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Abstract

We consider the classic cake-divison problem when the cake is a heterogeneous
good represented by an interval in the real line. We provide a mechanism
to implement, in an anonymous way, an envy-free and efficient allocation when
agents have private information on their preferences. The mechanism is a multi-
step sequential game form in which each agent at each step receives a morsel of
the cake that is the intersection of what she asks for herself and what the other
agent concedes to her.



1 Introduction

Thomson (1996) pointed out that an allocation rule is conceptually different
from its selections and the normative properties of its outcomes do not coincide
with those of the rule itself. This observation generates two basic questions
about fairness: should we focus exclusively on the set of allocations in order to
determine criteria for fairness or should we also look at the procedure through
which the final outcome is obtained? Should we take the view of procedure
fairness or the view of "end-of-state" fairness, or both?

The classic problem of dividing a heterogeneous good ( a cake) between two
agents offers a great opportunity to analyze these questions in a simple frame-
work. As already noted by Crawford (1977), and previously by Kolm (1972), the
classic divide and choose procedure provides an efficient and envy free outcome,
but it is hardly considered “fair” when there is complete information on agents’
preferences. The divide and choose procedure provides a no-envy outcome but
the procedure itself is not envy free: the chooser envies the role of the divider.
To put it in a slightly stronger term, agents are not treated symmetrically in
the divide and choose procedure. Fairness can be translated in requirements
like anonymity, which is directed to guarantee an ex-ante symmetric treatment
of the agents, or like no-envy, which demands an ex-post symmetry among the
actual allocations of the agents. It is quite obvious that an allocation rule can
satisfy some of these requirements while violating others. Keeping with our
simple problem, a mechanism which assigns the entire cake to an agent flipping
a (fairl) coin, satisfies anonymity (or procedural no-envy) but clearly violates
the (“end-of-state”) no-envy criterion, while the divide and choose rule when
the divider is fixed, satisfies no-envy but violates anonymity.

Reconciling efficiency, procedural fairness, and “end-of-state” fairness is not
so simple as it could appear at first glance. For instance, one could think that
the divide and choose procedure when the divider is randomly chosen is the
(simplest) way to make the procedure “fair”. Nevertheless, introducing a ran-
dom element in the mechanism has many consequences. The set of alternatives
over which agents’ preferences are defined is now a set of lotteries. The ran-
dom mechanism which assigns with equal probability to both agents the role of
the divider is equivalent to the lottery which assigns to each agent with equal
probability one the following two envy-free allocations: the allocation such that
agent 1 is indifferent over the two portions and the allocation such that agent 2
is indifferent over the two portions. Therefore, we need to make the assumption
on how agents evaluate lotteries and the normative content of any proposed
mechanism will in general be sensitive to the different assumptions. Moreover,
even if we assume standard preferences over lotteries, representable by Von
Neumann-Morgenstern utility functions, the simple rule which randomly selects
the divider may open the door to inefficiency when agents differ in the degree
of risk aversion.

In this paper, we focus on the fair division problem when the good to be
divided is representable by a linear segment of length one and agents’ preferences
are such that single-cut divisions are efficient. Many problems, such as time



sharing problems, belong to this class. Consider, for instance, two security
guards deciding their shifts during the night: if their preferences depend not
only on the number of working hours, but also on their schedule, then the good
to be divided (the night hours) is heterogeneous and it can be fair to have shifts
of different length; nevertheless it turns to be efficient to divide the night in no
more than two shifts, one for each guard. Other examples are related to classic
Hotelling models: two ice-cream pedlars have to decide how to partition a beach
in two selling regions which can be of different length, since density of bathers
may vary along the beach. Again, in order to minimize the pedlars’ effort in
commuting, it is efficient to partition the beach in two intervals, one for each
pedlar.

We propose a normative property which identifies one allocation among those
which are envy-free, and provide an anonymous deterministic mechanism which
implements it. Our mechanism is a sequential multi-step version of the divide-
and-choose mechanism. The assumption that single-cut partitions of the cake
are efficient, allows to compare our mechanism with the classic divide and choose
only on the ground of fairness.

Let’s consider the following example. Two kids, Hansel and Gretel, have
to divide a rectangular cake which can be represented as the interval [0, 1].
The cake is partly of white chocolate, the interval [0,m], and partly of dark
chocolate, the interval (m, 1]. Suppose that Hansel prefers the dark chocolate
and Gretel the white one, but they are both greedy and to any portion prefer
a bigger portion that contains it. Note that any single cut partition of the
cake which assigns the left portion to Gretel and the right portion to Hansel
is efficient. The problem is where to put the knife in order to be fair. There
exists an interval of single-cut points, each of them generating an envy-free and
efficient allocation with different utility levels to the greedy kids. The divide
and choose procedure where either Hansel or Gretel is the divider implements
among the efficient and no-envy allocations the one preferred by the divider. In
order to avoid noisy discussions on who is the divider, their mother would help
the kids by providing them a way to select an envy-free and efficient allocation
in an anonymous way. Uniqueness is relevant in our problem because we cannot
leave the kids to choose one allocation in a set of possible solutions, if we really
want to avoid noisy discussions. To describe the mechanism in a very intuitive
way suppose that the mother knows that Hansel prefers the dark chocolate and
Gretel prefers the white. She knows that, once she decides where to put the
knife, it is efficient to give the left portion to Gretel and the right portion to
Hansel. Unfortunately, she does not know how strong the kids’ preferences are
over the two types of chocolate. Therefore, she let them choose how to cut the
cake. In fact, she proposes the following cake-cutting mechanism to the kids.

Gretel proposes to Hansel to cut the cake at z1 € [0,1]. By proposing a
single-cut point at x4, Gretel implicitely asks for herself the portion [0, z1] and
concedes to Hansel the portion [z1, 1] . Hansel may take either the portion [0, x1]
or the portion [z1, 1] . If he takes one of the two portions, then Gretel takes the
other portion and the game ends (all the cake has been assigned). If Hensel does
not take any portion, then he has to propose a different cut at yq with y1 < 1.



By proposing a single-cut point at yq, Hansel implicitely asks for himself the
portion [yq, 1] and concedes to Gretel the portion [0, y4] .

Gretel can now choose to take one of the two portions induced by Hansel’s
cut, that is either the portion [0,y4] or the portion [y, 1]. If she takes one of
the two portions, then Hansel takes the other portion and the game ends. If
Gretel does not take anything, then she receives the portion [0, y1] and Hansel
the portion [zq, 1] . That is, each kid receives the morsel which is the intersection
between the portion she wants for herself and what the other kid concedes to
her. The interval [y1, 1] has still to be assigned and the mechanism is iterated
following the same rules until one of the two kids takes one of the portion
proposed by the other kid.

The mechanism we propose can be interpreted as a step-by-step negotiation
procedure in which agents reach partial agreements. Whenever both agents
agree that some part (subset) of the cake should be consumed by one agent,
then they accept to assign this part to her. In this way they "reduce" the object
over which they dispute and therefore they can more easily reach a definitive
agreement.

From a normative point of view, should any kid complains with her mother?
Should Hansel pretend to be the first to choose or Gretel the second one? The
answer is “no”. No matter who moves first, the mechanism implements the
same equilibrium allocation. The procedure anonymously selects a no-envy and
efficient allocation which has the following characteristics. Consider a subgame
starting at any stage t of the dividing game and let [a, b] denote the cake still to
be divided. In equilibrium, each agent receives at the current stage ¢ a morsel
which has the same value as the overall portion that the other agent receives. Let
([a, ST, (S,b]) be the (efficient) subgame perfect equilibrium allocation, where
[a,S] is Gretel’s portion. Let x; and y; be respectively Gretel and Hansel’s
proposals at the current stage ¢ according to the subgame perfect equilibrium.
Then, Gretel is indifferent between the morsel [a,y;], the morsel she receives
at stage t, and the portion (S, b], i.e. the portion that Hansel consumes in the
subgame perfect equilibrium allocation. Similarly, Hansel is indifferent between
the morsel [z, b], the morsel he receives at stage ¢, and the portion [a, S].
Therefore in each stage ¢ of the game, both agents receive the minimal no-envy
morsel, which makes each of them indifferent with respect to the overall portion
that the other agent receives in the SPNE allocation of the subgame starting at
stage t.

The mechanism described above is slightly more complicated in the general
case when the arbitrator does not know how to efficiently divide the cake. But
the logic of the mechanism is the same. At each stage agents sequentially propose
a partition of the cake and, in case no agent takes one of the portions of the
allocation proposed by the counterpart, each of them receives the intersection
between what she asks for herself and what the other agent concedes her to
consumne.

Fair division of an heterogeneous good has been widely analyzed both in the
mathematical literature and, more recently, in the economic one; see, respec-



tively, Brams and Taylor (1996) and Robertson and Webb (1998) for two recent
books on cake-cutting. Mathematicians have devoted great efforts in order to
find the minimal number of cuts needed to fairly cut a "cake" according to the
number of eaters (Lester and Spanier (1961), Stromquist (1980), Barbanel and
Brams (2001)), while economists have been more interested in generalizing the
problem, allowing for larger domains of preferences (Berliant, Dunz and Thom-
son (1992)), analyzing the case of indivisible goods (Crawford and Heller (1979),
Demko and Hill (1988), Alkan, Demange and Gale (1991), Brams and Fishburn
(2000), Edelman and Fishburn (2001)), or imposing additional properties, such
as consistency or monotonicity requirements (Thomson (1994a), (1994b) Mani-
quet and Sprumont (2000), among others). In most of these contributions great
attention has been devoted to the existence and the axiomatic characterization
of a normative solution to this fair division problem, but much less attention
to a strategic approach. A relevant exception is the recent paper by Thomson
(2005), who showed a simple game form called "divide and permute" to fully
implement in Nash equilibrium the no-envy solution in n-person fair division
problem. In this paper we follow a similar approach by proposing a game form
of a two-agent fair division problem to implement in subgame perfect equilib-
rium an envy-free and efficient solution in an anonymous way by means of a
deterministic mechanism.

2 Notation and Definition

Our model is a simple version of the classical cake division problem. There is a
measurable space (§2,F), where Q = [0, 1] (a cake) is the object to be divided
between the two agents that can be represented by an interval in the real line,
and F is a o-algebra over 2. We say that an element of F is a portion and that
an F-measurable subset of a portion is a morsel. Agents have preferences over
portions of 2. Each agent 4 is endowed with a utility function u; : F — R* that
is a nonatomic probability measure on F.! (Since preferences are invariant up to
a positive rescaling of the utility function, u;(€2) = 1 is only a normalization). In
particular we assume the following. For both i = 1,2, let v; > 0 be a continous
function on [0,1]. Agent i’s utility of the portion P; is u;(P;) = fPi v;(s)ds.
When the portion of agent 4 is an interval, we identify this portion by means
of the two extremes of the interval, that is if P; = [a,b] C [0,1], we write
u;(P;) = ui(a,b) = fnb vi(s)ds. Let U; be the set of agent #’s utility functions
and U = (U1, Uz) be the set of all utility profiles.

An (ordered) partition P = (Py,..., P;) of Q constituted only by portions
is called a portioned k-partition. An allocation P = (Py,P,) is a portioned
two-partition, where P; is the portion assigned to agent ¢ = 1,2. An allocation
P = (P, P,) is efficient (or weakly efficient, respectively) at v € U if there
exists no other allocation P’ = (Pj, P§) such that w;(P;) > u;(P!) for all 4,
with the strict inequality holding for some i (or w;(FP;) > w;(F;) for all 7). Any

LA measure u; is nonatomic if, for each partion A and each x in (0,u(A)), there exists
another portion B C A such that u;(B) = z.



efficient allocation is also weakly efficient.”? An allocation P is envy-free at
u € U (or satisfies no-envy), if u; (P;) > u; (P;) for i = 1,2.Let P denote the set
of allocations.

An allocation rule is a function f : U — P. Let f; (u) be the portion assigned
by the allocation rule f to agent ¢ = 1,2 at w € U. An allocation rule f is envy-
free if f(u) is envy-free at every w € U. An allocation rule f is efficient if f(u)
is efficient at every u € U. An allocation rule is anonymous if interchanging the
preferences means interchanging the assigned portion, that is for any (uq,u2) €
U, if fi(u1,u2) = P; then f;(u2,uq) = P; for both 4,5 = 1,2, ¢ # j.

In the paper we concentrate on multi-stage sequential mechanisms. Let
Z+ be the set of positive integers. Let ¢ be the amount of the heterogeneous
good still to be divided at stage t = {1,2,3...,T} with T' € Z. . By assumption
Q' = [0,1]. Let P! denote the morsel of the good that agent i = 1,2 receives
at stage t and P} the morsel that the other agent receives at the same stage ¢.
Hence, P{ U Py U Q" = Qf. We call P! agent i’s current morsel at stage t.
For any ¢t < T, let P§ = Ufthf denote the overall portion that agent ¢’s will
receive playing the mechanism from stage ¢ onwards; therefore P} = P;. We
call P! agent i’s residual portion at stage t.

Now we are ready to introduce a more demanding property than no-envy.
A multi-stage mechanism is residual-equivalent envy-free if, at each stage, each
agent is indifferent between getting her current morsel and getting the other
agent’s residual portion. Any residual-equivalent envy-free mechanism not only
is envy-free in each stage, but also equalizes the extent to which an agent prefers
his own portion to the other agent’s portion. Note that although we introduce
the concept of residual-equivalent envy-free in the context of multistage mech-
anisms, it is well defined for any allocation P as in the formal definition below.
Let (P}, ..., PT) be a partition of agent i’s portion P; in T morsels.

Definition 1 An allocation P = (P, P») is residual-equivalent envy-free (REEF)
atw € U if for each i = 1,2 there exists a partition (P}, ..., PT) of P; such that
ui(P) = wi(P%) for all t = {1,2,.. T} with T € Z+. An allocation rule f
is residual-equivalent envy-free if f(u) is residual-equivalent envy-free at every

u€eU.

We do not provide any strong normative foundation for this requirement. It
is a useful tool to prove that the mechanism that we present implements a no-
envy and efficient allocation in an anonymous way. In the next section, in fact,
we characterize the domain of utility profiles for which any single cut allocation
is efficient. Then we show that for any utility profile in this domain, there exists
a unique allocation that satisfies the above condition. This allocation turns out
to be the SPNE allocation of the implementation mechanism we propose.

2The converse is true under our assumption that agents have preferences that are mutually
absolutely continuous; see Akin (1995, Lemma 9).



3 Existence and Uniqueness of REEF alloca-
tions

The classic divide and choose mechanism generates portioned two-partitions.
We propose our mechanism as a way of ameliorating it by guaranteeing an
anonymous selection of any envy-free and efficient allocation. Hence, we focus
on the utility profile domain in which portioned two-partitions are efficient.

(A1) For all z € [0, 1] ,either the allocation ([0,z], (z,1]) or ([z,1],[0,)) is
efficient.

Let U*¢ denote the domain of utility profiles for which condition A1 holds.
Hence, for all utility profiles in U*¢ and for all € [0, 1], there always exists an
allocation generated by the single-cut x which is efficient. The following Lemma
characterizes the set U*°.

Lemma 1 A sufficient and necessary condition for (A1) is that vi(x) — va(x)
is (weakly) monotonic in x.

Proof. Sufficiency. Without loss of generality, suppose vy(x) — v2(z) is
(weakly) decreasing. Suppose that there is a single-cut partition ([0, a), [a, 1])
which is not efficient, then there exists another partition (Py, P») such that
w1 (Py) > uq(0,a) and ug(Pp) > wp(a,1) with at least one strict inequality.
Because up(P2) > uz(a,1) and va(z) > 0 by definition, it is impossible that
[0,a) C Pi such that the (Lebesgue) measure of Py is larger than a. Simi-
larly [a,1] C P is not possible. Let A = [0,a) N P, and B = [a,1] N P;. We
know that A and B have positive Lebesgue measure. There are three possi-
ble scenarios. (1) If uq(A) > uq(B), then there exists a set A’; A’ C A, such
that uq(A’") = uq1(B). Note that Py = ({[0,a) — A} U B) C ({[0,a) — A’} U B).
Hence, u1(Pr) < u1({[0,a) — A’} U B) = u4([0,a)). Contradictory to the claim
that (Py, P2) is Pareto superior to ([0,a), [a,1]). (2) If u1(A) < uq(B), because
vi(z) — v2(z) is (weakly) decreasing and A is to the left of B, uz(A) < uz(B).
There exists a set B’, B’ C B, such that ua(B’) = uz(A). Note that P, =
({[a,1] = B}UA) C ({[a,1] — B'}UA). Hence, uz(P,) < up({[a,1] — B'}UA) =
uz([a, 1]). Contradiction. (3) If u1(A) = uq(B), because v1(z) —vz(z) is (weakly)
decreasing and A is to the left of B, u2(A) < uz(B). If up(A4) < ua(B), apply
the same argument as in (2) and find a contradiction. If up(A) = up(B), this is
contradictory to the claim that (Py, P,) is Pareto superior to ([0, a), [a,1]).

Necessity. Suppose that vq(z) —vz(x) is not monotonic in z. Without loss of
generality, suppose that there exist three points: a,b,c, with0 <a <b<c< 1,
such that v1(b) — v2(b) < v1(c) — v2(c) < wv1(a) — v2(a)®. Let y be any point
between b and ¢, ie., a < b < y < ¢. We now show that both ([0,y), [y, 1])
and ([y, 1],]0,y)) are not efficient allocations. Let’s first look at ([0,¥), [y, 1]).
Intuitively, agent 1 can exchange a tiny slice of the cake centered around b with

31f v1(x) — va2(x) is not monotonic in z, then either v1(x) — v2(z) is U-shaped over certain
interval or it is N-shaped over certain interval. We can find three points: a, b, ¢, with 0 < a <
b < ¢ < 1, such that either v (b) — v2(b) < vi(c) — va(c) < vi(a) — va(a) or vi(a) — va(a) <
v1(c) — va(e) < v1(b) — v2(b). The proofs of the two cases are symmetric.



agent 2 for a tiny slice of the cake centered around ¢, to make both agents
better off. Let €,,€. be sufficiently small such that for any = € [b,b + €],
vi(z) — v2(z) < v1(c) — v2(c), where €, < y — b, and for any = € [c,c + €],
vi(z) — v2(x) > v1(b) — v2(b); moreover, the following equation holds:

b+ € ctec
—/ v(x)dx —l—/ vy(x)dx = 0.
b c

We can find such ¢, €. due to the continuity of agents’ utility density functions.
By construction, agent 1 is indifferent between [0,y) and [0,b) U [b + €, y) U
(¢, ¢ + €.]; while agent 2 strictly prefers [y, c] U (¢ + €., 1] U [b,b + ) to [y, 1],
because [, @ vp(z)dz — [ va(x)dx > 0. Hence, ([0,6) U [b+ e, y) U (¢, ¢ +
), [y, cJU(c+ €., 1JU[b, b+ €p)) Pareto dominates ([0,y), [y, 1]). Now let’s check
([y,1],[0,9)). Similarly, agent 1 can exchange a tiny slice of the cake centered
around ¢ with agent 2 for a tiny slice of the cake centered around a, to make
both agents better off. The formal proof is omitted. m

Note that the U®¢ domain contains the domain of single-peaked (or single-
plateaued) utility functions where agents’ peaks are on the opposite extremes of
the segment [0, 1]. For instance, this is a reasonable preference domain in those
division problems where the linear interval represents the contested borderland
between two countries.

Let Fi[""b] be the point of the interval [a, b] such that wu; (a, Fi[""b]> =u,; (Fi["”b], b) =

1u; (a,b). We call F}"”m agent 4’s indifference point over [a, b]. With a little abuse

in notation we write u; (E[""b]) to denote the utility of agent ¢ in taking one of

K3

the two portions, either [a, Fi["”b]} or [Fi[""b],b} , respectively. We call u; (F["”b]>
agent ¢’s half-cake-equivalent utility of [a, b].

Lemma 2 For any preference profile u € U*°, ifF[0’1] < F2[0’1] (F1[0’1] > F2[0’1]>
then FI*" < plot (F["b ["b> for all [a,b] C [0,1].

Proof: By Lemma 1, v1(z) — vp(x) is either weakly increasing or weakly
decreasing. If F1[0’1] < F2[0’1], then v1(x) — v2(x) is weakly decreasing. Since
v1 () — v2(z) is weakly decreasing over [0, 1], FI*" < FI*% for all [a,b] C [0, 1].

Proposition 1 For any preference profile u € U*°, there exists a unique effi-
cient residual-equivalent envy-free allocation.

Proof: We provide the intuition of the proof here. The formal proof is in the
appendix. For any u € U*¢ if F[0 R F2[0’1] = ¢, then ([0, ¢), [¢, 1]) is the unique
(in terms of utility) allocatlon Wthh satisfies REEF property. Without loss of
generality, assume F1[0’1] > F[01 then in any efficient single cut allocation,
agent 1 gets the right part and agent 2 gets the left part of the cake. For any
c € [0,F; (011, ([¢,1],]0,¢)) is not equivalent to an efficient REEF allocation



because agent 2 envies agent 1. Similarly, ([c, 1], [0,¢)) is not equivalent to an
efficient REEF for any ¢ € (F1[0’1], 1]. Hence, if ([c,1],[0,¢)) is equivalent to an
efficient REEF allocation, then ¢ € [F[O b F[0 1l ].

For any point ¢ € [F[O 0 , Flo ] define y! such that u4 ([0, ¢)) = us([y}, 1]), and
x! such that uy([c, 1)) = uz([0, 2]]). If ([¢, 1],[0,¢)) is equivalent to an efficient
REEF, (y!,1] is equivalent to agent 1’s portion in stage 1, Py, and [0,z]) is
equivalent to agent 2’s portion in stage 1, PJ. Note that 2! and y, are decreas-
ing and continuous in ¢. Now we look at agents’ division of the remaining cake
[z, ).

Let F] F[T”y” (F) = leml’yl]) denote agent 1’s (agent 2’s ) indifferent
point over [ C,yc] ie, wi([x), F]) = wi([F],y}]). By Lemma 2, F} > FJ.
Similar to the above reasoning, if ([c, 1], [0, ¢)) is equivalent to an efficient REEF
allocation, then ¢ must be in the interval [FJ, F{]. We can find an interval [¢', 2],
which is a strict subset of [F}>", FI®") such that if ¢ ¢ [¢!,¢"], then ¢ ¢ [F}, F}].
Hence, if ([c,1],][0,¢)) is equlvalent to an efficient REEF allocation, then ¢ €
[c",E"). If ¢! = €' = ¢*, we can show that FJ = F? = ¢* and ([0,¢*), [c¢*,1]) is
the unique (in terms of utility) efﬁcient REEF allocation. Suppose that ¢! < ¢'.

For any c € [c',© ] define 22,2 such that if ([c, 1], [0, ¢)) is equivalent to an
efficient REEF, (y2,y!] is equivalent to agent 1’s portion in stage 2 and [a: ,22)
is equivalent to agent 2’s portion in stage 2, i.e., (P}, P3) = ((v?,y}], [z} xz))
We then look at agents’ division of the remaining cake [22,72].

Define zt,y!; Ff, F, and ¢!, ¢ similarly. There are two possible scenarios.
(1) At some stage t, t € Z. , ¢! =¢' = ¢*, and then ([0, c*), [c*,1]) is the unique
(in terms of utility) efficient REEF allocation. (2) At any staget,t € Z+,c' <¢".
Since limy_, oo !, — y& = 0, then lim;_ o (¢" — c') = 0; let ¢* = lim¢! = lim¢,
then ([c*,1],[0,c*)) is the unique efficient REEF allocation. l

4 The iterated divide and choose procedure

In this section we present a mechanism to implement the residual-equivalent
envy-free allocation in subgame perfect Nash equilibrium. In the introduction
we pointed out that when agents have complete information on their counter-
part’s preferences and behave strategically, the classic divide and choose proce-
dure seems far from being satisfactory from a normative point of view. Hence,
this is the case where it is more urgent to find a mechanism which treats agents
symmetrically. The mechanism is a multi-stage sequential procedure such that
at every stage each agent has the right to propose an allocation, that is a por-
tioned two-partition of the cake specifying which agent should take each portion.
If agents propose different allocations, than each agent receives the intersection
between what she asks for herself and what the other agent concedes to her.

The mechanism
Any stage t = {1,2,...T} with T' € Z, is formed by four sequential steps.
Let X* be the allocation proposed by agent 1 at stage ¢ and, with a little abuse



in notation, let #* € [0,1] denote the single-cut that characterizes this two-
portioned partition. Let X be the portion that agent 1 asks for herself and X}
the portion that she concedes to agent 2.4 Let Y be the allocation proposed
by agent 2 at stage t, let y* € [0, 1] denote the associated single-cut and Yy be
the portion that agent 2 asks for himself and Y{ the portion that he concedes
to agent 1.

Stage 1

Step 1 Agent 1 proposes an allocation X

Step 2. Agent 2 may take either the portion X] or the portion XJ or he
may propose a different allocation Y, such that at least for some j = 1,2,
X J1 N Yj1 has positive Lebesgue measure.

Step 3: Agent 1 may choose to take either one of the two portions Y3, Y3
or nothing.

Step 4 : If agent 1 does not take any portion and X J1 ﬁYj1 has zero Lebesgue
measure for some j = 1,2, then the entire cake is given to the agent ¢ # j and the
game ends. Otherwhise each agent i = 1,2 receives the morsel P} = X! NnY;'.

Note that either the game ends or each agent receives a morsel of the cake
of positive size, and the cake that has still to be assigned is an interval.

Consider any stage ¢ and denote by Qf C [0,1] the cake still to be assigned .

Stage t

Step 1 Agent 1 proposes an allocation X*?of the cake QF.

Step 2. Agent 2 may take either the portion X% or the portion X} or he
may propose a different allocation Y, such that at least for some j, X} NY} has
positive Lebesgue measure.

Step 3: Agent 1 may choose to take either one of the two portions Y{, Y3 or
nothing.

Step 4 : If agent 1 does not take any portion and X! NY} has zero Lebesgue
measure for some agent j = 1,2, then the entire cake is given to the agent
i # j and the game ends. Otherwhise each agent i € N receives the morsel
Pl =X!nY}.

The mechanism ends at stage T' when either one of the agents takes a portion
proposed by the counterpart or the entire cake Q7 has been assigned to some
agent.

Proposition 2 The efficient residual equivalent envy-free allocation is the unique
SPNE outcome of the iterated divide and choose mechanism.

Proof: see the appendix.

Since we proved that the residual equivalent envy-free allocation is unique, it
follows that the mechanism is anonymous, as its symmetric structure suggests.

The mechanism might be infinite, and therefore it might be interesting to
know if a finite version still has any nice property. Consider a K-truncated
version of the mechanism when we exogenously fix the number of iterations,
T = K, for any finite number K, and at the last stage K agents play the classic
divide and choose mechanism (i.e. agent 1 proposes a two-portioned partition

4We refer to agent 1 as a female agent and to agent 2 as a male agent



and agent 2 chooses the portion he prefers). Then, the following corollary holds
(which follows from Lemma 3 in appendix). Let 7% € N be the number of
iterations in the SPNE of the non-truncated mechanism.

Corollary 1 In any K—truncated version of the mechanism the SPNE outcome
is efficient and envy-free, and

(i) for all 1 < K < T* the utility of both agents is higher than the utility level
that the chooser achieves if agents play the divide and choose mechanism;

(ii) for all K < T™* both agents prefer to be agent 1 of the iterated sequential
game, but agent 2’s utility is increasing in the number of the iterations K.
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5 Appendix

Proposition 1: For any preference profile u € U*°, there exists a unique efficient
residual-equivalent envy-free allocation.
Proof. For any u € U*°, if F1[0’1] = F2[0’1] = ¢, then ([0,¢),[c,1]) is the
unique (in terms of utility) allocation which satisfies REEF property (it is also
the unique, in terms of utility, envy-free allocation). Without loss of generality,
assume F1[0’1] > F[O1 , then in any efficient single cut allocation, agent 1 gets
the right part and agent 2 gets the left part of the cake. For any ¢ € [0, F[0 R ),
([¢,1],[0,¢)) is not equivalent to an efficient residual-equivalent envy—free allo-
cation because agent 2 envies agent 1. Similarly, ([, 1], [0, ¢)) is not equivalent
to an efficient REEF for any c € (FI*" 1].

For any ¢ € [F2[0’1 [01 ], define 3! such that u1([0,¢)) = u1([y},1]), and
x} such that uz([c,1]) = ug([ 2})). If ([¢, 1],]0,¢)) is equivalent to an efficient
REEF (y!,1] is equivalent to agent 1’s portion in stage 1, Py, and [0,z]) is
equivalent to agent 2’s portion in stage 1, Pj. Note that z! and g are de-
creasing and continuous in c. Let F}ml’yl ] (F[Tl’y1 ) denote agent I’s (agent 2’s

) indifferent point over [z}, y]], i.e., us([z] F[T”’y” = ([F[T”’y” ,Y3])-
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1,1 1,1
Claim: F}m“’y“] and lem“’y“] are continuous functions of ¢ from [F[O b F[O 1l ]

into [F°1, FO.
Proof of the Claim: Because u € U S“andF1[01 F[01 , by Lemma 2

1,1 1,1
plrevel > plrevel gince 21 and y! are decreasing and continuous in c, F[T

1 1
and FL"¥) are decreasing and continuous in c. (See figure 1 for illustration.)

—1 1,1
Let Ty denote the upper bound of FI*¥ for ¢ € [FI" Fl01). When ¢ =
Ty o)
11 —1 [0,1] [0,1]
F[O1 F}m“’y“] achieves its maximum on [F[01 F[O1 | Fi=F "2 7 =
[Fz 01 7?/;[0,1]] [0.1] ) ) )
F, 2 = F; . (See figure 2 for illustration). The last equality follows

the fact that ur ([0, F2""]) = wr([y}o.n.1]) and ur([0, 7)) = wn((F, 1))

Let ' denote the lower bound of leml’yl] for c € [F*" FI%Y) When ¢ = FI%",
leml’yl] achieves its minimum on [F[O R F1[0’1]]. Sumlarly, we have Fj = F2[01 .
Since F[xl’yl] > lexl’yl], we have F[O1 < lexl’yl] < F}ml’yl] < F1[0’1] for any

e [F° FI%) Therefore, F1[T” el and leml’yl] are continuous functions of ¢
from [F2[01 ,F1[01 ] into itself. W

(Insert figure 1 and 2 here)

By Brouwer’s fixed point theorem, there exists c such that F[T”’y” =c
Let ¢! denote the smallest fixed point such that FZ[TC wel c. Note that when

= FN g1 = FOT and F[T”’y” > M g0 ¢ = F2Y is not a fixed point
of F[T“y“ . Therefore ¢! > F2[01 . Since FZ[T“yl] is decreasing in ¢, for any ¢ €
[F[01 ), e<cd < leml’yl] < F}ml’yl]; hence, ([c,1],[0,¢)) is not an efficient
REEF for any ¢ € [F" ¢'). Because if ([c,1],]0,¢)) is an efficient REEF,
then (P, PJ) = ((y},1],[0,2})), and agent 2 envies agent 1’s share over the
remaining cake [z}, y!]. Similarly, there exists a ¢ such that F1[T1” vel — ¢ Let
denote the largest fixed point such that F}ml’yl] = ¢. Note that ¢ = FI>" is not
a fixed point of F}ml’yl], therefore ¢' < FI®". Similarly, for any ¢ € (&', FI®"),
c> F}ml’yl] > leml’yl], therefore, ([c,1],[0,c¢)) is not an efficient REEF for any
ce (?:1,F1[0’1]]. Since leml’yl] < F}ml’yl] for all ¢ € [F2[0’1],F1[0’1]] and both are
decreasing in ¢, ¢! <E'. We just established that if ([c, 1],[0,¢)) is equivalent to
an efficient REEF, then ¢ € [¢',¢].

If ¢' =¢' = ¢*, then by the definition of fixed points, leml’yl] = F}ml’yl] =c*
and the proposition is proved: the allocation ([c*,1],[0,¢*)) is the unique (in
terms of utility) efficient REEF allocation.

It c < ¢, for any c € [¢', "], define 22 such that ua([z}, 22]) = ua([c, y]])
and y? such that u([¥2,9)]) = w1 ([z], c]). If ([c, 1], [0, ¢)) is equivalent to an effi-
cient REEF, (y2,y]] is equivalent to agent 1’s portion in stage 2, P?, and [z}, 22)
is equivalent to agent 2’s portion in stage 2, P?. Let F}mi,yi] (F[‘ri’y3 ) denote

agent 1's (agent 2's) indifference point over [22,12], i.e., u([z? F[T“yf D =
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227
ur ((FF7, 42)).

yJdc
2 2 2 2
Similar to the proof of above claim, we can establish that FI*=¥%] and FL7evel

are continuous functions of ¢ from [¢',¢'] into [¢!,¢']. Therefore, by Brouwer’s

2,2 2
fixed point theorem, F1[m” Vel and F[‘T”’y“ have fixed points. Let ¢? denote the

[Tmyp

smallest fixed pomt such that F; = ¢ and let @ denote the largest fixed

1 1
point such that F[T” el =c. When c=c" F[‘T”’yT = ¢ (by definition of the ﬁxed

point) and a: = ¢, therefore F[ ¥ S e Soe = c'is not aﬁxed pomt of FL gzl
Moreover, ¢? € [_ , 1], so ¢! < 2. Similarly we establish ¢! < 2 <@ <@,
If @ =7 = c*, then the proposition is proved and the allocation ([c¢*, 1], [0, ¢*))
is the unique (in terms of utility) efficient REEF allocation. If ¢2 < @, for
3,3
[22v2] , lem”’y”], and 3, similarly. Hence, for

Tyt EA yﬁ" " P p——

any ¢ € [c¢!,¢], define /"1, 4t 1, F[T , Bye , and ¢t 1 "1 simi-
larly. By definition ¢! < ¢t < ctJr1 < ¢ for all t. Also by definition, for any
ce e, at <t < <yl Ifforany t < oo, c' = ¢ = c¢*, then the proposition
is proved and the allocation ([¢*,1], [0, ¢*)) is the unique (in terms of utility) effi-
cient REEF allocation. If ¢! < ¢ for all t < oo, and lim¢! < lim ¢, then for any
c € (limc', lime"), limz! < ¢ < limy!, which implies that us([lim %, c]) = 0. It
is contradictory to vq > 0. Therefore lim ¢! = im¢’. Let ¢* = limc! = lim¢'. It
is straightforward that ([¢*, 1], [0, ¢*)) is the unique (in terms of utility) efficient
REEF allocation when FY*"! < FI®U. m

any (S [22762] deﬁne x(wy(w F

Proof of Proposition 2: To prove this proposition we proceed by proving
some easy lemmata. Let a; = min{xs_1,y:—1} and by = max{z;_1,y:—1} for
allt > 1 and a' = 0 and b' = 1. We assume that agents only use stationary
strategies in the sense that at each stage t agents’ strategies only depend upon
the cake still to be divided, Q = [ay, b;], and on the proposals made at this stage.

From now on we suppose, without loss of generality, that F}"’“bt] < FZ["’“bt].

Lemma 3 Consider any subgame starting at step 1 of some stage t. Let P!
denote agent i’ s portion in the subgame perfect equilibrium allocation of the

subgame Q. Then, u;(Pt) > u; (Fi["'“bt]> = %ui(Qt), for both i = 1,2, and for
all t={1,2,...T} .

Proof. We actually prove a stronger claim, that is for all t = {1,2,...,T}
each agent has a strategy that guarantees her to obtain u;(P!) > u; (Fi["'“bt]>
(not only in equilibrium). Let X* be the allocation proposed by agent 1 at stage ¢
and f C [0, 1] the cake still to be assigned at this stage. Either up(X}) > %
or uz(X%) > % Hence, agent 2 by taking his preferred portion obtains
uz(P%) > L Agent 1 can also guarantee herself at least her half-cake-

equivalent utihty of stage t. Suppose that agent 1 announces z; = F1["”b’ and
proposes for herself the portion [a;,x;]. Either agent 2 takes one of the two
portions, and then the claim is proved, or he announces an allocation Y* and
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the proof is completed noticing that either uq(Y{) > % or us(Yy) > #
]

Lemma 4 In all subgame perfect equilibria of the game the mechanism ends
only if at stage T' € Z+ , agent 2 chooses one morsel of the allocation proposed
by agent 1 and both morsels of the allocation are indifferent for agent 2.

Proof. Consider any stage t of the game. By design, the mechanism ends
either if one of the agent takes one portion of the allocation proposed by the
other agent, or if for some j € N X} NY} = (). In this last case there exists one
agent who receives a morsel of zero Lebesgue measure contradicting Lemma 3.
Now we prove the following two claims.

Claim 1: Agent 1 never chooses to end the game at step 3. Suppose that
Xt = |ay, z4]. We already proved that in equilibrium Y{ = [a;,y;] (otherwhise
there exists at least one agent j for which X]t- N th = (). There are two cases:
(i) ¥+ > x¢ In this case agent 1’s best response is to take the portion [ag, ye].
But then agent 2’s best response at step 2 cannot be to propose Y, because
taking [x¢, b;] he would obtain a higher payoff. (ii) y: < z:. We suppose that
agent 1 takes one of the two morsels and we show that this cannot occurs along
the equilibrium path. If agent 1 takes the morsel [y, b;], then to announce y,
cannot be a best response for agent 2 since he could obtain a morsel [at, z:] at
step 2 which contains the morsel [a, y']. If agent 1 takes the morsel [a?, y'], she
could obtain a greater utility by not taking any morsel, in which case agent 1
receives the morsel [a’, 3'] at this stage and some morsel with positive Lebesgue
measure in the ensuing stages (by Lemma 3). The proof of the case X} = [z, b;]
follows the same argument.

Claim 2: Agent 2 chooses to end the game only if agent 1 partitions the
cake in two portions which are indifferent for agent 2. Let z; denote the cut-
point proposed by agent 1. If agent 2 takes a portion which is strictly preferred

[at,bt

by him to the other portion, then it must be that either z; > F} I and he

takes the portion [a:, xt] or p < FZ["'“M and he takes the portion [z, b]. The
first case contradicts Lemma 3 since agent 1 receives less than her half-cake-
equivalent utility . Hence it must be that FI*") < z, < FI** If agent
2’s best response is to take the morsel [z:,b:], then it must be the case that

F}"’“bt] = ;. Suppose not and let F}"’“bt]

< z¢. By proposing Y{ = [a¢,y:] with
F}"’“bt] < y; < xy agent 2 will obtain a higher payoff. In fact either agent 1 takes
the morsel [at, ;] or she does not take anything. But then agent 2 either will
receive the entire cake (if X§ = [x¢, b)) or he will receive the morsel [z, ;] at
stage t and some morsel with positive Lebesgue measure in the ensuing stages.
It follows that if agent 2 takes his strictly preferred portion [z, b;], then it must
be that F}"’“bt] =12 < FZ["'“bt]. We now prove that to propose X} = [as, x,] is
not a best respose for agent 1. By continuity there exists a different proposal
X}t = [as, ] with 2 < Ty < FZ["'“bt] such that either agent 2 picks up [Z¢, bt
(and therefore agent 1 receives the portion [a¢, Zt] D [at,x+]), or he proposes
a different single-cut at y;. If y; = x; then agent 1 by accepting the proposal
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receives the morsel [at, y:] = [at, z¢] at stage ¢ and some morsels with positive
Lebesgue measure in the ensuing stages. If 3, # x; then there exists a morsel
that agent 1 can take whose value is strictly higher than [ay, x] = [at, F}"’“bt]} .
[ ]

Now we can easily prove the following.

Lemma 5 In any subgame perfect equilibrium path, the mechanism ends at
stage T € Z+ if and only if there exists a unique envy free allocation.

Proof. Necessity: We have already proved that the mechanism ends at
stage t only if z; = FZ["'“b‘]. Suppose that agent 1 proposes X} = [a;, z]. We
prove that there exists a proposal y; which gives agent 2 a higher payoff than
the half-cake utility level. Suppose, in fact, that agent 2 proposes Y{ = [a¢, ]

with F{"’“bt] <y < FZ["’“}”]. If agent 1 takes a portion, she will take the portion
[at, y¢] . If she does not take any portion, agent 2 will receive the morsel [z, b;] at
stage ¢t and some morsel with positive Lebesgue measure in the ensuing stages.
Suppose now that agent 1 proposes Xi = [FZ["'“bt], bt} . Then agent 2 will

announce Y{ = [at,F}"*’bt]} forcing agent 1 to take this morsel [at,F}"*’bt]}

at stage 3 (otherwise agent 2 receives all the cake). But obviously to propose
Xt = [FZ["’“}“] , bt} is not a best response since, as we just proved, agent 1 obtains
a higher payoff by announcing X} = [a;, x] .

Sufficiency: Suppose now that at some T € Z, it exists a unique envy free

allocation, characterized by the point z = FI*** = Floeb] The result direcly
follows from Lemma 3. m

Lemma 6 In all subgame perfect equilibria X§ = [ar, ] and Y{ = [as, yi] with
xy >y for allt £ T.

Proof. Consider any stage t < 7. By Lemma 2 F}"’“bt] < FZ["'“M for all
t < T. Suppose X = [z4,b]. If 24 < F}""’b‘] then agent 2 will pick the portion
[x¢, bt] , contradicting Lemma 5. If 2, > F}"’“bt] then agent 2 can propose Y{ =
[at, F{"’“bt]} forcing agent 1 to take the portion [at, F}"’“bt]} at step 3 (note that

Nien Pj (') = (). But by proposing X} = [at,FZ["'“bt]} agent 1 can obtain a
payoff strictly higher than the half-cake utility level. HenceX} = [ay, x;] with
Ty > F}"’“bt]. By Lemma 5 agent 2 makes a proposal that induces agent 1 to
not take any morsel and by Lemma 3 both agents receive a morsel that positive
Lebesgue measure. Then it must be that Y{ = [a¢,y]. Finally note that if
Yy > xp agent 2 is not playing a best response since he would obtain a higher
payoff by picking up the portion [z¢,b;]. Hence P? (Q') = [as,y:] with y; < z¢.°
|

5Tt is straightforward to note that if Fl[a’t’bt] > FQ[a’t’bt]then Xt = [wt,bs) and Y = [ys, be]
with x¢ < y¢ for all ¢ # T.
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Corollary 2 If there exists a subgame perfect equilibrium outcome of the game,
then it is efficient.

Since the SPNE outcome is efficient, and the game is a sequential game with
perfect information, if there exists a subgame perfect equilibrium outcome of
the game, then it is unique in terms of utility. Suppose, in fact, that there are
at least two SPNEs which are not unique in terms of utility. Since the game
is of perfect information, then any information set is a singleton. Since the
game is also sequential, then there exists at least one player who is indifferent
between the two SPNE outcomes, otherwise he is not playing a best response
in at least one of his information sets. If one agent is indifferent between the
two SPNE equilibria and they are not unique in terms of utility, then the other
player strictly prefers one SPNE outcome to the other, and efficiency is violated
in at least one case.

It follows that, if it exists, the SPNE outcome of the game is a single cut
partition that we denote by (Py, P,) . Let S € [0, 1] the point which characterizes
the SPNE outcome. By Corollary 6Py = [0, 5] = and P, = (S, 1]. Consider any
subgame starting at stage t € {1,...,T} and let Q' = [ay, b;] be the cake still to be
assigned. Since we assumed FI'' < FI®Y then by Lemma 2, Fltd < plectd
for all t = 1,2, ...,T. By Lemma 3, S € [Fl**] Fleobd) for all t = 1,2, .., T.

We now show that the following strategy profile (T'1,T2) is a subgame perfect
equilibrium:

Let Ryt ¢ denote the single-cut point of the unique efficient REEF allo-
cation of the cake [at, b:]. As shown in the proof of Proposition 1, F}"’“bt] <

"y
R[Hrmbt] < FZ[Ht f]'

Tl: Inany t =1,2,...,T,
Step 1: agent 1 proposes Xi = [a¢, z¢] with x; > FZ["'“bt] such that up(X3) =
u2 (at, R[nrt7bt]);
If agent 2 at Step 2 proposes a different allocation Y, then
Step 3:

1. if X§NY{ =0 then agent 1 takes her preferred portion in Y*
2. if X3 NY4 = 0 then agent does not take anything
3. if XjNY/} # 0 for both j = 1,2, and

(a) Y{ = [ar, ] C X} = [as,x¢], then agent 1 does not take anything if
w1 (YY) + wi(ye, Riy, 1) = w1 (Y3), takes the portion Y5 if uq (YY) +
U1 (yt7 R[Z/mﬂ?t]) < uq (Yg)7

(b) Y{ = [ar,y:] D X} = [ar, x4], then agent 1 takes her preferred portion
in Y,

(c) Y{ = [y, b] C X} = [x4, ;] then agent 1 does not take anything if
u (YY) + uq (e, Rz, ) = ua(Y3), takes the portion Yy otherwise;
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(d) Y{ = [y, b D X§ = [x4, b;] then agent 1 takes her preferred portion
in Y,

T2: In any t = 1,2,...,T, agent 2
1. takes [z, by if x; < F1[n,t,bt];

2. proposes Y{ = [at,F}"*’bt]} if xy > F}"’“bt], X} = [z, b] and ug(F}"’“bt],bt) >
U2 (at7 .’Et)

3. proposes Y{ = [a;,y;] such that uqi(Yy) = uq(as, Ry, o), if X§ = [ar, 2],
Ty > F1"'/’b/] and up(X7§) < up(X35) + u2 (R[yhmt],xt) :

4. takes X} = [at, x¢], otherwise.

The mechanism we propose results in games that are either with finite hori-
zon or continuous at infinity. Therefore, we can apply the one-stage-deviation
principle’, i.e., a strategy profile, s, is subgame perfect if and only if it satisfies
the one-stage-condition that no player ¢ can gain by deviating from s in a single
stage and conforming to s thereafter.

The following Lemma is the last ingredient we need before proving that the
strategy profile (T1,T2) is a SPNE of the game.

Lemma 7 For any u € U*°, let Ry, denote a single-cut point of the REEF

allocation for the interval |a, b]. It must be true that for anyi) < b, R[a 5 < Ry p)
and for any a > a, Riq 5 > Riq -

Proof. By definition of the REEF allocation, if Ry, is the single-cut
point of the REEF allocation, there exists a partition (P, ..., PT) of P; such
that u;(P}) = u;(P}) for all t = {1,2,...,T} and for both i = 1,2. We can
find a sequence of points (pl,p3,...,pT), where a < p} < p§ < ... < pI =" <

p] = Riay, such that uq(P]) = u1([a, p}]), w1(P?) = ut(p},p%), ..., w1 (P{) =
U (p1T_1,R[,1,7b]). We can also find a sequence of points (pg,pg_1 ..., D3), where
Ry p = pd < pg_1 < pg_z... < p} < b, such that up(P}) = ug([p},b]),
up(P3) = ua([p3,p3]), - ua(PY) = ua([Rayy.p3 ' ]). Define (57,....5}) and
(ﬁ;, ...,ﬁg ) similarly for the REEF allocation for the interval [a, b]. Suppose that
Ry, 5 > Riay for some b < b. By definition of the REEF allocation, ua(p, b) =
u2(a, Rigy) and ua(ph, b) = uz(a, Ry, 5). Since Ry, 5 > Rpay and b < b, ph <
pl. Moreover, by definition of the REEF allocation, uq(a,p]) = u1 (R, 4, b) and
uq(a, pl) = u (Ri, 75 b); therefore p} < pl. Similarly, we can show that pb < pb

and Py < pi for all t < min{T,Q}. f T < Q, p$~" < pl~" and p¢" <

6See Theorem 4.1 and Theorem 4.2 in Fudenberg and Tirole "Game Theory" page 109-110.
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p1T_1. By definition of REEF allocation, ug(R[n,7b],pg_1) =up (p1T_1 , Rja5) and
ug(R[aﬂ ,ﬁ§_1) =up (f)ﬁg_1 , R[M]). If Ry, 5 > Rpa ), these two equalities are not
compatible. Similarly, we can find contradiction when T' > Q). The proof for the
part “for any a > a, S[Hﬂ > Spa,p” follows the same argument. m

Now we are ready to prove the existence and uniqueness of the SPNE allo-
cation. We first note that if the strategy profile (T1,T2) is a SPNE of the game,
then the equilibrium outcome is the allocation ([at, Ria, 1) [R[n,t,bt]: bt]) )

Now we prove that T1 is best response to strategy T2 in all subgames.

Consider step 3 of any stage t < T. It is easy to check that strategy T1 is
best response in cases (1), (2) . Suppose that X; NY} = @ for both j = 1,2.We
consider two cases:

(3a) If agent 1 decides to continue the game, then she does not take any
portion and,by one-stage deviation principle, obtains a final payoff equal to
w1 (@e, Ye)+u1 (Ye, Ry, 2,1)- If she decides to stop the game, then her best response
is clearly to take the portion [y, b:]. According to strategy T1 she compares
these two payoffs and therefore it is straightforward that she is playing a best
response. A similar argument holds for the (3c) case.

(3b) In this case by deviating and not taking anything agent 1 receives the
current morsel [at, 2] and some portion of the remaning cake [x¢,y:]. Since by
Lemma 3 and by the one-stage deviation principle she does not receive the entire
cake [z, ;] in the ensuing stages, then by deviating she receives a final portion
that it is strictly contained in the portion [ay, y;]. Therefore there is no deviation
better than the response prescribed in strategy T1. The same argument holds
for case (3d)

Consider now step 1 of any stage t. If agent 1 deviates and proposes any allo-
cation with single-cut point z; < Fi**"? then agent 2 takes the portion [x;, b
and therefore agent 1 obtains a payoff equal to wq(as,z:) < ut(ar, R, p,))-
If she proposes X} = [x4,b;] with z; > Fi***" then agent 2 at step 2 pro-
poses Y = [ay, Fj*""] and agent 1 obtains a payoff equal to u(a;, Fi**"") <
uq(ag, Ria, p,y)- Finally, if she proposes X{ = [a;, Z;]with Z; < x;, by Lemma
7 she cannot obtain a higher payoff, while if she offers &; > z; > F}**** then
agent 2 will take the portion [at,z:] and therefore agent 1 obtains a payoff
uq (x4, by) < uq(ag, F50) < uq(ay, Ria, b.1)-

We prove now that the strategy T2 is a best response to strategy T1 in all
subgames. We consider the following three cases:

(i) X} = [z4,b;] and z; < F}"’“bt]. T2 strategy prescribes that agent 2 takes
the portion [z, b:] . Note that the allocation ([at, z¢] (x4, b]) is efficient and that
agent 1’s utility level is lower than her half-cake equivalent utility. If agent 2
deviates, he can either take the portion [as, x¢] ,which is obviously a less valuable
portion than (zy,b], or make a different proposal. But then agent 1 according
to T1 at step 3 chooses an action which is a best response in all subgames. By
Lemma 3 agent 1’s utility is equal or higher than the half-cake equivalent utility.
Therefore by proposing any allocation agent 2 lowers his payoff.
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(i) X! = [z,b] and @, > F*" According to strategy T2 agent 2 pro-
poses Y{ = [at, F}"’“bt]} if ug(F}""’bt],bt) > ug(ay, zy), takes the portion [a;, 4]
otherwise. First note that in case agent 2 proposes Y{ = [at, F}"’“bt]} according
to strategy T1 agent 1 takes the portion (at, F}"’“bt]) and therefore agent 2 re-

ceives the portion (F{”’bt], b:]. If agent 2 deviates from strategy T2, then either

takes the portion [z, b:] C (F{"’“bt], b:] or makes a different proposal. But then
agent 1’s utility is strictly higher than her half-cake utility level and therefore
agent 2s utility will be lower than up (FI*" b,]).

(iii) X¥ = [as, 7). According to strategy T2 then agent 2 proposes Y{ =
[at, y¢] such that uq (YY) = uq(ay, Ryy, 2) ifuz(as, x¢) < up(xe, by)+uz (R[yt,xtbxt);
takes the portion [a;, x| otherwise. Note that Y{ = [ay, y¢] is the proposal, given
strategy T1 and Lemma 7, that maximizes agent 2 payoff’s when he decides to
continue the game. Agent 2 decides to end the game if and only if the portion
[as, z¢] provides to him a higher payoff than the utility of the final payoff induced
by his best proposal, and therefore strategy T2 is a best response.
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