
 
 

 

 

UNIVERSITÀ DEGLI STUDI DI PADOVA 

 

Dipartimento di Scienze Economiche ed Aziendali “Marco Fanno” 

 
 

 

 

 

 

 

ASSET ALLOCATION STRATEGIES BASED ON 

 PENALIZED QUANTILE REGRESSION 

 

 

 

GIOVANNI BONACCOLTO 

University of Padova 

 

MASSIMILIANO CAPORIN 

University of Padova 

 

SANDRA PATERLINI 

European Business School 

 

 

 

 

 

July 2015 

 

 

“MARCO FANNO” WORKING PAPER N.199 



Asset Allocation Strategies Based on Penalized Quantile Regression

G. Bonaccolto1, M. Caporin2, and S. Paterlini3

1Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121 Padova, Italy.

Email : bonaccolto@stat.unipd.it

2Department of Economics and Management “Marco Fanno”, via del Santo 33, 35123 Padova, Italy.

Email : massimiliano.caporin@unipd.it

3Department of Finance and Accounting, European Business School, Gustav-Stresemann-Ring 3, 65189

Wiesbaden, Germany. Email : sandra.paterlini@ebs.edu

Abstract

It is well known that quantile regression model minimizes the portfolio extreme risk, whenever

the attention is placed on the estimation of the response variable left quantiles. We show that, by

considering the entire conditional distribution of the dependent variable, it is possible to optimize

different risk and performance indicators. In particular, we introduce a risk-adjusted profitability

measure, useful in evaluating financial portfolios under a pessimistic perspective, since the reward

contribution is net of the most favorable outcomes. Moreover, as we consider large portfolios, we

also cope with the dimensionality issue by introducing an ℓ1-norm penalty on the assets weights.

Keywords: Quantile regression, ℓ1-norm penalty, pessimistic asset allocation.

JEL codes: C58, G10.

1 Introduction

Starting with the seminal contribution by Markowitz (1952) on the mean-variance portfolio theory,

portfolio estimation and asset selection got increasing attention from both a practitioner’s and a re-

search view point. In the finance industry, asset allocation and security selection have a central role

in designing portfolio strategies for both private and institutional investors. Differently, the academia

focused on developments of the Markowitz approach over different research lines: linking it to market

equilibrium as done by Sharpe (1964), Lintner (1965b), Lintner (1965a), and Mossin (1966); modify-

ing the objective function both when it is set as an utility function or when it takes the form of a

performance measure (Alexander and Baptista, 2002; Farinelli et al., 2008); developing tools for the

estimation and the forecasting of the Markowitz model inputs, with great emphasis on return and risk.

Among the various methodological advancements, we focus on those associated with variations of

the objective function or, more generally, based on alternative representations of the asset allocation
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problem. Some of the various asset allocation approaches proposed in the last decades share a common

feature: they have a companion representation in the form of regression models where the coefficients

correspond or are linked to the assets weights in a portfolio. Two examples are given by the estimation

of efficient portfolio weights by means of linear regression of a constant on asset excess returns (Britten-

Jones, 1999) and the estimation of the Global Minimum Variance Portfolio weights through the solution

of a specific regression model, see e.g. Fan et al. (2012).

In the previously cited cases, the portfolio variance plays a fundamental role. However, even if

we agree with the relevance of variance (or volatility) for risk measurement and management, the

financial literature now includes a large number of other indicators that might be more appropriate.

As an example, for an investor whose preferences or attitudes to risk are summarized by an utility

function where extreme risk is present, volatility might be replaced by tail expectation. Similarly, we

can easily identify reward measures and performance indicators differing from the simple average (or

cumulated) return and from the Sharpe ratio. On the one side, we aim at keeping those elements

in mind but, on the other side, we want to remain confined within the allocation approaches where

weights can be associated with a linear model. In such a framework, it is possible to show that the

adoption of non standard methods for the estimation of the linear model parameters (and portfolio

weights) leads to solutions equivalent to the optimization of performance measures or risk measures

differing from the Sharpe ratio and the volatility. Thus, moving away from the least square regression

approach for estimating portfolio weights is equivalent to optimizing a non-standard objective function.

The leading example is given by Bassett et al. (2004), which proposed a pessimistic asset allocation

strategy relying on the quantile regression method introduced by Koenker and Bassett (1978). In

particular, Bassett et al. (2004) start from the linear model whose solution provides the global minimum

variance portfolio weights. Then, they show that estimating by quantile regression methods a low

quantile (the α-quantile) of the response variable allows minimizing a measure of the portfolio extreme

risk that they call α-risk. Therefore, a change in the estimation approach allows moving from Global

Minimum Variance portfolio to the minimum α-risk portfolio.

Variants of the α-risk are known under a variety of names, such as “Expected Shortfall” (Acerbi

and Tasche, 2002), “Conditional Value-at-Risk” (Rockafellar and Uryasev, 2000), and “Tail Conditional

Expectation” (Artzner et al., 1999). Consequently, the pessimistic asset allocation strategy of Bassett

et al. (2004) corresponds to an extreme risk minimization approach.

The work by Bassett et al. (2004) also represents the starting point of our contributions. Building

on quantile regression methods, we aim at introducing innovative asset allocation strategies coherent

with the maximization of a risk-reward trade-off. Moreover, we combine quantile regression with

regularization methods, such as LASSO (Tibshirani, 1996), in order to cope with the problematic

issues arising form the large portfolios dimensionality. Our contributions provide an answer to specific

research questions, with a potential application within the financial industry.
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The first research question originates from a limitation of the pessimistic asset allocation approach

of Bassett et al. (2004), which is a risk-minimization-driven strategy. Is it possible to maintain the focus

on the α-risk, as in Bassett et al. (2004), and at the same time maximize a performance measure, thus

taking into account also rewards? Our first contribution consists in showing that quantile regression

models can be used not only to build financial portfolios with minimum extreme risk, as well known

in the financial econometrics literature, but also to optimize other risk and performance measures

by exploiting the information contained in the entire support of the response variable conditional

distribution. We focus on linear model representation whose coefficients are associated with the Global

Minimum Variance portfolio weights, as in Bassett et al. (2004), where quantile regression estimation

of the linear model coefficients leads to the minimum α-risk portfolio. We generalize the results in two

ways. First, showing that, under reasonable assumptions, at the median level, the quantile regression

solution of the linear model corresponds to the minimization of the mean absolute deviation of portfolio

returns. Secondly, at high quantiles levels the quantile regression solution provides portfolio weights

with an outstanding performance in terms of profitability and risk-adjusted returns. Such a solution

corresponds to the maximization of a specific reward measure, which is given as the conditional expected

return net of the most favorable outcomes; hence, it is a pessimistic allocation, as in Bassett et al.

(2004), but with focus on the right tail rather than the left one. As a by-product, we introduce a

performance measure, completely new in the literature; it is a risk-adjusted ratio which quantifies the

magnitude of all the negative returns balanced by a part of positive results, net of the most favorable

ones.

The second research question stems from empirical evidence and practitioners’ needs. Financial

portfolios are frequently characterized by a large cross-sectional dimension, i.e. they (potentially)

include a large number of assets. Assuming we are interested in maintaining a pessimistic asset

allocation strategy, possibly coherent with the investor preferences, we face a clear trade-off: on the one

side the large cross-sectional dimension allows taking advantage of the diversification benefits which

are anyway relevant even within a pessimistic allocation approach; on the other side, the number of

parameters to estimate by a quantile regression approach quickly increases as the portfolio dimension

grows. As a result, the accumulation of estimation errors becomes a problem that must be addressed.

The question is as follows: can we control estimation error by maintaining the focus on the pessimistic

asset allocation approach? Providing a possible solution, we impose a penalty on the ℓ1-norm of the

quantile regression coefficients along the line of the Least Absolute Shrinkage and Selection Operator

(LASSO), introduced by Tibshirani (1996) in a standard linear regression framework. Recent studies

show that applications of the LASSO to the mean-variance portfolio framework provide benefits in

terms of sparsity of the portfolio (indirectly associated with diversification/concentration and turnover)

and good out-of-sample properties, see e.g. Brodie et al. (2009), DeMiguel et al. (2009), Fan et al.

(2012), Yen and Yen (2014) and Fastrich et al. (2014). In the statistical literature, the ℓ1 penalty
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became a widely used tool not only in linear regression, but also for quantile regression models, see,

e.g. Koenker (2005), Belloni and Chernozhukov (2011), Li and Zhu (2008), while applications in asset

allocation are still scarce. Härdle et al. (2014) used penalized quantile regression as a security selection

tool, in an index tracking framework, whereas the portfolios weights are estimated by optimizing as

objective function the Cornish-Fisher Value-at-Risk. Differently, in the approach we introduce, the

penalized quantile regression model automatically selects and estimates the relevant assets weights in

a single step. To the best of our knowledge, such an approach has never been investigated in the

financial econometrics literature. We therefore suggest to estimate the pessimistic asset allocation

strategy of Bassett et al. (2004) and the pessimistic allocation here introduced, by penalizing the

ℓ1-norm of the assets weights.

We evaluate the two methodological contributions previously outlined with an extensive empirical

analysis, in which we compare the performance of the asset allocation strategies built from the quantile

regression models, at different quantiles levels, and the ordinary least squares approach. Differently

from Bassett et al. (2004), we use both simulated as well as real-world data. Moreover, we analyze

both the in-sample and the out-of-sample performances by implementing a rolling window procedure.

Finally, we focus on portfolios with a reasonably large cross-sectional dimension, being thus close to

the real needs of the financial industry. The in-sample results, on both real-world and simulated data,

show that each strategy performs consistently to the expectations, optimizing the respective objective

functions, α-risk, mean absolute deviation, or the upper-tail-based reward measure. Indeed, quantile

regression applied at low probability levels outperforms the other strategies in terms of extreme risk.

Least squares and median regression models turn out to be the best strategies in terms of volatility, as

the former minimizes the portfolio variance whereas the latter minimizes the mean absolute deviation

of portfolios returns. Finally, quantile regression at high probability levels provides the best results in

terms of profitability and risk-adjusted return. Out-of-sample results show that the quantile regression

models maintain their in-sample properties but only at high probability levels. Despite such a result

might be interesting from a practitioner’s point of view, it is quite surprising from a methodological

perspective. We studied this phenomenon providing an explanation associated with the role of the

model intercept. Finally, we highlight the critical importance of regularizing the quantile regression

problem to improve the out-of-sample performance of portfolios characterized by large cross-sectional

dimension.

The work is structured as follows. In Section 2 we show how the quantile regression model can be

used to build asset allocation strategies optimizing different objective functions at different quantiles

levels. In Section 3 we provide the details about the datasets, the performance indicators, the rolling

window procedure and the empirical set-up. In Section 4 we discuss the empirical results, and Section

5 concludes.
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2 Asset allocation based on quantile regression

2.1 Portfolio performance as function of quantiles levels

Several asset allocation strategies estimate portfolio weights by optimizing a criterion function. The

latter could either take the form of an utility function, of a risk measure, of a performance measure or

a combination of different measures. A subset of those asset allocation approaches have a companion

representation in the form of a regression model where the estimated coefficients correspond to the

portfolio weights. The leading example is the Global Minimum Variance Portfolio (GMV P ), whose

composition is the solution of the ordinary least squares regression model.

In the case of a financial portfolio consisting of n stocks, let R = [R1, ..., Rn] be the row vector of

the assets returns1, with covariance matrix V [R] = ΣΣΣ, whereas the row vector of weights is denoted

by w = [w1, ..., wn]; given the row vector 1, with length n and elements equal to 1, 1w′ = 1 in

order to satisfy the budget constraint. The portfolio return is then Rp = Rw′, but we can also

use a companion representation to include the budget constraint. First, we set R∗
i = Rn − Ri, for

i = 1, ..., n − 1, and then use these deviations for the computation of the portfolio return which

becomes Rp = Rn −w1R
∗
1 − ...−wn−1R

∗
n−1, where the n−th asset weight ensures the weights sum at

1. By starting from such representation, it is possible to show that the minimization of the portfolio

variance can be expressed as

min
w∈Rn

wΣΣΣw′ = min
(w−n,ξ)∈Rn

E
[
Rw′ − ξ

]2
= min

(w−n,ξ)∈Rn
E
[
Rn − w1R

∗
1 − ...− wn−1R

∗
n−1 − ξ

]2
, (1)

where ξ is the intercept of the linear regression model, w−n denotes the weights vector excluding wn

and wn = 1−
∑n−1

i=1 wi, in order to satisfy the budget constraint.

In Equation (1), the portfolio variance, wΣΣΣw′, is rewritten as E[Rn−w1R
∗
1 − ...−wn−1R

∗
n−1 −ξ]2.

The latter, corresponds to the variance of the errors for the linear regression of asset n returns, Rn,

with respect to R∗
i . Therefore, it is possible to minimize wΣΣΣw′ by minimizing the sum of squared errors

of a linear regression model, with response variable Rn and covariates R∗
1, ..., R

∗
n−1. Thus, estimating

the coefficients w1, ..., wn−1, along with the intercept ξ, is equivalent to finding the GMV P weights

(Fan et al., 2012). In Model (1), the response variable equals the n-th asset returns, Rn. However, the

result does not depend on the choice of the numeraire asset.

Despite the portfolio variance is a relevant risk measure, the financial literature presents a large

number of other indicators to be considered for profitability and risk analyses. If we move away

from the standard linear regression framework above mentioned, it is possible to estimate portfolios

compositions by optimizing alternative performance measures. For instance, Bassett et al. (2004)

proposed a pessimistic asset allocation strategy that relies on quantile regression in order to minimize
1To simplify the notation we suppress the dependence of returns on time.
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a risk measure: the so-called α−risk.

By starting from a monotone increasing utility function u(·), that transforms monetary outcomes

into utility terms, Bassett et al. (2004) define the expected utility associated with Rp as

E[u(Rp)] =
∫ ∞

−∞
u(rp)dFRp(rp) =

∫ 1

0
u
(
F−1
Rp

(ϑ)
)
dϑ, (2)

where FRp(rp) denotes the distribution function of Rp evaluated at rp, with density fRp(rp), whereas

ϑ is the quantile index such that ϑ ∈ U , with U ⊂ (0, 1).

Such a framework is directly linked with the Choquet expected utility (Schmeidler, 1989), defined

as

Eν [u(Rp)] =
∫ 1

0
u
(
F−1
Rp

(ϑ)
)
dν(ϑ), (3)

where ν(.) is a distortion function which modifies the original probability assessment. In particular,

ν(.) allows inflating the likelihood associated with the least favorable (i.e. ν(.) is concave) or the

most favorable outcomes (i.e. ν(.) is convex). Bassett et al. (2004) propose to use the function

να(ϑ) = min{ϑ/α, 1}, where α is a very low probability level, e.g. α = {0.01, 0.05, 0.1}, associated

with the (negative) returns in the left tail of fRp(rp). Then, (3) can be rewritten as

Eνα [u(Rp)] = α−1

∫ α

0
u
(
F−1
Rp

(ϑ)
)
dϑ, (4)

where Eνα [u(Rp)] implies pessimism since it inflates the likelihood associated with the α least favorable

outcomes, whereas the remaining 1− α proportion is entirely deflated.

Equation (4) is directly linked to a measure of extreme risk, ϱνα(Rp), defined by Bassett et al.

(2004) as α-risk:

ϱνα(Rp) = −
∫ 1

0
F−1
Rp

(ϑ)dν(ϑ) = −α−1

∫ α

0
F−1
Rp

(ϑ)dϑ. (5)

Such a quantity is a coherent measure of risk according to the definition of Artzner et al. (1999). Many

variants of ϱνα(Rp) have been discussed in the financial literature, under a variety of names: Expected

Shortfall (Acerbi and Tasche, 2002), Conditional Value-at-Risk (Rockafellar and Uryasev, 2000), and

Tail Conditional Expectation (Artzner et al., 1999).2

Notably, (5) might be taken as the target risk measure for portfolio allocation, see e.g. Basak and

Shapiro (2001), Krokhmal et al. (2002), Ciliberti et al. (2007), Mansini et al. (2007). In such a case,

ϱνα(Rp) can be minimized by resorting to the quantile regression method, as suggested by Bassett

et al. (2004), in a framework similar to the estimation of the GMV P weights in (1), where Rn is the

response variable, whereas R∗
1, ..., R

∗
n−1 are the covariates. Within a quantile regression framework,

the conditional ϑ-th quantile of Rn is estimated by minimizing the expected value of the asymmetric

loss function:
2Although ϱνα(Rp) could be denominated in different ways, throughout the paper we refer to the (5) as α-risk.
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ρϑ(ϵ) = ϵ [ϑ− I(ϵ < 0)] , (6)

where ϵ = Rn− ξ(ϑ)−w1(ϑ)R
∗
1 − ...−wn−1(ϑ)R

∗
n−1, ξ(ϑ) is the model intercept, and I(·) denotes the

indicator function taking value 1 if the condition in (·) is true, 0 otherwise.

The estimated ϑ-th conditional quantile of Rn is equal to ξ̂(ϑ) + ŵ1(ϑ)R
∗
1 + ... + ŵn−1(ϑ)R

∗
n−1,

where
[
ξ̂(ϑ), ŵ1(ϑ), ..., ŵn−1(ϑ)

]
is the coefficients vector minimizing (6), at a specific quantile level ϑ

(Koenker and Bassett, 1978). In the case in which ϑ = α, Bassett et al. (2004) showed that

min
(ξ(α),w−n(α))∈Rn

E[ρα(ϵ)] = α (µp + ϱνα(Rp)) , (7)

where w−n(α) = [w1(α), ..., wn−1(α)], µp = E[Rp] and ϱνα(Rp) as in (5).

Let rn,t and r∗i,t be, respectively, the observed values of Rn and R∗
i , for i = 1, ..., n − 1, at time t,

then, from (7), the quantile regression model

min
(ξ(α),w−n(α))∈Rn

T∑
t=1

ρα
(
rn,t − w1(α)r

∗
1,t − ...− wn−1(α)r

∗
n−1,t − ξ(α)

)
s.t. µp = c (8)

allows minimizing the empirical α-risk of a financial portfolio, with the constraints that the expected

portfolio return is equal to a target c and that the sum of the assets weights is equal to 1. Similarly to

Model (1), [ŵ1(α), ..., ŵn−1(α)], the estimated coefficients vector of the covariates R∗
1, ..., R

∗
n−1 in the

quantile regression model, is then the weights vector of R1, ..., Rn−1 for the portfolio with minimum

α-risk. Note that the weight of the n-th asset is then derived from the budget constraint: wn(α) =

1 −
∑n−1

i=1 wi(α). In this formulation, the assets weights do not change if we change the numeraire.

As the constraint µp = c in (8) requires the estimation of expected returns, which is known to be a

challenging task due to large estimation errors, see e.g. Brodie (1993) and Chopra and Ziemba (1993),

we hereby choose to focus on

min
(ξ(α),w−n(α))∈Rn

T∑
t=1

ρα
(
rn,t − w1(α)r

∗
1,t − ...− wn−1(α)r

∗
n−1,t − ξ(α)

)
, (9)

that is the minimization of the portfolio α-risk, subject only to the budget constraint.

As the portfolio performance does not depend just on extreme risk, but rather on the occurrence of

returns over their entire density support, we generalize the approach of Bassett et al. (2004) and allow

the construction of portfolios calibrated on different performance measures. First of all, we introduce

an approach which makes use of two new performance measures, with potential application also in the

performance evaluation area. The main idea stems from observing that (5) could be associated with

profitability, and no longer only with extreme risk, if we replace the low probability levels α by high

probability levels. According to this intuition, we introduce two different indicators, as described next.
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If we denote the high probability values by ψ, e.g. ψ = {0.9, 0.95, 0.99}, the α-risk in (5) translates

into

Ψ1(Rp, ψ) = −ψ−1

∫ ψ

0
F−1
Rp

(ϑ)dϑ. (10a)

Given that −Ψ1(Rp, ψ) = E[Rp|Rp ≤ F−1
Rp

(ψ)], the quantile regression model, applied at ψ, al-

lows to minimize Ψ1(Rp, ψ) and, consequently, to maximize the conditional portfolio expected return.

Therefore, by minimizing Ψ1(Rp, ψ) an agent is taking a pessimistic asset allocation strategy, in the

sense that such a choice leads to the maximization of the portfolio expected return net of the most

favorable outcomes, since the interval (ψ, 1] is not included in the objective function. Moreover, as

limψ→1−Ψ1(Rp, ψ) =
∫ ψ
0 F−1

Rp
(ϑ)dϑ, it is possible to obtain benefits in terms of unconditional portfolio

expected return, given that we maximize a quantity which approximates E[Rp].

The second performance indicator we introduce is obtained by decomposing the integral in Equation

(10a). In particular, let ϑ̄ be the value of ϑ such that F−1
Rp

(ϑ̄) = 0, at which the integral
∫ ϑ̄
0 F

−1
Rp

(ϑ)dϑ

reaches its lowest value; for instance, ϑ̄ = 0.5 when the distribution is symmetric at 0. Given ϑ̄ < ψ < 1,

(10a) could be rewritten as

Ψ1(Rp, ψ) = −ψ−1

∫ ψ

0
F−1
Rp

(ϑ)dϑ = −ψ−1

[∫ ϑ̄

0
F−1
Rp

(ϑ)dϑ+

∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ

]
, (10b)

where
∫ ϑ̄
0 F

−1
Rp

(ϑ)dϑ is computed from negative realizations and quantifies their magnitude. Differently,∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ quantifies the magnitude of a part of the positive outcomes, excluding the most favorable

ones, given that the region beyond ψ is not considered. The quantile regression model, applied at the

ψ-th level, minimizes Ψ1(Rp, ψ) and, thus, also −ς = −
(∫ ϑ̄

0 F
−1
Rp

(ϑ)dϑ+
∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ
)
. When fRp(rp)

is characterized by a null or a negative skewness, ς is negative, whereas ς could be positive in the case

of positive skewness. In the first case, ς could be seen as a net loss; differently, in the latter case, ς is

a net profit. Therefore, quantile regression model leads to the minimization of a loss (ς < 0) or to the

maximization of a profit (ς > 0), since, in (10b), ς is multiplied by the constant −ψ−1 < 0. In other

words, the quantile regression model minimizes |ς|, if ς < 0, or maximizes |ς|, if ς > 0, with benefits in

terms of the ratio:

Ψ2(Rp, ψ) =

∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ∣∣∣∫ ϑ̄0 F−1
Rp

(ϑ)dϑ
∣∣∣ . (11)

Hence, the ratio Ψ2(Rp, ψ) is a risk-adjusted measure because it quantifies the magnitude of all

the negative outcomes balanced by a part of positive results, net of the most favorable ones. Although

high Ψ2(Rp, ψ) values correspond to low Ψ1(Rp, ψ) levels, when different strategies are compared,

there are no guarantees that the strategy which minimizes Ψ1(Rp, ψ) is the one which maximizes

Ψ2(Rp, ψ). In other words, the ranking of different strategies built on the sum between
∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ

and
∫ ϑ̄
0 F

−1
Rp

(ϑ)dϑ may not coincide with the ranking built on the basis of their ratio. For example,
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suppose that for a certain strategy A,
∫ ϑ̄
0 F

−1
Rp

(ϑ)dϑ = −34.04 and
∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ = 8.13; differently,

strategy B returns
∫ ϑ̄
0 F

−1
Rp

(ϑ)dϑ = −33.74 and
∫ ψ
ϑ̄
F−1
Rp

(ϑ)dϑ = 7.95. B is better in terms of Ψ1(Rp, ψ),

but A outperforms B in terms of Ψ2(Rp, ψ).

Therefore, beside their use within a quantile regression-based portfolio allocation strategy, the two

indicators in (10a) and (11) are also novel contributions for the performance measurement literature.

We stress that while (10a) resemble tail-based risk measures, and is not a proper absolute performance

measure, see Caporin et al. (2014), indicator (11) is novel. It is interesting to notice that Ψ2(Rp, ψ)

is related both to the Omega measure proposed by Keating and Shadwick (2002) and to the modified

Rachev Ratio (Ortobelli et al., 2005). Nevertheless, there are some important differences between these

quantities. The Omega measure (Keating and Shadwick, 2002) is defined as

Ω(Rp) =

∫∞
0

[
1− FRp(rp)drp

]∫ 0
−∞ FRp(rp)drp

. (12)

Ψ2(Rp, ψ) differs from Omega because the latter, compares the entire regions associated with

negative and positive outcomes, respectively. Differently, (11) is more restrictive because its numerator

takes into account just a part of positive outcomes, as long as ψ < 1.

The modified Rachev Ratio (Ortobelli et al., 2005), MR(Rp, α, ψ), equals

MR(Rp, α, ψ) =
−α−1

∫ α
0 F−1

Rp
(ϑ)dϑ

(1− ψ)−1
∫ 1
ψ F

−1
Rp

(ϑ)dϑ
. (13)

In that case, the difference arises from the fact that (13) compares the extreme outcomes associated

to the distribution tails, as typically α = {0.01, 0.05, 0.1} and ψ = {0.9, 0.95, 0.99}, thus fully neglecting

the impact coming from the central part of the portfolio returns distribution.

In empirical application, we compute the sample counterparts of Ψ1(Rp, ψ) and Ψ2(Rp, ψ) as fol-

lows:

Ψ̂1(rp, ψ) = −

∑T
t=1 rp,tI

(
rp,t ≤ Q̂ψ(rp)

)
∑T

t=1 I
(
rp,t ≤ Q̂ψ(rp)

) , (14)

Ψ̂2(rp, ψ) =

∑T
t=1 rp,tI

(
0 ≤ rp,t ≤ Q̂ψ(rp)

)
∣∣∣∑T

t=1 rp,tI (rp,t < 0)
∣∣∣ , (15)

where rp,t denotes the portfolio return observed at t, Q̂ψ(rp) denotes the estimated ψ-th quantile of the

portfolio returns, I(·) is the indicator function taking value 1 if the condition in (·) is true, 0 otherwise.

Beside highlighting the impact of the quantile regression model in terms of Ψ1(Rp, ψ) and Ψ2(Rp, ψ),

we go further considering also the central ϑ values. Now we focus on portfolio volatility, quantified by
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the mean absolute deviation introduced by Konno and Yamazaki (1991):

MAD(Rp) = E [|Rp − E[Rp]|] , (16)

estimated in empirical applications as

M̂AD(rp) =
1

T

T∑
t=1

|rp,t − r̄p| , (17)

where r̄p is the sample mean of portfolio returns in the interval [1, T ].

Under the hypotheses that the portfolio mean, E[Rp], and the median regression intercept ξ(ϑ = 0.5)

are both equal to zero, we show that the median regression allows to minimize the quantity in (16).

Indeed, the quantile regression model at ϑ = 0.5 minimizes E[|Rn−w1(0.5)R
∗
1− ...−wn−1(0.5)R

∗
n−1−

ξ(0.5)|] = E[|Rp − ξ(0.5)|]. Thus, under the assumptions E[Rp] = 0 and ξ(0.5) = 0, the median

regression minimizes the mean absolute deviation of portfolio returns.

To summarize, the quantile regression model allows reaching different purposes. First of all, we

should choose a low probability level, α, when we want to minimize the extreme risk, quantified by

the α-risk. When the attention is focused on volatility minimization, quantified by MAD, we should

use median regression. Finally, with a high probability level, ψ, we minimize Ψ1(Rp, ψ), with positive

effects in terms of Ψ2(Rp, ψ).

2.1.1 Simulation exercise

Bassett et al. (2004) applied the model in (8) by using simulated returns of 4 assets, showing its

better performance in terms of extreme risk with respect to the classic Markowitz (1952) portfolio.

Nevertheless, in the real world, investors trade financial portfolios consisting of many more assets,

primarily to achieve a satisfactory diversification level, to better deal with the risk-return trade-off

(Markowitz, 1952). In order to further motivate the relevance of quantile regression approaches for

portfolio allocation, and to show the impact of the methodological improvements previously described,

we consider a simulation exercise on portfolios containing 94 assets.3 The returns are simulated from

distributions with different features, in terms of kurtosis and skewness, to verify how these differences

impact on the performance of the considered strategies. In particular, we test 4 different distributions:

the Multivariate Normal, the Multivariate t-Student with 5 degrees of freedom, the Multivariate Skew-

Normal with negative skewness and the Multivariate Skew-Normal with positive skewness. In the case

of the Multivariate Skew-Normal, we used two different values of the skewness parameter, to obtain

returns series with average skewness equal to 0.02 and -0.02, respectively.
3The portfolios dimensionality comes from the fact that we simulated returns from a distribution whose covariance

matrix and mean vector are estimated from real data. We refer here to the constituents of the Standard & Poor’s 100
index at November 21, 2014, and whose time series are continuously available from November 4, 2004 to November 21,
2014. See Section 3.1 for further details on the dataset.
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We simulated, from each distribution, 1000 samples of 94 assets returns for 500 periods, comparing

four strategies: the standard as in (1), denoted asOLS, and the ones arising from the quantile regression

models applied at three probability levels, that is ϑ = {0.1, 0.5, 0.9}, denoted, respectively, as QR(0.1),

QR(0.5) and QR(0.9), respectively. The portfolios weights determined by the four strategies are

estimated from each of the 1000 simulated samples and the portfolios returns are computed by means

of the in-sample approach.4 Thus, for each strategy and for each sample, we obtain 500 portfolio

returns from which we compute the following statistics: variance, mean absolute deviation, α-risk

(with α = 0.1), Ψ1(Rp, ψ) and Ψ2(Rp, ψ), at ψ = 0.9. We display in Figures 1-2 the results obtained

from the Multivariate Normal and Skew-Normal (right-skewed) distributions.5

Figure 1: In-Sample results with returns simulated from Multivariate Normal Distribution, whose covariance matrix
and mean vector are estimated from real data, i.e. the constituents of the Standard & Poor’s 100 index at November
21, 2014, and whose time series are continuously available from November 4, 2004 to November 21, 2014. The analysis
is carried out on 1000 simulated samples of 94 assets returns for 500 periods. From left to right the subfigures report
the boxplots of the following statistics: variance (a), mean absolute deviation (b), α-risk at α = 0.1 (c), Ψ̂1(rp, ψ) at
ψ = 0.9 (d) and Ψ̂2(rp, ψ) at ψ = 0.9 (e). A, B, C denote the strategies built from quantile regression models applied at
probabilities levels of 0.1, 0.5 and 0.9, respectively, whereas D refers to the ordinary least squares regression model.

As expected, OLS and QR(0.5) provide the best results in terms of portfolio volatility, since the

former minimizes the portfolio variance (Subfigure (a)), whereas the latter minimizes the portfolio

MAD (Subfigure (b)). QR(0.1) minimizes the α-risk at α = 0.1 (Subfigure (c)), differently, QR(0.9)

is the best strategy in terms of profitability. Indeed, as it is possible to see from Subfigure (d), it

outperforms the other three strategies in terms of Ψ̂1(rp, 0.9), which quantifies the average of portfolio

returns which are less or equal to their 90-th percentile. It is interesting to observe that, when the assets
4See Section 3.2 for further details about the in-sample analysis.
5The boxplots obtained in the case of the other distributions are available on request. Results are qualitatively similar

to those obtained from the Multivariate Normal distribution: the presence of fatter tails, as in the Multivariate t-Student,
or of negative asymmetry, as in the Multivariate Skew-Normal with negative skewness, don’t lead to different results.
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Figure 2: In-Sample results with returns simulated from Multivariate Skew-Normal Distribution (average skewness of
0.02), whose covariance matrix is estimated from real data, i.e. the constituents of the Standard & Poor’s 100 index at
November 21, 2014, and whose time series are continuously available from November 4, 2004 to November 21, 2014. The
analysis is carried out on 1000 simulated samples of 94 assets returns for 500 periods. From left to right the subfigures
report the boxplots of the following statistics: variance (a), mean absolute deviation (b), α-risk at α = 0.1 (c), Ψ̂1(rp, ψ)

at ψ = 0.9 (d) and Ψ̂2(rp, ψ) at ψ = 0.9 (e). A, B, C denote the strategies built from quantile regression models applied
at probabilities levels of 0.1, 0.5 and 0.9, respectively, whereas D refers to the ordinary least squares regression model.

returns distributions are positive skewed (Figure 2(d)), Ψ̂1(rp, 0.9) takes negative values, mainly in the

case of QR(0.9); it means that, on average, the positive returns prevail over the negative ones, even

if the most favorable outcomes in the right tail of the distributions are discarded. Finally, QR(0.9)

provides the best results in terms of Ψ̂2(rp, 0.9) in three out of four cases; the exception occurs in

Figure 2(e), where the returns are characterized by significant positive skewness, which is typically an

unrealistic assumption for financial returns series, typically affected by negative skewness, as discussed

in Cont (2001). The results also show that the ranking based on Ψ1(Rp, ψ), as expected, might not

coincide to the one based on Ψ2(Rp, ψ). Indeed, we checked that QR(0.9) always provides, also in the

case of the Multivariate Skew-Normal distribution (right-skewed), the highest values of the difference

between the numerator and the denominator of the ratio defined in Equation (11). Nevertheless, in all

the cases apart the one in which the distributions of returns are assumed to be right-skewed (this is

hardly the case of financial time series), QR(0.9) turns out to be the best strategy in terms of Ψ2(Rp, ψ)

too.

2.2 The inclusion of the ℓ1-norm penalty

Large portfolios allow taking advantage of the diversification benefits. Nevertheless, Statman (1987)

and recently Fan et al. (2012) show that the inclusion of additional assets in the portfolio involves
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relevant benefits but only up to a certain number of assets. On the other hand, the number of

parameters to estimate increases as the portfolio dimensionality grows. As a result, the consequent

accumulation of estimation errors becomes a problem that must be carefully addressed. For, instance,

Kourtis et al. (2012) defined the estimation error as the price to pay for diversification. Furthermore,

when large portfolios are built through regression models, as showed in Section 2.1, the assets returns

are typically highly correlated; then, the estimated portfolios weights are poorly determined and exhibit

high variance.

We propose here a further extension to the Bassett et al. (2004) approach in order to deal with

financial portfolios characterized by large cross-sectional dimension, i.e. by a large number of assets.

Our solution builds on penalizations techniques, see e.g. Hastie et al. (2009), widely applied in the

recent financial literature, see e.g. DeMiguel et al. (2009), Fan et al. (2012), Fastrich et al. (2014),

Yen and Yen (2014), Ando and Bai (2014). Among all the possible methods, we make use of the

ℓ1-norm penalty, useful in the context of variable selection, by which we penalize the absolute size

of the regression coefficients. In the last ten years, it became a widely used tool not only in linear

regression, but also in quantile regression models, see, e.g. Koenker (2005), Belloni and Chernozhukov

(2011), Li and Zhu (2008).

Härdle et al. (2014) used the ℓ1-norm penalty in a quantile regression model where the response

variable is a core asset, represented by the Standard & Poor’s 500 index, whereas the covariates are

hedging satellites, i.e. a set of hedge funds. After setting the quantiles levels according to a precise

scheme, the aim is to buy the hedge funds whose coefficients, estimated from the penalized quantile

regression model, are different from zero. Therefore, in the work by Härdle et al. (2014) the penalized

quantile regression is used as a security selection tool, in an index tracking framework. In a second step,

by placing the focus on the downside risk, Härdle et al. (2014) determine the optimal weights of the

funds previously selected by optimizing the objective function given by the Cornish-Fisher Value-at-

Risk (CF-VaR). Differently, we use a penalized quantile regression model which allows to solve in just

one step both the security selection and the asset allocation problems. The response and the covariates

are determined from the assets included in the portfolio, without considering externals variables (such

as market indices) with the aim to optimize different performance measures according to different ϑ

levels. In particular, given 1 ≤ k ≤ n, we propose the asset allocation strategy based on the following

model:

argmin
(w−k(ϑ),ξ(ϑ))∈Rn

T∑
t=1

ρϑ

rk,t −∑
j ̸=k

wj(ϑ)r
∗
j,t − ξ(ϑ)

+ λ
∑
j ̸=k

|wj(ϑ)|, (18)

where the parameters (ξ(ϑ),w−k(ϑ)) depend on the probability level ϑ, w−k(ϑ) is the weights vector

which does not include wk, that is the weight of the k-th asset selected in the (18) as numeraire, whereas

λ is the penalty parameter; the larger λ, the larger is the portfolio sparsity. Thus, by penalizing the
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sum of the absolute coefficients values, i.e. ℓ1-norm, some of the weights might converge to zero.

Moreover, in a financial perspective, this leads to select portfolios with a fewer active positions, with

relevant impact on turnover and transactions costs.

Unlike Model (8), the solutions of (18) depend on the choice of the numeraire Rk. Indeed the

Rk weight is not penalized, given that it is equal to wk(ϑ) = 1 −
∑

j ̸=k wj(ϑ), to satisfy the budget

constraint. Therefore, we need to define a criterion to select the numeraire asset among all the available

securities. We propose a naive but intuitive solution: we suggest selecting as numeraire the asset

characterized by the lowest in-sample Ψ̂1(Rp, ψ) value. This choice is due to the fact that the numeraire

plays a prominent role with respect to the other selected assets, therefore it must record the best

expected performance in terms of a specific indicator.

Another important issue refers to the choice of the optimal λ value; we remind that the higher λ,

the more sparse is the portfolio. For this purpose, we follow the approach proposed by Belloni and

Chernozhukov (2011). They considered the problem of dealing with a large number of explanatory

variables, with respect to the sample size T , where only at most s ≤ n regressors have a non-null

impact on each conditional quantile of the response variable. In this context, where the ordinary

quantile regression estimates are not consistent, they showed that, by penalizing the ℓ1-norm of the

regressors coefficients, the estimates are uniformly consistent over the compact set U ⊂ (0, 1). In

order to determine the optimal λ value, they proposed a data-driven method with optimal asymptotic

properties. This method takes into account the correlation among the variables involved in the model

and leads to different optimal λ values according to the ϑ level. The penalization parameter is built

from the random variable

Λ = T sup
ϑ∈U

max
j ̸=k

∣∣∣∣∣ 1T
T∑
t=1

[
r∗j,t(ϑ− 1{et≤ϑ})

σ̂j
√
ϑ(1− ϑ)

]∣∣∣∣∣ , (19)

where e1, ..., eT are i.i.d. uniform (0, 1) random variables independently distributed from the covariates,

r∗, and σ̂2j = T−1
∑T

t=1(r
∗
j,t)

2. As recommended in Belloni and Chernozhukov (2011), we simulate the

Λ values, by running 100000 iterations. Hence, the optimal penalty parameter is computed as

λ∗ =
τ
√
ϑ(1− ϑ)

T
, (20)

where τ = 2Q̂0.9(Λ|r∗) and Q̂0.9(Λ|r∗) is the 90-th percentile of Λ conditional on the explanatory

variables values. The method given by Equation (20) is used in the empirical analysis, discussed in

Section 4, in order to determine the optimal value of the penalization parameter λ.
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3 Empirical set-up

3.1 Data description

While Bassett et al. (2004) used only simulated data in their work, we go further and provide an

empirical evaluation based on real data, taking into account two different datasets. They consist of

the daily returns of the firms included, from November 4, 2004 to November 21, 2014, in the baskets of

the Standard & Poor’s 100 and the Standard & Poor’s 500 indices, respectively.6 In the first dataset

(S&P100) we deal with 94 assets, whereas in the second one (S&P500) we have 452 stocks. Figure 3

allows to analyze the main descriptive statistics for the largest S&P500 dataset.

Figure 3: Statistics computed from each of the assets returns generated by the Standard & Poor’s 500 constituents.
From left to right the boxplots refer to: (a) the average returns, (b) the standard deviations of the assets returns, (c)
the Kurtosis index, (d) the skewness index, (e) the 10-th percentile of returns, (f) the final wealth generated by each
company at the end of the analysis when the initial wealth is equal to 100 $.

From Figure 3(a) we can see that the average returns are close to zero and that they tend to be

positive, being symmetrically distributed around the median 0.055%; their maximum and minimum

values are equal to 0.242% and −0.044%, respectively. The distribution of the standard deviations is

centered at the median value of 2.137% and ranges from 1.013% to 5.329% (Figure 3(b)), with the

presence of a few particularly volatile companies associated to the extreme right-tailed values. The

kurtosis index distribution is right-skewed, with extremely large values in the right tail (Figure 3(c)):

the median is equal to 12.379, whereas the minimum and the maximum are equal, respectively, to

5.948 and 72.867, pointing out that the returns distributions are affected by heavy tails, as expected

(see Cont (2001) for stylized facts of financial returns). Figure 3(d) shows that the skewness index is

symmetrically distributed around the median value of 0.209. It ranges from -3.088 to 2.640, with the
6The data are recovered from Thomson Reuters Datastream.
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presence of some extreme values in both the tails; hence, the returns have leptokurtic and asymmetric

distributions. Figure 3(e) displays the 10-th percentile of the returns series, a measure of extreme risk

that we used as estimate of the Value-at-Risk, as discussed in Section 3.3. From Figure 3(e) we can see

that the distribution of the 10-th percentile is affected by a slight negative asymmetry, centered at the

median of −2.044%, with minimum and maximum equal to −3.703% and −1.004%, respectively. The

last measure, reported in Figure 3(f), displays the distribution of the wealth we obtain in November

21, 2014 from the single assets, after investing, in November 4, 2004, 100 $ in each of them. The final

wealth distribution, right-skewed, is affected by relevant extreme values in its right tail. It ranges from

2.423 to 7757.073, with median value of 221.650 $; therefore, on average, we record an increase in

stocks values.

3.2 Rolling analysis with in-sample and out-of-sample assessment

We estimate the portfolios weights by using the least squares and the quantile regression models

introduced in Section 2. At the moment in which portfolios are built, it is just possible to predict their

future performance, whereas the actual results are not ensured, being evaluable only ex post. Assuming

to behave like an investor, we further extend the work of Bassett et al. (2004) by implementing a rolling

window procedure, which allows to analyze the out-of-sample performance. Furthermore, we can assess

the stability of the estimates over time.

The rolling window procedure is described as follows. Iteratively, the original assets returns time

series, with dimension T × n, are divided in subsamples with window size ws. The first subsample

includes the daily returns from the first to the ws-th day. The second subsample is obtained by

removing the oldest observations and including those of the (ws + 1)-th day. The procedure goes on

till the (T − 1)-th day is reached. In the empirical analysis we make use of two different window

sizes, that is ws = {500, 1000}, to check how the portfolio performance depends on both the portfolio

dimensionality and the sample size.

For each window, we estimate the portfolio weights, denoted by ŵt, for t = ws, ..., T − 1, by means

of a given asset allocation strategy. Let rt−ws+1,t be the ws × n matrix whose rows are the assets

returns vectors recorded in the period between t−ws+1 and t. Then, portfolio returns are computed

both in-sample and out-of-sample. In the first case, for each rolled subsample, we multiply each row of

rt−ws+1,t by ŵt, obtaining ws in-sample portfolio returns, from which we can compute the performance

indicators described in Section 3.3. Overall, from all the T−ws submatrices rt−ws+1,t, we obtain T−ws

values of each performance indicator, whose distribution is analyzed in Section 4.

Unlike the in-sample analysis, where we assess estimated performance indicators, the aim of the

out-of-sample analysis is to check whether the expectations find confirmation in the actual outcomes.

Therefore, the out-of-sample performance plays a critical role, given that it corresponds to the actual

impacts on the wealth obtained by an investor that daily revises his portfolio. In particular, for
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t = ws, ..., T − 1, ŵt is multiplied by rt+1, i.e. the assets returns vector observed at t + 1, to obtain

the out-of-sample portfolio returns. In this way, for each asset allocation strategy, we obtain one series

of out-of-sample portfolio returns, that is a vector with length T − ws, from which we compute the

performance indicators described in Section 3.3.

3.3 Performance indicators

In the empirical analysis we compare several asset allocation strategies, built from both the ordinary

least squares and the quantile regression models. We assess and compare their performance using

several indicators, to provide information about profitability, risk and impact of trading fees on the

portfolios. Each indicator is computed from both the in-sample and out-of-sample returns.

Some of the performance indicators, namely α-risk, MAD, Ψ1(Rp, ψ) and Ψ2(Rp, ψ) are described

in Section 2.1. In addition, we take into account other measures, typically used in financial studies.

The first one is the Sharpe ratio, a risk-adjusted return measure, defined as

SR =
r̄p
σ̂p
, (21)

where r̄p and σ̂p denote, respectively, the sample mean and standard deviation of the portfolio returns.7

As stated in Section 3.2, in the in-sample case, r̄p and σ̂p are computed for each of the rolled subsample

rt−ws+1,t, for t = ws, ..., T − 1. As result, we obtain T − ws Sharpe ratios. Differently, in the out-of-

sample case, we have one portfolio return for each window, obtaining overall a single vector of portfolio

returns, with length equal to T − ws, from which we compute the Sharpe ratio.

In addition to the α-risk, we also consider the Value-at-Risk, defined as the threshold value such

that the probability that the portfolio loss exceeds that value in a given time horizon is equal to α. The

importance of Value-at-Risk is due not only to the fact that it is widely used by financial institutions

to allocate their capital, but it is also used by financial authorities to define capital requirements in

their supervisory activity.8 In the present work, the Value-at-Risk is estimated as the α-th quantile,

with α = 0.1, of the portfolio returns, both in-sample and out-of-sample.

Finally, we assess the impact of the trading fees on the portfolio rebalancing activity through the

turnover, computed as

Turn =
1

T − ws

T∑
t=ws+1

n∑
j=1

|ŵj,t − ŵj,t−1| , (22)

where ŵj,t is the weight of the j-th asset determined by an asset allocation strategy at day t. The

higher the turnover, the larger is the impact of costs arising from the rebalancing activity.
7To be precise, the numerator of the (21) should be equal to the risk-free excess return. For simplicity, we assume

that the risk-free return is equal to zero.
8See e.g. "International convergence of capital measurement and capital standards" by Basel Commitee on Banking

Supervision, available at http://www.bis.org/publ/bcbs118.pdf.
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4 Empirical results

The first aspect we analyze refers to the impact of the ℓ1-norm penalty on portfolio weights. For the

quantile regression model, we estimate the optimal shrinkage parameter λ according to the method

proposed by Belloni and Chernozhukov (2011). For each quantile level, we compute the (20) by using

the full sample data, for both S&P100 and S&P500. Hence, after implementing the rolling window

procedure, we compute the number of active and short positions for each rolled sample, whose average

values are denoted by n̄a and n̄s, respectively. The asset allocation strategy built from Model (18) is

denoted as PQR(ϑ), for ϑ ∈ (0, 1). We also apply the ℓ1-norm on Model (1) and the resulting asset

allocation strategy is denoted as LASSO. For LASSO, λ∗ is calibrated in order to obtain comparable

results, in terms of n̄a, to those generated by the quantile regression model at ϑ = 0.5. For simplicity,

we show in Table 1 the λ∗ values and the average number of active and short positions over the rolled

windows just for PQR(0.1), PQR(0.5), PQR(0.9) and LASSO.9

Table 1: The impact of the ℓ1-norm penalty on active and short positions.

Strategy λ∗ (S&P100) λ∗ (S&P500) n̄a (S&P100) n̄a (S&P500) n̄s (S&P100) n̄s (S&P500)
ws=500 ws=1000 ws=500 ws=1000 ws=500 ws=1000 ws=500 ws=1000

PQR(0.1) 0.3644 0.6964 24 43 32 74 6 19 8 26
PQR(0.5) 0.6073 0.1608 29 44 42 77 8 17 10 28
PQR(0.9) 0.3644 0.6964 27 41 36 71 7 15 7 23
LASSO 0.0004 0.0004 28 45 42 77 9 20 12 32

The table reports the optimal shrinkage parameters (λ∗), the average numbers of active (n̄a) and short (n̄s) positions over the rolled samples, for the
ordinary least squares (LASSO) and the quantile regression (PQR(ϑ)) models, regularized through the ℓ1-norm penalty, by using different datasets
and window sizes.

We note that λ∗ changes according to the ϑ levels, reaching relatively higher values at the center

of the ϑ domain. This leads to the attenuation of the quantile regression approach tendency for an

increase of active positions around the median, see Table 1. Moreover, we analyzed the evolution over

time of the portfolio weights estimated by both the ordinary least squares and the quantile regression

approaches. We checked that the weights become more stable with the ℓ1-norm penalty and that the

effect is more clear with ws = 1000. This result is due to the fact that the ℓ1-norm penalty shrinks to

zero the weights of the highly correlated assets and the larger window size reduces the impact of the

estimation errors.

Now we analyze and compare the in-sample performance of the various allocation strategies. From

the in-sample portfolios returns, computed as described in Section 3.2, we obtain the following perfor-

mance measures: mean, standard deviation, Sharpe Ratio, Value-at-Risk at α = 0.1 (see Section 3.3),

α-risk at α = 0.1, Ψ1(Rp, 0.9), Ψ2(Rp, 0.9) and MAD, defined by (5), (10a), (11) and (16), respectively.

As stated in Section 3.2, overall, from all the T − ws subsamples arising from the rolling procedure,

we get T − ws values of each performance indicator. We make use of boxplots in order to see how

the in-sample statistics are distributed over the rolled subsamples. We show in Figures 4-5 the output
9In the present work, the position on a certain stock is considered to be long if the absolute value of its weight is

larger than 0.0005. Similarly, a position is considered short if the weight is less than -0.0005. The weights whose values
are between -0.0005 and 0.0005 are set equal to zero.
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obtained from the ordinary least squares and the quantile regression (applied at ϑ = {0.1, 0.5, 0.9})

models, with and without the imposition of the ℓ1-norm penalty, by using as dataset the S&P 500

constituents (S&P500) and applying the rolling technique with window size of 500 observations.10

Figure 4: In-Sample results, obtained without penalizations, from the returns series of the Standard & Poor’s 500 index
constituents. Rolling analysis with window size of 500 observations. A, B, C denote the strategies built from quantile
regression models applied at probabilities levels of 0.1, 0.5 and 0.9, respectively, whereas D refers to the ordinary least
squares regression model. From left to right the subfigures report the boxplots of the following statistics: mean (a),
standard deviation (b), mean absolute deviation (c), Value-at-Risk at the level of 10% (d), α-risk at α = 0.1 (e),
Ψ̂1(rp, ψ) (f), Ψ̂2(rp, ψ) (g), with ψ = 0.9, Sharpe Ratio (h).

The ordinary least squares model provides the lowest standard deviation, with (Figure 5(b)) and

without (Figure 4(b)) penalty, as expected, since its objective function is given by the portfolio variance.

As pointed out in Section 2.1, under the assumptions E[Rp] = 0 and ξ(0.5) = 0, the median regression

minimizes the portfolio mean absolute deviation. Such a result is clear with QR(0.5) (Figure 4(c));

when we impose the ℓ1-norm penalty, PQR(0.5) still provides the lowestMAD with respect to the other

quantile regression models, but it is outperformed by LASSO (Figure 5(c)). Indeed, if we impose the

ℓ1-norm penalty on the median regression, we want to obtain a portfolio characterized by two features:

low mean absolute deviation and sparsity, i.e. with a limited number of active positions. Then, the

further aim of obtaining sparse portfolios could require sacrifices in terms of higher MAD with respect

to the case in which the median regression is not penalized, i.e. when the attention is placed just on

the minimization of the quantity defined in Equation (16). The same phenomenon occurs in the case

of α-risk: the quantile regression model applied at ϑ = 0.1 provides the best results when it is not

penalized (Figure 4(e)), but its best performance fades when we impose the ℓ1-norm penalty (Figure

5(e)). In terms of Value-at-Risk there is no strategy which systematically outperforms the other ones;

indeed, the ranking based on VaR is not well defined and it varies depending on both the dataset and
10We obtained very similar results, available on request, in the other cases.
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Figure 5: In-Sample results, obtained by imposing the ℓ1-norm, from the returns series of the Standard & Poor’s
500 index constituents. Rolling analysis with window size of 500 observations. A, B, C denote the strategies built from
quantile regression models applied at probabilities levels of 0.1, 0.5 and 0.9, respectively, whereas D refers to the ordinary
least squares regression model. From left to right the subfigures report the boxplots of the following statistics: mean
(a), standard deviation (b), mean absolute deviation (c), Value-at-Risk at the level of 10% (d), α-risk at α = 0.1 (e),
Ψ̂1(rp, ψ) (f), Ψ̂2(rp, ψ) (g), with ψ = 0.9, Sharpe Ratio (h).

the window size. With regard to the Sharpe ratio (Figures 4(h)-5(h)), the lowest variance values allow

OLS and LASSO to be ranked on top positions even if they do not generate, on average, remarkable

portfolio returns, as showed by Figures 4(a)-5(a). Moreover, when we focus on the average return,

there is no strategy systematically dominating the others. Finally, the quantile regression at ϑ = 0.9

always outperforms the other strategies in terms of both Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9) (Subfigures (f)

and (g)).

After analyzing the in-sample results, it is important to check whether they are confirmed out-of-

sample. The critical role of the out-of-sample analysis is due to the fact that it refers to the actual

performance that an investor draws from a financial portfolio. Now we compare the ordinary least

squares and the quantile regression (applied at ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}) models,

with and without ℓ1-norm penalty, showing in Figures 6-9 just the results obtained by running the

rolling method with ws = 1000; similar results apply for ws = 500. Consistently to the in-sample

expectations, the ordinary least squares regression model records the lowest out-of-sample standard

deviation. The ℓ1-norm penalty implies important improvements for all the strategies. Although the

quantile regression model works better in terms of MAD at central ϑ values, as expected, the ordinary

least squares model records the lowest mean absolute deviations; it is important to notice that the

ℓ1-norm penalty reduces the MAD of all the strategies (Figures 6(b)-7(b)).

When we analyze the Value-at-Risk, the ℓ1-norm penalty brings benefits. In most cases, the

ordinary least squares model outperforms the quantile regression models, mainly when they are not

20



Figure 6: Out-of-Sample results generated by the strategies built from the ordinary least squares (with (LASSO)
and without (OLS) ℓ1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm
penalty) models. The strategies are applied on the returns series of the Standard & Poor’s 100 index constituents and
the rolling analysis is carried out with a window size of 1000 observations. In the subfigures we consider the following
measures: standard deviation (a), mean absolute deviation (b), Value-at-Risk (c) and α-risk (d) at the level of 10%.

Figure 7: Out-of-Sample results generated by the strategies built from the ordinary least squares (with (LASSO)
and without (OLS) ℓ1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm
penalty) models. The strategies are applied on the returns series of the Standard & Poor’s 500 index constituents and
the rolling analysis is carried out with a window size of 1000 observations. In the subfigures we consider the following
measures: standard deviation (a), mean absolute deviation (b), Value-at-Risk (c) and α-risk (d) at the level of 10%.

penalized. The ℓ1-norm penalty allows to reduce this gap and (see e.g. Figures 6(c)-7(c)) LASSO is

outperformed by PQR(ϑ) at medium-high ϑ values. The behaviour of the out-of-sample α-risk changes

with respect to the in-sample case, as we can see, for instance, from Figures 6(d)-7(d). Indeed, the

quantile regression model, with and without penalizations, generates disappointing results at low ϑ

levels. The ℓ1-norm penalty turns out to be very effective, given that it reduces the exposure of all

the strategies to the α-risk. LASSO is ranked as the best strategy and the quantile regression model

works better at central ϑ levels.

With regard to profitability, the quantile regression model applied at high ϑ levels provides out-

21



Figure 8: Out-of-Sample results generated by the strategies built from the ordinary least squares (with (LASSO)
and without (OLS) ℓ1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm
penalty) models. The strategies are applied on the returns series of the Standard & Poor’s 100 index constituents and
the rolling analysis is carried out with a window size of 1000 observations. In the subfigures we consider the following
measures: Ψ̂1(rp, ψ) (a) and Ψ̂2(rp, ψ) (b) at ψ = 0.9, mean (c) and Sharpe Ratio (d).

Figure 9: Out-of-Sample results generated by the strategies built from the ordinary least squares (with (LASSO)
and without (OLS) ℓ1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm
penalty) models. The strategies are applied on the returns series of the Standard & Poor’s 500 index constituents and
the rolling analysis is carried out with a window size of 1000 observations. In the subfigures we consider the following
measures: Ψ̂1(rp, ψ) (a) and Ψ̂2(rp, ψ) (b) at ψ = 0.9, mean (c) and Sharpe Ratio (d).

standing out-of-sample results, consistently to the in-sample expectations. In case the portfolios weights

are estimated by using a sample size not sufficiently large with respect to the portfolio dimensionality

(i.e. ws = 500 and n = 452), Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9) don’t exhibit clear trends over ϑ when quantile

regression model is not regularized, as we can see from the comparisons between Figures 8(a)-(b) and

Figures 9(a)-(b). Differently, Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9) become, respectively, negative and positive

functions of ϑ when we impose the ℓ1-norm penalty, also in the case of the S&P500 dataset. Similar

conclusions are drawn from the average return and the Sharpe ratio. In particular, in the case of the

S&P100 dataset, the quantile regression model applied at high ϑ levels generates the best performance,

with and without penalizations, and PQR(0.9) outperforms all the other strategies (see e.g. Figures
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8(c)-(d)). In the case of the S&P500 dataset, the quantile regression model at ϑ = 0.9 turns out to

be the best strategy only if it is applied with the ℓ1-norm penalty. In order to analyze the trend over

time of the portfolio value generated by each strategy, we assume that the initial wealth is equal to

100 $ and we update it from ws + 1 to T , according to the out-of-sample portfolio returns. In the

case of S&P100, the quantile regression model at ϑ = 0.9 not only provides the highest final wealth,

but it also dominates the other strategies over time; differently, in the case of the S&P500 dataset, it

systematically outperforms the other strategies when we impose the ℓ1-norm penalty (see Figure 10).

Figure 10: The evolution of the portfolio value generated by the strategies built from the ordinary least squares (with
(LASSO) and without (OLS) ℓ1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ))
ℓ1-norm penalty, for ϑ = {0.1, 0.5, 0.9}) models. The subfigures report different results according to the used dataset and
to the fact that the regression models are applied with or without ℓ1-norm penalty. The rolling analysis is implemented
with window size of 1000 observations.

As stated above, without regularizations, large portfolios are affected by an increasing variability

in portfolios weights, with negative effects on trading fees. Consequently, turnover becomes a problem,

particularly for the quantile regression model (Figure 11). The ℓ1-norm penalty allows to obtain

sparse portfolios, with stable weights over time, thus it turns out to be very effective in terms of

turnover control. In fact, the inclusion of the ℓ1-norm penalty causes a sharp drop of turnover in all

the analyzed cases. The quantile regression model is the one which most benefits from regularization,

since the marked gap between OLS and QR(ϑ) shrinks to become almost irrelevant.

To summarize the out-of-sample results, the ℓ1-norm penalty regularizes the portfolio weights, with

noticeable positive effects on turnover. Moreover, it leads to clear improvements of both the portfolio

risk and profitability. In general, the ordinary least squares model turns out to be the best strategy in

terms of risk, given that it implies the lowest levels of volatility and extreme risk; quantile regression

model works better at central ϑ values. The quantile regression, applied at low ϑ values, generates

unsatisfactory results in terms of extreme risk with respect to the in-sample expectations; differently,

when we analyze the portfolio profitability and the risk-adjusted return, it provides outstanding per-
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Figure 11: Turnover of the strategies built from the ordinary least squares (with (LASSO) and without (OLS) ℓ1-norm
penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm penalty) models. The strategies
are applied on the returns series of the Standard & Poor’s 100 (Subplot (a)) and 500 (Subplot (b)) indices constituents.
The rolling analysis is carried out with window size of 1000 observations.

formances at high ϑ levels.

The empirical analysis is applied on data recorded from November 4, 2004 to November 21, 2014.

Those years are characterized by special events, namely the subprime crisis, originated in the United

States and marked by Lehman Brothers default in September 2008, and the sovereign debt crisis,

which hit the Eurozone some years later. Those events had a deep impact on financial markets and,

therefore, it is important to check whether they affect the performance of the considered asset allocation

strategies. Moreover, in this way, we can analyse whether and how the performance of the strategies

depends on the states of the market: the state characterized by financial turmoils and the state of

relative calm. To this purpose, we divided the series of the out-of-sample portfolios returns into two

sub-periods. When the window size is equal to 1000, the first sub-period goes from July 31, 2008

to October 31, 2011, whereas it covers the days between October 31, 2006 and October 31, 2010 at

ws = 500. We can associate this sub-period to the state of financial turmoil, given the proximity to the

above mentioned crises. The second sub-period includes the remaining days till November 21, 2014.

As expected, the strategies record a better out-of-sample performance in the second sub-period with

respect to the first one, as we can see, for instance, from Table 2, where we report the results obtained

from the S&P500 dataset, applying the rolling procedure with window size of 1000 observations.11

Similarly to the analysis on the entire sample, in both the two sub-periods the ordinary least

squares regression almost always records the best performance in terms of risk, evaluated by means

of standard deviation, mean absolute deviation, Value-at-Risk and α-risk. Differently, the quantile

regression model applied at ϑ = 0.9 tends to be the best strategy in terms of profitability and risk-

adjusted return, as we checked from the average portfolio return, Ψ̂1(rp, ψ), Ψ̂2(rp, ψ), the Sharpe ratio

and the final wealth created after investing an initial amount of 100 $.
11The results obtained in the other cases are available on request.
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Table 2: Out-of-Sample Analysis partitioned on two sub-periods.

Strategy Standard
Deviation MAD

Value at
Risk α-risk Ψ̂1(rp, 0.9) Ψ̂2(rp, 0.9) Mean Sharpe

Ratio
Final

Wealth
FIRST SUB-PERIOD

QR(0.1) 1.0041 0.7476 1.1421 1.8869 0.1916 0.5388 0.0004 0.0004 97.5315
PQR(0.1) 0.8603 0.7476 0.8922 1.6124 0.1417 0.5566 0.0210 0.0244 117.1751
QR(0.5) 0.9228 0.6693 1.0251 1.6864 0.1730 0.5295 0.0081 0.0088 106.2985
PQR(0.5) 0.8668 0.6693 0.8325 1.5876 0.1228 0.5976 0.0350 0.0404 130.8294
QR(0.9) 0.9772 0.6910 1.0271 1.7274 0.1717 0.5393 0.0212 0.0217 116.9810
PQR(0.9) 0.9167 0.6910 0.9226 1.6384 0.1127 0.6366 0.0557 0.0608 152.9185

OLS 0.8771 0.6296 0.9673 1.6514 0.1649 0.5303 -0.0019 -0.0022 98.0775
LASSO 0.8140 0.6296 0.8102 1.4955 0.1159 0.6057 0.0360 0.0442 133.1528

SECOND SUB-PERIOD
QR(0.1) 0.7135 0.5539 0.8498 1.2700 0.1169 0.6033 0.0238 0.0334 116.3018
PQR(0.1) 0.5604 0.5539 0.6281 0.9730 0.0702 0.6683 0.0431 0.0768 135.6459
QR(0.5) 0.6215 0.4792 0.7397 1.0842 0.0835 0.6604 0.0389 0.0625 131.2027
PQR(0.5) 0.5197 0.4792 0.5840 0.9021 0.0639 0.6744 0.0402 0.0773 133.4267
QR(0.9) 0.6875 0.5442 0.8839 1.2280 0.0999 0.6524 0.0292 0.0425 121.5124
PQR(0.9) 0.5641 0.5442 0.6055 0.9423 0.0634 0.6990 0.0503 0.0892 143.6969

OLS 0.5819 0.4584 0.7022 1.0162 0.0766 0.6760 0.0350 0.0602 127.9555
LASSO 0.5227 0.4584 0.5862 0.9094 0.0711 0.6490 0.0324 0.0620 125.4998

The table reports the values of different performance indicators generated by the strategies built on the ordinary least squares regression (with (LASSO)
and without (OLS) ℓ1-norm penalty) and on the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm penalty, for ϑ = {0.1, 0.5, 0.9})
models. The statistics are computed from the Out-of-Sample returns recorded in two different sub-periods: July 2008-October 2011 and October 2011-
November 2014. The rolling analysis is applied on the Standard & Poor’s 500 Constituents dataset, with window size of 1000 observations. Standard
deviation, MAD, Value-at-Risk at α = 0.1, α-risk (with α = 0.1), Ψ̂1(rp, 0.9) and mean are expressed in percentage values. The final wealth is the
value we obtain at the end of the analysis from each strategy by investing an initial amount equal to 100 $.

4.1 The role of the intercept

We observed that, in the out-of-sample performance, some strategies, built from quantile regression

models at different quantiles levels, kept their in-sample properties, whereas other ones failed in achiev-

ing that. It is important to study the reason underlying this phenomenon and, in the following, we

provide one explanation associated with the model intercept. Given the numeraire Rk, 1 ≤ k ≤ n,

and the covariates R∗
j , j ̸= k, for simplicity, we denote the residual term associated with the quantile

regression model, applied at the level ϑ, by ϵ(ϑ). In the rolling window procedure, the estimated pa-

rameters change over time, having their own variability. In order to take into account their dependence

on time, we denote by (ξ̂t(ϑ), ŵ−k,t(ϑ)) the coefficients estimated in t, from the data recorded in the

interval [t − ws + 1; t], for t = ws, ..., T − 1. The out-of-sample ϑ-th quantile of Rk, computed in

t + 1, depends on both the estimates obtained in t and the realizations of R in t + 1, being equal to

ξ̂t(ϑ) +
∑

j ̸=k ŵj,t(ϑ)r
∗
j,t+1. Therefore the corresponding out-of-sample residual is computed as

ϵt+1(ϑ) = rk,t+1 −

ξ̂t(ϑ) +∑
j ̸=k

ŵj,t(ϑ)r
∗
j,t+1

 . (23)

Given that the portfolio return, under the budget constraint, can be written as Rp(ϑ) = Rk −∑
j ̸=k wj(ϑ)R

∗
j , from the (23) we obtain

rp,t+1(ϑ) = ϵt+1(ϑ) + ξ̂t(ϑ). (24)

From the (24) we can see that the out-of-sample portfolio return depends on two components:

the intercept and the residual. When all the regressors are equal to zero, the estimated intercept

corresponds to the estimated quantile of the response variable and, in general, we should expect that

ξ̂t(ϑ) is a positive function of ϑ. This phenomenon is particularly accentuated in case the so-called
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location-shift hypothesis holds, i.e. when the slopes of the quantile regression models are constant

across ϑ, so that the estimated quantiles change according to the intercept levels. Consequently, at

high/low ϑ values, we should expect that the intercept term is a positive/negative component of the

portfolio return in (24). Differently, at high/low ϑ values, the magnitude of the positive residuals

is lower/greater than the magnitude of the negative ones; hence, we should expect that ϵt(ϑ) is a

negative/positive component of the portfolio return in the (24).

Given the opposite behaviour of ϵt+1(ϑ) and ξ̂t(ϑ) over ϑ, it is useful to study their distributions in

order to understand the different out-of-sample performances of the strategies built from the quantile

regression models. For simplicity, we compare the results obtained from three quantiles levels, i.e.

ϑ = {0.1, 0.5, 0.9}.

We start by analyzing the intercepts distributions, reporting in Table 3 the mean and the standard

deviation of ξ̂t(ϑ), for t = ws, ..., T − 1.

Table 3: Analysis of the intercepts of the quantile regression models.

S&P100 S&P500
Strategy Mean St. Dev. Mean St. Dev.

ϑ = 0.1
QR(0.1); ws=500 -0.6403 0.1943 -0.0699 0.0569
PQR(0.1); ws=500 -0.7212 0.2045 -0.6910 0.1360
QR(0.1); ws=1000 -0.7482 0.0943 -0.3515 0.0371
PQR(0.1); ws=1000 -0.7464 0.0913 -0.6571 0.0754

ϑ = 0.5
QR(0.5); ws=500 0.0456 0.0196 0.0026 0.0474
PQR(0.5); ws=500 0.0601 0.0194 0.0636 0.0220
QR(0.5); ws=1000 0.0474 0.0171 0.0166 0.0156
PQR(0.5); ws=1000 0.0583 0.0120 0.0512 0.0096

ϑ = 0.9
QR(0.9); ws=500 0.6680 0.1583 0.0733 0.0520
PQR(0.9); ws=500 0.7551 0.1204 0.7832 0.1251
QR(0.9); ws=1000 0.7963 0.0769 0.3780 0.0409
PQR(0.9); ws=1000 0.7908 0.0553 0.7142 0.0626

The table reports the average values (%) and the standard deviations (%) of the intercepts estimated for the quantile regression models with (PQR(ϑ))
and without (QR(ϑ)) ℓ1-norm penalty, for ϑ = {0.1, 0.5, 0.9}. The rolling window procedure is applied at ws = {500, 1000}. Datasets: S&P100 and
S&P500.

We checked that, as expected, the support of the ξ̂(ϑ) distribution moves on the right as ϑ increases.

As a result, from the second and the fourth columns of Table 3 it is possible to see that, in average, ξ̂t(ϑ)

is a positive component of the out-of-sample portfolio return generated from the quantile regression

model at ϑ = 0.9; we have the opposite result at ϑ = 0.1, whereas at the median level the intercept

takes, in average, values close to zero. We can see from the third and the fifth columns of Table 3 that,

at the median level, the intercept distribution is characterized by the lowest dispersion, consistently

to the fact that the median regression implies, among all the quantile regression models, the lowest

out-of-sample portfolio volatility. In all the cases, the largest window size of 1000 observations reduces

the intercepts dispersions, mainly at ϑ = {0.1, 0.9}.

After analyzing the impact of the intercept, we now study the behaviour of the out-of-sample

residuals.

In contrast to the intercept case, the residuals supports move on the right as ϑ decreases, as

expected. Consequently, as it is possible to see from the second and the fourth columns of Table 4, the

residuals are, in average, negative/positive components of the portfolios returns in (24) at high/low ϑ
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Table 4: Analysis of the out-of-sample residuals distributions.

S&P100 S&P500
Model Mean (%) St. Dev. (%) Mean (%) St. Dev. (%)

ϑ = 0.1
QR(0.1); ws=500 0.6487 0.9493 0.1455 1.8449
PQR(0.1); ws=500 0.7407 0.8417 0.7225 0.8339
QR(0.1); ws=1000 0.7561 0.8217 0.3637 0.8721
PQR(0.1); ws=1000 0.7594 0.7637 0.6892 0.7317

ϑ = 0.5
QR(0.5); ws=500 -0.0249 0.8152 0.0480 1.7475
PQR(0.5); ws=500 -0.0405 0.8169 -0.0280 0.7822
QR(0.5); ws=1000 -0.0215 0.7670 0.0069 0.7867
PQR(0.5); ws=1000 -0.0290 0.7668 -0.0137 0.7143

ϑ = 0.9
QR(0.9); ws=500 -0.6348 0.9144 -0.0281 1.8113
PQR(0.9); ws=500 -0.7250 0.8540 -0.7398 0.8932
QR(0.9); ws=1000 -0.7578 0.8146 -0.3529 0.8446
PQR(0.9); ws=1000 -0.7517 0.7877 -0.6612 0.7631

The table reports the average values (%) and the standard deviations (%) of the out-of-sample residuals arising from the quantile regression models
with (PQR(ϑ)) and without (QR(ϑ)) ℓ1-norm penalty, for ϑ = {0.1, 0.5, 0.9}. The rolling window procedure is applied at ws = {500, 1000}. Datasets:
S&P100 and S&P500.

levels. By comparing Tables 3 and 4, it is important to notice that the residuals distributions have

larger volatilities with respect to the intercepts ones.

To summarize, if we build an asset allocation strategy from a quantile regression model with

high/low ϑ levels, we can obtain benefits/losses in terms of positive/negative intercept values. Differ-

ently, with low/high ϑ levels, we derive benefits/losses from the residuals. The opposite effects are, in

average, balanced. Nevertheless, the intercepts distributions have a lower dispersion with respect to the

residuals distributions. Then, at high ϑ values, we obtain benefits from a component (the intercept)

characterized by greater stability, but, on the other hand, we are penalized by a second component

(the residuals) which are more volatile. Differently, when we use quantile regressions models at low

quantiles levels, the benefits of positive residuals are more volatile than the losses of negative inter-

cepts. The more stable benefits characterizing the strategies built from the quantile regression models

at high ϑ levels support their better out-of-sample performance.

5 Concluding remarks

We have shown how quantile regression based asset allocation corresponds to the minimization of lower

tail risk, mean absolute deviation or maximization of a reward measure, depending on the quantile

we are looking at. Within such an analyses we introduced a novel performance measure, that is

clearly related to specific portfolio return distribution quantiles. In order to cope with the potentially

large cross-sectional dimension of portfolio and at the same time to control for estimation error, we

combine quantile regression and regularization, based on the ℓ1-norm penalty, to estimate portfolio

weights. Our empirical evidences, based both on simulations and real data examples, highlights the

features and the benefits of our methodological contributions. The new tools provided (asset allocation

strategies, performance measures and penalization approaches) will be of potential interest in several

areas including performance evaluation and the design of asset allocation frameworks.

Further research high on our agenda is the inclusion of different penalty functions, such as the

non-convex ones, that have also a direct interpretation as measures of portfolio diversification (e.g.
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ℓq-norm with 0 ≤ q ≤ 1). They not only typically identify investment strategies with better out of

sample portfolio performance, but also promote more sparsity than the ℓ1-norm penalty. Moreover, we

aim at developing a method to choose simultaneously the optimal quantile level as well as the optimal

intensity of the penalty.
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