77
DPC -1.15 -4.68 -0.51 0.37 -2.31 0.90 1.35 0.36 -2.20 -1.89 -1.89
DPCr -1.14 -4.68 0.51 0.44 -2.31 0.90 1.36 0.36 -2.20 -1.89 -1.89
DPCf -1.14 -4.69 -0.37 -0.44 -2.33 0.89 1.36 0.29 -2.21 -1.90 -1.90
DPCs 2.14 -5.39 2.31 2.31 2.33 2.34 2.52 2.34 -0.98 0.18 0.21
DPC� -1.15 -4.69 -0.90 -0.90 -0.89 -2.34 1.10 -0.76 -2.28 -1.99 -1.99
DPC�r -1.51 -4.75 -1.35 -1.36 -1.36 -2.52 -1.10 -1.19 -2.40 -2.12 -2.13
DPC�f -1.50 -4.70 -0.36 -0.36 -0.29 -2.34 0.76 1.19 -2.23 -1.93 -1.93

CCC 2.08 -5.75 2.20 2.20 2.21 0.98 2.28 2.40 2.23 3.92 3.68
DCC 1.76 -5.76 1.89 1.89 1.90 -0.18 1.99 2.12 1.93 -3.92 0.53
cDCC 1.75 -5.77 1.89 1.89 1.90 -0.21 1.99 2.13 1.93 -3.68 -0.53

Table 34: 30-assets case: MMV PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -0.58 4.21 5.02 -1.22 3.81 5.06 5.24 -1.19 -2.00 -1.60 -1.61
SBEKK 0.58 2.31 2.45 -0.57 2.97 2.53 2.63 -0.54 -2.49 -1.69 -1.70
DPC -4.21 -2.31 1.64 -3.23 0.73 2.19 2.32 -3.19 -3.15 -2.98 -3.00
DPCr -5.02 -2.45 -1.64 -3.34 0.08 1.29 2.28 -3.30 -3.25 -3.10 -3.12
DPCf 1.22 0.57 3.23 3.34 3.33 3.37 3.45 0.87 -1.40 -0.78 -0.79
DPCs -3.81 -2.97 -0.73 -0.08 -3.33 0.30 0.57 -3.30 -3.48 -3.36 -3.38
DPC� -5.06 -2.53 -2.19 -1.29 -3.37 -0.30 1.04 -3.33 -3.30 -3.16 -3.18
DPC�r -5.24 -2.63 -2.32 -2.28 -3.45 -0.57 -1.04 -3.41 -3.37 -3.25 -3.27
DPC�f 1.19 0.54 3.19 3.30 -0.87 3.30 3.33 3.41 -1.42 -0.80 -0.81

CCC 2.00 2.49 3.15 3.25 1.40 3.48 3.30 3.37 1.42 3.50 3.39
DCC 1.60 1.69 2.98 3.10 0.78 3.36 3.16 3.25 0.80 -3.50 -0.54
cDCC 1.61 1.70 3.00 3.12 0.79 3.38 3.18 3.27 0.81 -3.39 0.54

Table 35: 30-assets case: HDG PDen Loss.

OGARCH SBEKK DPC DPCr DPCf DPCs DPC� DPC�r DPC�f CCC DCC cDCC

OGARCH -0.11 1.64 2.26 -2.94 2.59 2.28 2.56 -2.90 1.52 1.96 2.00
SBEKK 0.11 2.04 2.67 -3.93 2.88 2.54 2.88 -3.87 1.51 1.95 1.99
DPC -1.64 -2.04 2.52 -3.73 2.91 2.20 2.70 -3.68 0.57 1.13 1.19
DPCr -2.26 -2.67 -2.52 -3.95 1.38 -0.60 0.81 -3.90 0.08 0.64 0.70
DPCf 2.94 3.93 3.73 3.95 3.90 3.84 3.94 1.39 2.95 3.19 3.21
DPCs -2.59 -2.88 -2.91 -1.38 -3.90 -2.22 -1.07 -3.85 -0.16 0.42 0.48
DPC� -2.28 -2.54 -2.20 0.60 -3.84 2.22 2.17 -3.79 0.17 0.75 0.81
DPC�r -2.56 -2.88 -2.70 -0.81 -3.94 1.07 -2.17 -3.89 -0.04 0.54 0.60
DPC�f 2.90 3.87 3.68 3.90 -1.39 3.85 3.79 3.89 2.91 3.15 3.17

CCC -1.52 -1.51 -0.57 -0.08 -2.95 0.16 -0.17 0.04 -2.91 3.62 3.91
DCC -1.96 -1.95 -1.13 -0.64 -3.19 -0.42 -0.75 -0.54 -3.15 -3.62 3.26
cDCC -2.00 -1.99 -1.19 -0.70 -3.21 -0.48 -0.81 -0.60 -3.17 -3.91 -3.26
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