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1. Introduction

Countless theoretical and applied work from the early 70’s has addressed the evalu-

ation problem, that is the identification of the causal effect of a policy intervention on

the outcome of interest. A common feature of many empirical contributions to this

literature is the importance of considering heterogeneous returns to participation as

opposed to the traditional ’common effect’ model. The existence of such heterogeneity

notwithstanding, causal inference has been concerned by and large with identification

of the average effect of the intervention (see Heckman et al., 1999, Heckman and Vyt-

lacil, 2007, and DiNardo and Lee, 2011, for reviews). In this setting, the role played

by heterogeneity is typically investigated by comparing average returns for different

groups in the population identified by observable characteristics, but ignoring within

group variability in returns.

The practice of looking at average effects mostly results from a pragmatic approach

to the evaluation problem. Identification of characteristics of the effect distribution

other than the average requires stronger assumptions. Besides, estimation often poses

operational burdens that somewhat limit the widespread application and popularity

amongst practitioners. Yet they are crucial to the estimation of a variety of pol-

icy parameters, alternative to the average, central for policy making. Abbring and

Heckman (2007) thoroughly discuss these parameters, as well as their relevance for

drawing informed policy decisions.

This paper derives new conditions for identification of features of the treatment

effect distribution other than the average, thus allowing to make causal claims that

are more general than those from standard average treatment effect analysis. We de-

velop an estimation procedure that yields the quantile function of the individual gain

from participation at selected values of the baseline outcome distribution. This is the

parameter of interest in what follows, and is needed to understand how widely dis-

tributed are benefits amongst targeted beneficiaries. Without additional assumptions,

the same policy analysis could not be drawn by considering identification strategies

that yield average treatment effects.

The parameter of interest which is central to the discussion in what follows is a

functional of the joint distribution of potential outcomes under the ’policy on’ and

’policy off’ scenarios. The treatment effect distribution is defined as the distribution of

the difference between these two potential outcomes. Starting from the seminal work

by Heckman et al. (1997), many authors have discussed the theoretical and empirical
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relevance of understanding the conditions required to learn about this object. Away

from an array of special cases, the constant returns assumption being one example,

identification of the treatment effect distribution is precluded on a logical ground

irrespective of the assignment mechanism at work. With random allocation of units

to treatment, data may only unveil the marginal distributions of potential outcomes.

Under suitable conditions, such as strong ignorability (Rosenbaum and Rubin, 1983),

instrumental variation in the assignment to treatment (Imbens and Rubin, 1997) or

difference in differences settings (Athey and Imbens, 2006), the marginal distributions

of potential outcomes can be retrieved for specific subgroups of the population even

in a non-experimental setting. However, knowledge of the marginal distributions is

not sufficient to point identify the joint distribution of potential outcomes. This in

turn precludes estimation of many policy parameters away from the average.

A number of papers over the years have circumvented the problem by fueling two

alternative streams of empirical and methodological literature. The first approach is

by far the most exploited in empirical studies, but in fact moves the goalpost with

respect to what we do in this paper. Rather than estimating quantiles of the treatment

effect distribution, it provides conditions to identify the quantile treatment effect,

which represents the ’horizontal’ distance between the distribution under treatment

and the distribution in the absence of treatment (Doksum, 1974). In light of what

discussed above, methods required to identify averages straightforwardly extend to

identification of quantile treatment effects. Abadie et al. (2002), Bitler et al. (2006),

Firpo (2007) and Frandsen et al. (2012) are examples and both theoretical and

empirical contributions to this literature.

An alternative approach has considered the possibility of constructing bounds on

the joint distribution of potential outcomes, very much in the spirit of Fréchet in-

equalities - which indeed have a long lasting tradition in mathematical statistics -

and the seminal work by Manski (1990). Partial identification of any functional of

the treatment effect distribution is achieved by imposing restrictions on the copula

relating the two potential outcomes. Despite its elegance, the contribution of this lit-

erature to applied work is still relatively limited. Bounds often prove non-informative

for policy parameters, and are derived using conditions whose validity is not uncontro-

versial in many empirical settings. It turns out that in many instances this approach

is used to rule out the ’common effect’ model, but seldom can inform policy makers.

See Heckman et al. (1997), Abbring and Heckman (2007) and Firpo, Pinheiro and
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Ridder (2010) for examples and discussions. Rank invariance across policy states im-

poses restrictions on the copula that are sufficient to obtain point identification (see

Heckman et al., 1997).

An alternative approach considered in the literature, and the one that we take in

what follows, postulates a factor structure that relates potential outcomes (see, for

example, Carneiro et al., 2003, Aakvik et al., 2005, Heckman et al., 2006, Cunha and

Heckman, 2007, and Heckman et al., 2014). In its bare essentials, the key assumption

required for identification is that the dependence across potential outcomes is solely

generated by a low dimensional set of factors. Under certain conditions, the avail-

ability of additional measurements on top of observed outcomes allows to retrieve

non-parametrically the joint distribution of factors and potential outcomes, and from

this any functional of interest (see Abbring and Heckman, 2007, for details).

Despite the transparency of the identification result, the need of flexible estimation

strategies often challenges simplicity of the methods proposed, and this has affected

their diffusion in empirical research. Leaving aside a range of convenient parametric

cases, normality being a leading example, estimation is typically carried out using

MCMC methods that make use of mixtures of distributions and involve convolutions

of random variables. This approach has the advantage of retrieving the full treatment

effect distribution, and thus any policy parameter that can be constructed from this

(see the discussion in Abbring and Heckman, 2007). The approach proposed in this

paper, on the contrary, has the advantage of being readably implementable using

existing software, though it provides conditions for the identification of one specific

parameter.

The use of factor models has a long lasting tradition in psychology and other social

sciences. Our paper contributes to a growing literature signaling a ’renaissance’ of

their role in applied micro-econometrics, and in policy evaluation in particular. Recent

papers have considered the potential of using latent structures as a tool to gain

external validity in regression discontinuity designs (Angrist and Rokkanen, 2013,

and Rokkanen, 2013), or to achieve identification of time-varying treatment effects

(Cooley Fruehwirth et al., 2011). Bonhomme and Robin (2010), Arcidiacono et al.

(2011) and Jackson (2013) provide additional examples of empirical research that

employs factor representations similar to that we consider in this paper.

The main contributions of this paper can be summarized as follows. First, estima-

tion of treatment effects is carried out by assuming a factor model in which latent
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factors is allowed to affect the conditional variance of the outcomes, not only its con-

ditional average, a feature that is not considered in the traditional formulation of the

model or in previous applications to policy evaluation (see Abbring and Heckman,

2007). The distribution of the causal effect implied by this model is considerably

more flexible than that obtained under the traditional factor model. The identifica-

tion conditions for the parameter of interest are very general in nature, or at least

as general as those already presented in other studies estimating economic models

in this setup. Second, we derive an estimation strategy that exploits recent results

in the literature on quantiles. Monte Carlo simulations show that the proposed esti-

mator outperforms in finite samples that by Chernozhukov and Hansen (2006) even

if asymptotically equivalent to their. The methodology developed is then used to

evaluate the distributional effects of an Italian labour market policy that combines

income support to eligible dismissed employees with wage benefits to employers who

hire them.

The remainder of the paper is organised as follows. Section 2 sets up the nota-

tion and the parameter of interest. Section ?? discusses the assumptions underlying

the factor representation employed. Section 4 derives the main identification result.

Section 5 deals with estimation, while asymptotic theory is presented in Section 5.3.

The application is in Section 7, and Section 8 concludes. Proofs of theorems are in

the Appendix.

2. The Model

2.1. Notation. The notation employed in the potential outcome approach to causal

inference is used throughout. Assume that the variables (Y,D,W,X) are observed

for a sample of units randomly drawn from the relevant population, where Y =

Y0 + D(Y1 − Y0) is a scalar continuous outcome, W = (W1, . . . ,WK)
′ is a vector of

K continuous random variables, D is the binary treatment or policy status indica-

tor defining the potential outcomes (Y1, Y0) for participation and non-participation,

respectively, and X are control variables exogenous to the model. For example the

vector W may include outcome measurements for periods preceding the policy roll

out.

The notation FA[a|b] indicates the distribution of random variable A calculated at

a conditional on random variable B taking value b. A similar notation is employed

for the conditional τ -quantile function QA[τ |b] := F−1
A [τ |b].
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2.2. Factor structure. The following factor structure is assumed, which we state as

conditional on cells defined by X (the conditioning on these variables is left implicit

throughout):

Wk =
r∑
l=1

δklΘl + (1 +
r∑
l=1

ξklΘl)Vk, k = 1, . . . , K(2.1)

Y1 =
r∑
l=1

λ1lΘl + (1 +
r∑
l=1

γ1lΘl)U1,(2.2)

Y0 =
r∑
l=1

λ0lΘl + (1 +
r∑
l=1

γ0lΘl)U0.(2.3)

The Θl’s are continuous unobserved factors, with l = 1, . . . , r. Their number is known

and equal to r < K, with (K−r) ≥ r. The variables Vk, U0 and U1 denote continuous

uniqueness components. The model features 2(K + 2)r unknown parameters, where

(δl, λ1l, λ0l) are factor loadings and (ξl, γ1l, γ0l) are scale parameters.

We write the model in a more convenient matrix form:

W = LΘ+GΘ ◦ V + V ,(2.4)

Y1 = λ′
1Θ+ (1 + γ ′

1Θ)U1,(2.5)

Y0 = λ′
0Θ+ (1 + γ ′

0Θ)U0,(2.6)

where V = (V1, . . . , VK)
′ and Θ = (Θ1, . . . ,Θr)

′ are K × 1 and r × 1 vectors, re-

spectively, and ◦ denotes the Hadamard product. For d = {0, 1} there is λd =

(λd1, . . . , λdr)
′ and γd = (γd1, . . . , γdr)

′, and L and G are K × r matrices defined as

follows:

L =



δ11 δ12 . . . δ1r
δ21 δ22 . . . δ2r
... . . . . . .

...

δr1 δr2 . . . δrr
... . . . . . .

...

δK1 δK2 . . . δKr


, G =



ξ11 ξ12 . . . ξ1r
ξ21 ξ22 . . . ξ2r
... . . . . . .

...

ξr1 ξr2 . . . ξrr
... . . . . . .

...

ξK1 ξK2 . . . ξKr


.

Consider the following partition of the matrix L = [L(1),L(2)], where L(1) is r × r

and L(2) is (K − r) × r. Similarly, G = [G(1),G(2)], where G(1) is r × r and G(2) is

(K − r)× r. We maintain the following normalization:

L(1) = Ir, G(1) = 0r,(2.7)
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which in turn implies:

Θ = W(1) − V(1),(2.8)

where W(1) = (W1, ...,Wr)
′ and V(1) = (V1, ..., Vr)

′. Naturally this implies that

W(2) = (Wr+1, ...,WK)
′. The normalization L(1) = Ir is standard, and sets the

scale of the unobserved factors. The normalization G(1) = 0r imposes homoskedas-

ticity for measurements W(1). This, together with Assumption 1, implies that the

r components of W(1) are error ridden measurements of the latent factors Θ. The

latter normalization is required to derive our identification result.

Components of the vector (U0,V
′) are assumed mutually independent and indepen-

dent of the latent factors Θ. The same assumption is made for the vector (U1,V
′).

Means of factors and uniqueness are normalized to zero. The conditions embedded

in the model can be summarized as follows.

Assumption 1. (Factor model).

(i) The factor model is defined by equations (2.4), (2.5), (2.6) and the normal-

ization (2.7).

(ii) Conditional on X there is for d = {0, 1}:

FUdV Θ(u,v,θ) = FUd
(u)

[
K∏
k=1

FVk(vk)

]
FΘ(θ).

(iii) The random variables (U1, U0,V,Θ) have continuous distributions with zero

mean, variance matrix Σ2+K+r <∞, and finite fourth moments.

Assumptions 1.ii and 1.iii are standard in the literature on factor models. In-

stead Assumption 1.i marks an important departure, as the variance of measurements

(Y0, Y1,W) conditional on Θ is allowed to vary with the latent factors Θ.

The standard factor model is obtained by setting scale parameters to zero. In the

standard setting, an application of Kotlarski’s (1967) theorem yields non-parametric

identification of FUdV Θ(u,v,θ), d = {0, 1}. This result paves the way for identifica-

tion of FY0Y1(y0, y1), or conditional versions of it, if combined with the assumptions

discussed further below (see Abbring and Heckman, 2007). The Kotlarski’s (1967)

theorem does not apply to equations (2.2) and (2.3), as the uniqueness is allowed to

depend on latent factors through heteroskedasticity. We can however retrieve features

of the model that are sufficient to define a parameter of interest that is informative

on the distribution of gains.
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2.3. Policy assignment mechanism. It is assumed throughout that the treatment

status is randomly allocated to units of the relevant population.

Assumption 2. (Policy assignment mechanism). Conditional on X the random

variables (U1, U0,V,Θ) are independent of policy status:

FU1U0VΘ(u1, u0,v,θ|d) = FU1U0VΘ(u1, u0,v,θ).

We maintain randomization (or conditional versions of it, such as in regression

discontinuity designs) as leading example. The discussion will clarify that identifi-

cation is driven by the outcome equations together with independence assumptions

that come with the factor structure, rather than from the assignment mechanism.

Variants to Assumption 2 may be considered to allow for non-random selection into

treatment (see Abbring and Heckman, 2007). Further modifications can be allowed

by assuming that units have two periods of outcome data in one counterfactual state

or the other (Cunha and Heckman, 2008).1

3. Parameter of interest

3.1. Definition. The contrast of potential outcomes for alternative populations of

individuals defines a variety of causal parameters. The treatment or policy effect is

defined as ∆ ≡ Y1−Y0, namely the difference that results from contrasting realizations

of the outcome under the two (mutually exclusive) scenarios for the policy status.

Knowledge of the distribution of ∆ allows to answer policy questions regarding, for

instance, how widely treatment gains are distributed across recipients, or to study

the effect on recipients for specific values of the base state distribution. Even when

individuals are randomized into/out of treatment, identification of these parameters

requires additional assumptions to retrieve the joint distribution of Y0 and Y1, and

thus that of ∆, from the two marginals. The unrestricted set of joint distributions

consistent with the marginals can be exploited to partially-identify the distribution

of ∆ via classical probability inequalities. However, the resulting identification set is

generally uninformative (see the discussion in Heckman et al., 1997). Measures based

on the marginal distributions of Y0 and Y1 are useful to document the heterogeneity

of the treatment across individuals investigating quantile treatment effects (Bitler et

al., 2006).

1Enrico to check that it is truly the case.
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The parameter of interest in what follows is the quantile function of the distribution

of gains (QDG) conditional on Θ = θ and U0 = u0 (within cells defined by X):

QDG[τ ;θ, u0] = Q∆(τ |θ, u0).

We will consider a collection of QDGs defined at quantiles QU0(τ0) of the uniqueness

U0. In light of equation (2.6), the conditioning on Θ and U0 makes such collection of

QDGs equivalent to learning about the distribution of gains at different values of the

base state (or policy off) distribution Y0. This is one of the parameters discussed in

the seminal paper by Heckman et al. (1997).2

3.2. Representation. Assumption 1 and Assumption 2 are needed to learn about

the factor model. The following Assumption 3.i has been used to achieve identification

of the distribution of causal effects, and is standard in the literature on factor models

and distribution of gains (see, for example, Carneiro et al., 2003, Aakvik et al.,

2005, and Abbring and Heckman, 2007). The assumption plays a key role in the

derivation of QDG. As it will be clear in the next section, Assumption 3.i can be

replaced by Assumption 3.ii conveying a similar identification result. Rather than

assuming independence between uniqueness U0 and U1, the latter assumption restricts

the conditional distribution of U1 − U0 given U0.

Assumption 3. (Distribution of uniqueness). Conditional on X:

(i) the random variables (U1, U0) are independent:

FU0U1(u0, u1) = FU0(u0)FU1(u1);

or alternatively,

(ii) the participation effect on uniqueness U1 − U0 is independent of the baseline

value U0: FU1−U0(η|u0) = FU1−U0(η).

The independence Assumption 3.i, together with equations (2.5) and (2.6), allows

to write the fundamental representation for the parameter of interest. There is:

∆ = (λ′
1 − λ′

0)Θ+ (U1γ
′
1 − U0γ

′
0)Θ+ U1 − U0,

which under Assumption 3.i yields:

QDG[τ1;θ, QU0(τ0)] = (λ1[τ1]
′ − λ0[τ0]

′)θ +QU1(τ1)−QU0(τ0),(3.1)

2Add graphical interpretation? Maybe yes, as the audience may like this.
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where here the QDG is calculated at U0 = QU0 [τ0] and:

λ1[τ1] ≡ λ1 + γ1QU1 [τ1],

λ0[τ0] ≡ λ0 + γ0QU0 [τ0].

The quantity in (3.1) is the quantile function of the distribution of gains conditional

on having Θ = θ and U0 = QU0(τ0). It defines the following correspondence:

QDG[τ1;θ, QU0(τ0)] = Hλ0[τ0],λ1[τ1]{QU0 [τ0], QU1 [τ1]},(3.2)

where H is a (known) point identifying functional. For known values of the loadings

λ1[τ1] and λ0[τ0], this establishes a correspondence between the unobserved term on

the left hand side of the equation and the two quantile functions QU0 [τ0] and QU1 [τ1]

on the right hand side. Knowledge of factor loadings and these quantile functions

is sufficient to retrieve the parameter of interest. This sets the stage for analogue

estimation presented below.

Assumption 1 improves on the previous literature by adding flexibility to the rela-

tionship between ∆ and Θ. In the traditional formulation of the factor model there

is γ0 = γ1 = 0, so that latent factors affect the distribution of gains only through a

location shift constant across quantiles of the treatment effect distribution. This is a

feature that may be implausible in many empirical applications. Our setting instead

implies:

∂

∂Θl

QDG[τ1;θ, QU0(τ0)] = λ1l[τ1]− λ0l[τ0], l = 1, . . . , r(3.3)

where λ1l and λ0l are the l-th components of vectors λ1[τ1] and λ0[τ0], respectively,

and the derivative is allowed to vary across quantiles through its dependence on γ0

and γ1. It will be clear in the next section that the identification of (3.3) requires

less assumptions than those needed to identify (3.1). This result follows upon noting

that identification of the derivative does not require direct knowledge of QU0 [τ0] and

QU1 [τ1]. Knowledge of the first derivative yields a formal test for the validity of the

standard factor model, as in the latter case the value of (3.3) should be constant

across quantiles.

Remark 1. 3 Under Assumptions 2 and 3, if the latent factors Θl’s are observable,

it is possible to obtain the parameter of interest QDG[τ1;θ, QU0(τ0)] as the difference

between two conditional quantile functions: QY1(τ1|θ) − QY0(τ0|θ). Furthermore, if

3EB/ER propose to change into this: Note that, under Assumption 2 and Assumption 3,

the expression in (3.1) coincides with the difference between two conditional quantile functions:
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Ud ∼ F and τd = τ for d = {0, 1}, under randomization, we obtain a conditional on

unobservables version of the Lehmann’s quantile treatment effect (QTE), QY (τ |D =

1,θ) − QY (τ |D = 0,θ). It should be noted that our model does not impose these

restrictive assumptions. More importantly, our parameter of interest departs from

Lehmann’s quantile treatment effect since it measures gains at selected base state

values y0 which are determined by conditioning on θ and QU0(τ0).

4. Identification

We first consider identification of factor loadings λd and scale parameters γd for

d = {0, 1}. We then present the identification result to the case of the quantile of the

uniqueness, employing instrumental quantile regressions.

4.1. Factor loadings. By substituting (2.8) into (2.5) and (2.6) there is:

Yd = λ′
dW(1) − λ′

dV(1) + (1 + γ ′
dW(1) − γ ′

dV(1))Ud,(4.1)

which defines the (feasible) regression of Y on W(1) = (W1, ...,Wr)
′. Let:

Ẏ ≡ Y − λ′
1DW(1) − λ′

0(1−D)W(1),

and recall thatW(2) = (Wr+1, ...,WK)
′ and that σ2

d denotes the variance of the unique-

ness Ud as in Assumption 1.iii.

Theorem 1. Under Assumption 1 and Assumption 2, there is for d = {0, 1}:

EY (Y |w(2), d) = λ′
dEW(1)

(W(1)|w(2), d),

EẎ (Ẏ
2|w(2), d) = σ2

d[2γ
′
dEW(1)

(W(1)|w(2), d) + γ ′
dEW(1)

(W(1)W
′
(1)|w(2), d)γd] + κd.

The first moment condition in Theorem 1 implies that a consistent estimate of

λ1 can be retrieved by estimating with 2SLS the regression of Y on W(1) for the

‘policy on’ group using functions of W(2) as instruments. The same approach applied

to the ‘policy off’ group yields a consistent estimate of λ0. Knowledge of these

quantities allows to retrieve Ẏ . Separately for the ‘policy on’ and ‘policy off’ groups,

Ẏ 2 is regressed on the elements of W(1), their squares and interactions using 2SLS,

with functions of W(2) as instruments. The elements of γd are identified by taking

QY1(τ1|θ)−QY0(τ0|θ). The latter difference for τ1 = τ0 identifies a version of the Lehmann’s quan-

tile treatment effect (QTE) which is conditional on θ. Our parameter of interest if evaluated at

τ1 = τ0 coincides with this conditional QTE.



12

the appropriate ratio between the coefficients on EW(1)
(W(1)W

′
(1)|w(2), d) and the

coefficients on EW(1)
(W1|w(2), d). Note that the degree of over-identification of these

parameters increases with r.

4.2. Quantile functions of uniqueness. The identification result is contained in

Theorem 2 and Corollaries 1 and 2, for which conditions are discussed below. For

d = {0, 1}, define:
Yd = λ′

dθ + (1 + γ ′
dθ)Ud := qd(θ, Ud),

so that the corresponding quantile function can be written as:

QYd(τd|θ) = λ′
dθ + (1 + γ ′

dθ)QUd
(τd) = qd(θ, QUd

(τd)).

Assumption 4. (Monotonicity) Conditional on θ and W(1), the conditional quantile

functions qd(θ, QUd
(τd)) and qd(W(1), τd) are strictly increasing in τd.

EB: How is qd(W(1), τd) defined? It seems to be a quantile function conditional

on W(1), but this has not been defined - I think. Check also whether the continuity

assumption in Assumption 1.iii implies Assumption 4.

Assumption4 4 is similar to A1 in Chernozhukov and Hansen (2005) and imposes

strictly increasing functions in τd. As in Chernozhukov and Hansen (2005), we also

employ a conventional conditional independence restriction which in this case is im-

plied by the factor model and Assumptions 1 and 2. In contrast with their work, we

do not use a Skorohod representation for the uniqueness, and more importantly, we

do not require Assumption A4 on rank invariance, U0 ∼ U1. This assumption im-

poses a restriction on Ud to do not vary with potential treatment states, implying for

instance that subjects with high wages with training remain strong earners without

training. Using the Skorohod representation, this essentially implies that the rank

U0 = τ remains U1 = τ , in contrast with our case where Ud = τd for d = {0, 1}. It is
important to note that in our simplest conceivable model, assuming that λdl = γdl = 1

for all d and l and r = 1, the term Θ+ Ud implies that the rank of the worker might

not vary across subjects with Θ = θ. But the model allows for changes since Ud is not

assumed to be identically distributed across d. Although our model does not require

rank invariance or rank similarity, it imposes independence Assumptions 2 and 3, as

previously stated.

4Discussion on rank invariance to be moved earlier in the paper.
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The following theorem on latent structures and conditional quantile functions is

the main result of this section:

Theorem 2. Under Assumptions 1, 2, (3.i), and 4, for d = {0, 1} and τd ∈ (0, 1),

P (Yd ≤ qd(θ, τd)|θ) = P (Yd ≤ qd(W(1), τd)|W(2)) = τd.

The result of Theorem 2 is important as it shows that the quantile of the uniqueness

associated with a generalization of the traditional factor model can be identified. The

result might be seen as an extension of Chernozhukov and Hansen (2005) to a model

with latent variables and offers a foundation for estimation of a fairly general factor

model based on the restrictions previously stated. Note that because of this, for

instance, the standard factor model can be tested against the data, as in this case the

quantile-specific factor loadings, hence the derivative (3.3), should be constant across

quantiles.

The following result shows that, once λd and γd are identified (Theorem 1), it

is possible to identify the quantile of the uniqueness considering the normalization

adopted in (2.7) and the conditions of Theorem 2.

Corollary 1. Under the conditions of Theorem 1 and Theorem 2, for τd ∈ (0, 1) and

d = {0, 1}, (i) the quantiles of the uniqueness Ud are identified, and (ii) the quantile

specific loading λd(τd) is identified.

Corollary 1 contains two important results. First, it shows that the quantiles of the

uniqueness Ud and λd(τd) are identified and, consequently for a given θ, the quantile

of the distribution of gains (QDG) introduced in equation (3.2) is also identified. The

second result is important as it shows that derivative of the QDG as in equation (3.3)

can be identified.

Lastly, the following result shows that, if Assumption 3.i is replaced with Assump-

tion 3.ii, knowledge of loadings and scale parameters in the factor model together

with that of quantile functions QU0(τ0) and QU1(τ1) is sufficient to write an identify-

ing correspondence for the QDG as in equation (3.2).

Corollary 2. Under Assumption 1, Assumption 2, Assumption 3.ii, and Assumption

4, for τd ∈ (0, 1), the following identifying correspondence is defined

QDG[τ1;θ, QU0(τ0)] = G,(4.2)

with G known point identifying functional.
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4.3. Quantile function of the latent factors. It follows that identification and

estimation of how a marginal change to θ affects QDGs as in equation (3.3) does not

require knowledge of FΘ(θ) but the QDGs defined in equations (3.2) and (4.2) do.

In this paper, we propose a solution to this problem based on approximations with

small uniqueness variance (Chesher 1991). Following the normalization adopted in

(2.7) and Assumption 1.iii, consider Wl = Θl+σVlVl for l = 1, . . . , r. In what follows,

we suppress the index l for simplicity. There is:

fW [w] = EV [fΘ(w − σV V )]

= fΘ(w)− σV f
(1)
Θ (w)EV [V ] +

σ2
V

2
f
(2)
Θ (w)EV [V

2] + o(σ2
V ),

where the last expression follows from a Taylor approximation around σV = 0 and

f (j) indicates the j-th partial derivative. Integration yields:

FW [w] = FΘ(w)− σfΘ(w)EV [V ] +
σ2
V

2
f
(1)
Θ (w)EV [V

2] + o(σ2
V ).

Under 1.iii, it follows that:

FW [w] ≃ FΘ(w) +
σ2

2
f
(1)
Θ (w),

where A ≃ B indicates A = B + o(σ2
V ). Defining QW (τ) such that τ = FW [QW (τ)]

and adopting the convention that w = QW (τ), it follows that:

FΘ(QW (τ)) +
σ2

2
f
(1)
Θ (QW (τ)) ≃ τ,

which also implies,

QΘ(τ) ≃ F−1
Θ {FΘ(QW (τ)) +

σ2

2
f
(1)
Θ (QW (τ))}.

By expanding the last expression around σ2 = 0 and using differentiation of inverse

functions, we obtain,

QΘ(τ) ≃ QW (τ) +
σ2

2

f
(1)
Θ {QW (τ)}
fΘ{QW (τ)}

.

Finally, by Chesher (2001, Appendix B), we approximate the quantile of the factor Θ

in terms of the inverse of the cumulative distribution function and density function
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of the observable pre-intervention measure W :

QΘ(τ) ≃ QW (τ) +
σ2

2

f
(1)
W {QW (τ)}
fW{QW (τ)}

(4.3)

= QW (τ) +
σ2

2

[
∂

∂w
log(fW{w})

]
w=QW (τ)

.(4.4)

By adopting the convention that θ = QΘ(τ), it is possible to identify the QDGs using

equation (4.3). The last expression (4.4) turns out to be convenient to estimate the

parameter of interest because avoids the natural challenges of estimating f
(1)
W (·).

It is important to emphasize that conditioning on θ has a natural economic in-

terpretation and allows the policy evaluator to learn about the causal relationship

between two potential outcomes. At the core of this paper, there is the idea that an

evaluator interested in the causal effect at different values of the base state distribu-

tion Y0 can learn about gains by conditioning on values θ and QU0(τ0). We note that

there are alternatives to the approximation with small uniqueness variance but we

focus on one approach for practical purposes (see, e.g., Hall and Lahiri 2008).

Remark 2. Identification has interesting connections with the literature on mea-

surement error. Schennach (2008) discusses conditions to identify QY |DΘ[τ |d, θ], in-
terpreting W1 as an error ridden measurement of the latent variable Θ. As in our

context there is QY |DΘ[τ |d, 0] = QUd
[τ ], the object she is after coincides with that

entering the right end side of (3.2). As we do in this paper, Schennach (2008) imposes

no specific functional form on the distribution of the dependent variable or Θ. Her

approach does not employ any factor representation. However, results in Schennach

(2008) do not apply to the case discussed here because her condition (6) is not met.

This is because in our model (Θ − EΘ|W2) depends on W2 as long as ξ2 in (2.1) is

not zero. Wei and Carroll (2009, see equation (2)) consider a problem similar to that

arising in our context. Their solution requires knowledge of the distribution of Θ|W2

or, alternatively, the availability of auxiliary information allowing to estimate the

distribution of the uniqueness V1 (they consider the case in which V1 is a zero-mean

Gaussian random variable, so that only its variance is unknown). Their strategy

cannot be applied to our context, as we don’t make use of information coming from

auxiliary data.
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5. Estimation

This section proposes a series of estimators and investigates their large sample prop-

erties. We estimate conditional mean models and conditional quantile functions con-

sidering independently and identically distributed (i.i.d.) samples {(Yi, Di,X
′
i,W

′
i ) :

i = 1, ..., nd}. We assume that n1 individuals are in the treatment group and n0 are

in the control group.

5.1. Factor loadings. We begin by rewriting (4.1) as

(5.1) Yd = W1λd +Xβ + ϵd,

where Yd = (Y1d, . . . , Yndd)
′ is an nd-dimensional vector, W1 = [W ′

(1)1, . . . ,W
′
(1)nd

] is

a nd× r matrix, X is a nd× p matrix of exogenous variables, and ϵd is a nd× 1 error

term. We write:

(5.2) yd(λd) = Yd −W1λd = Xβ +W2η + εd,

where W2 is a matrix of instruments of dimension nd × (K − r). Letting M =

I −X(X ′X)−1X ′, it is possible to obtain η̂(λd) = (W ′
2MW2)

−1W ′
2Myd(λd) and

then:

(5.3) λ̂d = argmin
λd∈Λd

{η̂(λd)′W ′
2MW2η̂(λd)} .

We now define the products,

Z1s := W1kW1l, for s = 1, . . . , R; k = 1, . . . , r; l = 1, . . . , r,

where R = r(r + 1)/2 and Z1 = (Z11, . . . , Z1R)
′. Following Theorem 1, we define

(5.4) Ẏd = (Yd −W1λd)
2 = W 2

1 ad +W1bd +Z1cd +Xβ + ϵ̇d,

where W 2
1 is the nd × r matrix whose elements are squares of the elements of W1.

For a given (a′
d, b

′
d, c

′
d) the previous equation can be written as,

(5.5) ẏd(ad, bd, cd) = Ẏd −W 2
1 ad −W1bd −Z1cd = Xβ + Ẇ2η̇ + ε̇d,

where Ẇ2 is a vector of instruments that include transformations of W2. Similarly

as before we obtain the estimator, η̃(ad, bd, cd) = (Ẇ ′
2MẆ2)

−1Ẇ ′
2Myd(ad, bd, cd).

It can be shown that:

(5.6) (â′
d, b̂

′
d, ĉ

′
c) = argmin

(a,b,c)∈A×B×C

{
η̃(ad, bd, cd)

′Ẇ ′
2MẆ2η̃(ad, bd, cd)

}
.
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Following Theorem 1 the estimator for the scale parameter is defined as follows for

l, s = 1, . . . , r:

γ̂dl =
ĉdls

b̂ds
.

Asymptotically valid inference relies on the delta method provided that nd is suffi-

ciently large.

5.2. Quantiles of Uniqueness. It is convenient to define:

(5.7) Cid = ρτd(Yid − λ′
dW1i − αdγ

′
dW1i −X ′

iβ −W ′
2iη)

where ρτd(u) = u(τd − I(u ≤ 0)) is the standard quantile loss function (see, e.g.,

Koenker 2005). The term W2i = g(τ ;W(2),r+1, ...,W(2),K−r,X
′
i)

′ is a vector of trans-

formations of instruments as introduced by Chernozhukov and Hansen (2006) [E2:

not sure this specification is needed]. In practice, it is possible to estimate g(·)
by a least squares projection of the endogenous variables W1i on the instruments

W2i and the exogenous variables Xi. In the simulations and empirical example, we

consider the case of r = (K − r) with r > 0, although the vector g(·) may include

more elements than the vector of endogenous variables.

It is important to note that the generalization of the factor model proposed in

this paper leads to a location-scale shift model, and consequently, [E2: not sure to

understand the consequence here] the unknown parameter αd in (5.7) is equal

to the quantile of the uniqueness QUd
(τd). Thus, once we obtain consistent estimates

of the factor loadings and scale parameters in a model with endogenous variables,

we can adopt an inverse quantile regression approach which is similar in spirit [E2:

if this is a contribution, perhaps it would be important to spell out the

nature of it] to Chernozhukov and Hansen (2006, 2008).

We proceed in two steps. First, we minimize Cid over β and η as functions of τd,

λd, γd and αd,

(5.8) ϑ̂(τd, λ̂d, γ̂d, αd) =

(
β̂(τd, λ̂d, γ̂d, αd)

η̂(τd, λ̂d, γ̂d, αd)

)
= argmin

β,η∈B×G

nd∑
i=1

Cid(τd, λ̂d, γ̂d, αd).

Then we estimate the coefficient on the endogenous variable by finding the value of

α which minimizes the following objective function:

(5.9) α̂(τd) = Q̂Ud
(τd) = argmin

α∈A

{
η̂(τd,λd,γd, αd)

′Â(τd)η̂(τd,λd,γd, αd)
}
,

for a positive definite matrix A.
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The method has several advantages. It is well known that the implementation of

inverse quantile regression approaches requires a low-dimensional search over coeffi-

cients associated with the endogenous variables. Note that while r can be potentially

large in empirical applications, the search over αd is simply done over the real line.

Moreover, in contrast with other approaches, the proposed approach has the addi-

tional advantage to estimate directly quantiles of the uniqueness, avoiding issues of

solving for αd based on λ̂d(τd), λ̂d and γ̂d with unknown weights and potentially small

scale parameter estimates.

Lastly, it is useful to compare the approach with a control variate approach (Chesher

2003 and Ma and Koenker 2006). A control variate type estimator for the model de-

fined in (4.1) can be defined as follows:

(5.10) (λ̃d(τd)
′, δ̃(τd)

′, β̃(τd)
′) = argmin

λ,δ,β∈Λ×∆×B

nd∑
i=1

ρτd (Yid − λ′
dW1i − δ′V1i −X ′

iβ) .

If the vector V1i is observed, it is natural to directly estimate the quantile of the

uniqueness as β̃0(τd) which estimates β0(τd) = β0 + QUd
(τd) or directly QUd

(τd) in

the model defined in equations (2.2) and (2.3). However, estimation of V1i based

on residuals from a linear or non-linear model might not lead to estimation of the

uniqueness even in the case that β0 = 0 and the loadings λd and scale parameters γd
are not estimated.

5.3. Theory of estimation and basic inference. This section states additional

conditions and a series of results to facilitate the estimation of the standard error of

the quantile of the uniqueness. Consider the following assumptions:

Assumption 5. The variables Yid are independent across i with conditional distri-

bution functions Fid, differentiable conditional densities, 0 < fid <∞, with bounded

derivatives f ′
id at the conditional quantiles for i = 1, ..., nd.

Assumption 6. There exists positive constants ∆0 and ∆1 such that E(|ϵ4d|1+∆0) <

∆1 and E(|W1jW1kW1lW1m|1+∆0) < ∆1 for j, k, l,m = 1, . . . , r. In addition, we have

that infi ξmin(E[W
′
2iMW2i]) > 0 and infi ξmin(E[W̃

′
2iMW̃2i]) > 0 where ξmin is the

smallest eigenvalue.

Assumption 7. For all τd ∈ (0, 1), (α(τd),β(τd)) ∈ int A×B, where A×B is compact

and convex.
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Assumption 8. Let Π(·, τd) ≡ E(ψτd(·)(X ′,W ′
(2))) where ψτd = τd − I(u ≤ 0),

and let π0 = (α,β′,η′)′ and π1 = (α,β′)′. The Jacobian matrices ∇Π(π0, τd) and

∇Π(π1, τd) have full rank and are continuous.

Assumption 9. There exist limiting positive definite matrices S(τd) and J(τd):

J(τd) = lim
nd→∞

[W2,X]′Ψ[W1,X]; S(τd) = lim
nd→∞

[W2,X]′[W2,X],

where Ψ is a diagonal matrix with typical element fid(ξid(τd)) and ξid(τd) is the τd-th

conditional quantile function.

Assumption 10. max ∥z∥/√nd → 0, for z = {W1,X,W2}.

We employ conditions that are standard in the literature of instrumental variable

quantile regression. The first part of Condition 5 is standard and the second part

of the assumption ensures a well-defined asymptotic behavior of the quantile regres-

sion estimator. The behavior of the conditional density in a neighborhood of the

conditional quantile function is crucial for the asymptotic behavior of the quantile

regression estimator. Assumption 6 is important for the existence, convergence in

probability and law of the two-stage estimators previously defined, and consequently,

it is needed for the behavior of the quantile regression estimator. Assumptions 7 and 8

are similar to Conditions R2 and R3 in Chernozhukov and Hansen (2006). Condition

9 leads to asymptotic covariance matrices that have a representation similar to the

matrices found in Chernozhukov and Hansen (2006). Condition 10 is also standard

and ensures the finite dimensional convergence of the objective function.

Theorem 3. Under Assumptions 1-10, the estimators defined in (5.3) and (5.6),

(λ̂′
d, γ̂d), are consistent and asymptotically normally distributed. Moreover, under

these conditions and provided that γdl ̸= 0 for at least one l = 1, . . . , r, the quantile

regression estimator defined in (5.9), (Q̂Ud
(τd), β̂(τd)

′), is consistent and asymptoti-

cally normal with mean zero and covariance matrix J(τd)
−1S(τd)J(τd)

−1.

Theorem 3 implies that the components of the asymptotic covariance matrix, J(τd)

and S(τd), can be estimated using standard sample counterparts. For instance,

Ŝ(τd) = τd(1− τd)
1

nd

nd∑
i=1

ZiZ
′
i,(5.11)

Ĵ(τd) =
1

2ndhnd

nd∑
i=1

I(|ûi(τd)| ≤ hnd
)DiZ

′
i,(5.12)
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where Zi = [W2i,Xi], Di = [W1i,Xi], ûi(τd) = yid−λ̂′
dW1i−X ′

iβ̂(τd), λ̂d(τd) = λ̂d+

γ̂dQ̂Ud
(τd), and hnd

is a properly chosen bandwidth (see Koenker 2005 for additional

details). Note that the classical delta method and equations (5.11) and (5.12) lead to

inference for the parameters of interest associated with the quantile specific loadings.

Inference for the QDGs and its partial derivatives requires a different strategy. We

follow closely Jin, Ying and Wei (2001) and Ma and Kosorok (2005) proposing to use a

re-sampling approach designed to perturb the objective function. This method main-

tains the endogenous structure of the model and can be easily implemented by drawing

independent variables from an exponential distribution with mean 1 and variance 1.

We first obtain a draw from the specified distribution. Then, we perturb the objective

functions associated with (5.3) and (5.6), and also (5.9) to obtain (λ∗
db,γ

∗
db, Q

∗
Ud
(τd)).

Using these estimates, we obtain λ∗
1b(τ1)−λ∗

0b(τ0) and repeat the procedure B times.

The sample variance of (3.2) can be obtained from {λ∗
1b(τ1)−λ∗

0b(τ0)}Bb=1. Moreover,

conditional on θ, the sample variance and 100(1−2q) confidence interval of the QDG

as in (3.1) can be obtained by constructing the q-th quantile and (1− q)-th quantile

of {QDG∗
b(τ1;θ, Q

∗
Ud
(τd))}Bb=1.

6. Monte Carlo evidence

This section reports results from several simulation experiments designed to eval-

uate the performance of the method in finite samples. We generate the dependent

variable considering the following basic equations:

Wik =
2∑
l=1

δklΘil + (1 +
2∑
l=1

ξklΘil)Vik, k = 1, . . . , 4;(6.1)

Yid = β0 + β1Xi +
2∑
l=1

λdlΘil + (1 +
2∑
l=1

γdlΘil)Uid, d = 0, 1;(6.2)

Yi = DiY1i + (1−Di)Y0i,(6.3)

where Xi ∼ χ2
3, Di ∼ B(1, 0.5), and V ∼ N (0, 0.5I4). Motivated by the empirical

application considered in the next section, the parameter values for the factor loadings

are assumed to be equal to λ0 = (0.7, 0.5) and λ1 = (0.9, 0.8), and the parameter

values for the scale parameter are equal to γ0 = (0.2, 0.1) and γ1 = (0.25, 0.15). We

assume that β0 = β1 = 0. Moreover, we adopt the normalization L(1) = I2 and
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G(1) = 02, and then we set

L′ =

[
1 0 1 0.5

0 1 0.5 1

]′
, G′ =

[
0 0 0.1 0.1

0 0 0.1 0.1

]′
.

The evidence presented in this section is based on 1000 randomly generated sam-

ples, three sample sizes equal to nd = {2500, 5000, 10000} and the following three

designs:

Design 1: We assume that Θ = (Θ1,Θ2)
′ and U = (U0, U1)

′ are i.i.d. N (0, I).

Design 2: To examine the robustness to departures from Gaussian conditions,

we maintain Design 1 but we change the distribution of the factors and unique-

ness. We assume that Θ = (Θ1,Θ2)
′ and U = (U0, U1)

′ are i.i.d. t-student

distribution with 10 degrees of freedom, t10.

Design 3: To examine the robustness to the assumption on the independence

of the factors Θl, we maintain Design 1 but we allow Θ1 to be correlated with

Θ2. The correlation coefficient is equal to 0.2.

Table 6.1 presents the bias and root mean square error (RMSE) for the factor

loadings and scale parameters. The first columns correspond to the factor loadings

and scale parameters of the equation for Y1 and the last columns correspond to the

factor loadings and scale parameters of the equation for Y0. The top panel presents

the bias and RMSE in the Gaussian case (Design 1), the middle panel shows results

in the t10 case (Design 2), and finally the bottom panel presents results in the case of

correlated factors (Design 3).

While it is not surprising to see that the estimator for the factor loading is un-

biased, it is interesting to find out that the method offers, in general, an excellent

performance when the scale parameters are estimated with a moderate sample size of

2500 observations. We also find that, as expected, the estimation of scale parameters

improves dramatically as the sample size increases. The method proposed in this

paper continues to perform well when we depart from Gaussian conditions (Design

2) and when the factors are correlated (Design 3).

Table 6.2 present the bias (in absolute value) and RMSE for the quantile of the

uniqueness. We selected three quantiles, τ = {0.10, 0.50, 0.75}, and we present results

when Θ and U are i.i.d Gaussian variables as in Design 1. Because the results in

Table 6.1 do not seem to vary across designs, we restrict attention to only three

quantiles and one design.
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Factor loadings and scale parameters:

nd λ11 λ12 γ11 γ12 λ01 λ02 γ01 γ02

Design 1

Bias 2500 0.004 -0.002 -0.037 -0.013 0.000 0.000 -0.003 -0.009

RMSE 2500 0.042 0.041 0.645 0.310 0.038 0.036 2.289 0.327

Bias 5000 -0.001 0.000 -0.016 -0.004 -0.001 0.000 -0.007 0.004

RMSE 5000 0.029 0.029 0.376 0.217 0.026 0.026 0.430 0.200

Bias 10000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.025 -0.007

RMSE 10000 0.020 0.020 0.262 0.154 0.018 0.018 0.295 0.145

Design 2

Bias 2500 0.000 0.002 -0.005 0.011 0.000 -0.001 0.167 -0.002

RMSE 2500 0.038 0.037 0.496 0.269 0.034 0.033 6.929 0.266

Bias 5000 0.000 0.000 -0.015 -0.001 0.000 0.000 -0.036 -0.007

RMSE 5000 0.026 0.028 0.325 0.185 0.023 0.025 0.424 0.190

Bias 10000 0.000 -0.001 -0.002 0.001 0.000 0.000 0.008 0.008

RMSE 10000 0.019 0.018 0.211 0.127 0.017 0.017 0.274 0.135

Design 3

Bias 2500 0.004 -0.002 -0.052 -0.014 0.000 0.000 -0.184 -0.009

RMSE 2500 0.045 0.043 0.839 0.371 0.040 0.038 2.922 0.390

Bias 5000 -0.001 0.000 -0.016 -0.002 -0.001 0.000 -0.004 0.006

RMSE 5000 0.031 0.031 0.454 0.256 0.028 0.027 0.522 0.238

Bias 10000 0.000 0.000 0.003 0.001 0.000 -0.001 -0.030 -0.008

RMSE 10000 0.022 0.021 0.312 0.182 0.019 0.019 0.352 0.171

Table 6.1. Small sample performance of Instrumental Variable esti-

mators.

We find that the quantile estimator performs well at the lower tail of the conditional

distribution of the counterfactual response variable, with small biases that range from

5.6 percent to 8.8 percent (Table 6.2). As expected, the estimator continues to perform

well at the 0.10 and 0.75 quantiles, with significant improvements in terms of bias

and RMSE.

Lastly, Table 6.3 shows the finite sample performance of the proposed method

in comparison with other candidate methods. We consider the following quantile

regression estimators: (1) The quantile regression (QR) estimator for cross-sectional
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Quantiles of Uniqueness:

τd = 0.10 τd = 0.50 τd = 0.75

nd QU1 QU0 QU1 QU0 QU1 QU0

Bias 2500 -0.073 0.004 -0.032 -0.016 -0.025 -0.057

RMSE 2500 0.108 0.072 0.067 0.051 0.079 0.090

Bias 5000 -0.106 -0.036 -0.040 -0.023 -0.001 -0.029

RMSE 5000 0.122 0.070 0.057 0.046 0.054 0.056

Bias 10000 -0.109 -0.046 -0.055 -0.037 0.015 -0.014

RMSE 10000 0.120 0.066 0.061 0.045 0.044 0.035

Table 6.2. Small sample performance of Instrumental Variable esti-

mators.

data; (2) The instrumental variable quantile estimator proposed by Chernozhukov

and Hansen (2006) which is denoted by IVQR; (3) The proposed approach in this

paper which is labeled QDG. The upper block of the table presents results for the first

quantile-specific factor loading and the bottom part of the table shows results for the

second quantile-specific factor loading. By simple inspection of the performance of

the method to estimate the factor loadings, Table 6.3 is informative of the bias in the

estimation of the QDG and its derivative with respect to Θ1 and Θ2. This is naturally

important since it might illustrate potential biases in empirical applications.

It is not surprising perhaps to find out that the QR method is biased and has poor

MSE performance. On the other hand, the application of the IVQR method offers

a considerable improvement in terms of both bias and RMSE, since (W11,W12 is a

vector of endogenous variables. Note however that IVQR ameliorates the biases, but

it does not completely eliminate them even in large samples. The proposed approach

has biases that are closed to zero and low RMSE. Our estimator offers the best finite

sample performance and continues to perform very well at the quantile 0.1, only with

a minor increase in MSE.

7. Empirical application(s)

This section provides an empirical application using administrative data collected

for the evaluation of an income support programme in Italy. The eligible popula-

tion consists of employees affected by collective redundancy, provided that they have

completed one year of continuous, regular employment at firm. The programme has
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Quantile Regression Methods

Statistic nd τ QR IVQR QDG QR IVQR QDG

λ11(τ1) λ01(τ0)

Bias 2500 0.10 -0.148 0.060 -0.018 -0.129 0.020 0.001

RMSE 2500 0.10 0.151 0.088 0.027 0.132 0.065 0.014

Bias 5000 0.10 -0.150 0.058 -0.027 -0.128 0.025 -0.007

RMSE 5000 0.10 0.151 0.073 0.030 0.129 0.045 0.014

Bias 10000 0.10 -0.149 0.058 -0.027 -0.128 0.027 -0.009

RMSE 10000 0.10 0.149 0.066 0.030 0.129 0.039 0.013

Bias 2500 0.50 -0.296 0.005 -0.008 -0.231 0.002 -0.003

RMSE 2500 0.50 0.297 0.049 0.017 0.232 0.045 0.010

Bias 5000 0.50 -0.298 0.003 -0.010 -0.229 0.004 -0.005

RMSE 5000 0.50 0.298 0.035 0.014 0.230 0.029 0.009

Bias 10000 0.50 -0.298 0.003 -0.014 -0.231 0.006 -0.007

RMSE 10000 0.50 0.298 0.026 0.015 0.231 0.023 0.009

Bias 2500 0.75 -0.378 -0.047 -0.006 -0.290 -0.025 -0.011

RMSE 2500 0.75 0.379 0.072 0.020 0.291 0.055 0.018

Bias 5000 0.75 -0.380 -0.049 0.000 -0.288 -0.024 -0.006

RMSE 5000 0.75 0.380 0.062 0.013 0.288 0.043 0.011

Bias 10000 0.75 -0.380 -0.047 0.004 -0.288 -0.021 -0.003

RMSE 10000 0.75 0.380 0.055 0.011 0.289 0.032 0.007

λ12(τ1) λ02(τ0)

Bias 2500 0.10 -0.177 0.037 -0.011 -0.115 0.013 0.000

RMSE 2500 0.10 0.179 0.072 0.016 0.118 0.058 0.007

Bias 5000 0.10 -0.177 0.040 -0.016 -0.114 0.012 -0.004

RMSE 5000 0.10 0.178 0.061 0.018 0.115 0.040 0.007

Bias 10000 0.10 -0.176 0.044 -0.016 -0.114 0.011 -0.005

RMSE 10000 0.10 0.176 0.054 0.018 0.115 0.031 0.007

Bias 2500 0.50 -0.266 -0.008 -0.005 -0.165 -0.007 -0.002

RMSE 2500 0.50 0.267 0.052 0.010 0.167 0.044 0.005

Bias 5000 0.50 -0.265 -0.004 -0.006 -0.164 -0.004 -0.002

RMSE 5000 0.50 0.265 0.036 0.008 0.165 0.030 0.005

Bias 10000 0.50 -0.266 -0.006 -0.008 -0.165 -0.005 -0.004

RMSE 10000 0.50 0.266 0.027 0.009 0.165 0.022 0.005

Bias 2500 0.75 -0.314 -0.046 -0.004 -0.194 -0.023 -0.006

RMSE 2500 0.75 0.315 0.075 0.012 0.196 0.052 0.009

Bias 5000 0.75 -0.314 -0.039 0.000 -0.194 -0.021 -0.003

RMSE 5000 0.75 0.314 0.055 0.008 0.195 0.042 0.006

Bias 10000 0.75 -0.314 -0.043 0.002 -0.194 -0.021 -0.001

RMSE 10000 0.75 0.315 0.052 0.007 0.194 0.033 0.004

Table 6.3. Small sample performance of quantile estimators.
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both passive and active components. A redundancy pay is offered only to individuals

dismissed by firms with more than 15 employees. In addition, a substantial reduc-

tion in labour costs is offered to firms hiring individuals of the eligible population,

whether or not they are on benefits. Crucial to our analysis, the duration of the two

components varies with worker age at dismissal. With our application in mind, we

consider only two age groups. Workers aged 40 or below are eligible for at most one

year, the redundancy pay being conditional on unemployment; the eligibility period

is extended to two years for workers older than 40. The institutional details of the

programme are discussed at large in Paggiaro et al. (2009).

We use social-security records for all eligible individuals in the years 1995-1998.

Due to data quality problems, our analysis is limited to selected areas of Northern

Italy. This admittedly limits the external validity of our conclusions, as the region

considered is characterized by per-capita GDP some 15 percent higher than the na-

tional average and male unemployment rate of 6.1 percent in 1998 (compared to

11.4 in the country). Our sample consists of 2, 223 males aged between 35 and 45.

Summary statistics are reported in Table 7.1.

The following equations for earnings are considered (see for example Meghir and

Pistaferri, 2004):

wit = fi + pit + vit,

where fi is an individual specific effect, pit is a permanent component of income

and vit is the transitory shock. The time index t denotes years from entrance in the

programme, with negative values indexing pre-programme years. We follow Heckman

and Cunha (2007) and use the following parametrization:

pit = λtθi,

where θi is individual specific endowment and λt is a time varying coefficient con-

stant across individuals. This specification implies that innovations to the permanent

income process can be written as:

pit − pit−1 = (λt − λt−1)θi.

Thus the variance of permanent shocks depends on (λt − λt−1), the case of constant

coefficients ruling out innovations to the process. Our application considers two al-

ternative specifications depending on how individual specific effects are modeled.

In the first specification, we impose that fi is totally spanned by a set of exogenous

regressors X, so that there is fi = βxi. This set includes a cubic polynomial in age, a
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All Workers With Benefits Without Benefits

Individuals aged 35− 40

Age 36.929 37.021 36.830

(1.388) (1.369) (1.401)

Made redundant in 1995 0.180 0.198 0.160

(0.384) (0.399) (0.367)

Made redundant in 1996 0.265 0.262 0.268

(0.441) (0.440) (0.443)

Made redundant in 1997 0.317 0.320 0.314

(0.465) (0.466) (0.464)

Made redundant in 1998 0.239 0.221 0.258

(0.426) (0.415) (0.438)

Earnings 3 years after 801.823 838.319 762.774

(319.471) (341.562) (289.280)

Earnings 1 year before 768.627 813.778 720.316

(256.119) (252.462) (251.385)

Earnings 2 years before 766.613 807.305 723.073

(243.422) (243.973) (235.396)

Number of Observations 1,036 535 501

Individuals aged 41− 45

Age 42.492 42.595 42.377

(1.709) (1.715) (1.695)

Made redundant in 1995 0.203 0.229 0.174

(0.402) (0.420) (0.379)

Made redundant in 1996 0.243 0.270 0.212

(0.429) (0.444) (0.409)

Made redundant in 1997 0.300 0.266 0.338

(0.458) (0.442) (0.473)

Made redundant in 1998 0.254 0.235 0.276

(0.436) (0.424) (0.447)

Earnings 3 years after 812.420 849.486 771.200

(318.724) (323.488) (308.431)

Earnings 1 year before 799.862 842.473 752.475

(265.767) (268.269) (254.951)

Earnings 2 years before 801.644 841.408 757.422

(259.824) (256.535) (256.509)

Number of Observations 1,187 625 562

Table 7.1. Summary statistics for the Income Support Program in

Italy.
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dummy for redundancy pay recipients (i.e. firms over of below 15 at time of dismissal),

and a full set of dummies for year of redundancy. Our identification strategy exploits

the sharp discontinuity in duration of benefits around the age 40 cutoff. Bearing in

mind the sample restrictions on the age range, the maintained assumption is that

individuals aged 40 or below proxy the counterfactual scenario for individuals aged

41 or above. This allows us to investigate the effects of lengthening eligibility by

one year for individuals around the discontinuity cutoff. In this setting, D represents

a dummy for individuals aged 41 or above at the time of dismissal. We allow the

variance of transitory shocks to vary across individuals through its dependence on

the component θi:

vit = (1 + γtθi)uit.

The outcome is (logged) annual earnings three years after entrance in the programme

(t = 3), for which the corresponding equation is:

wi3 = βxi + λ3θi + (1 + γ3θi)ui3.

We let β and γ vary depending on age (above and below age 40). Note also that our

procedure allows for groups specific variances of the transitory shock ui3. Potential

outcomes defined from wi3 for the D = 0 and the D = 1 groups represent Y0 ad

Y1, respectively, in the notation employed above. The availability of a long pre-

programme panel allows us to employ lagged values of the outcome as additional

measurements. In particular, we set W1 and W2 to (logged) annual earnings XX and

XX years before entrance in the programme, respectively. The time lag between the

two measurements adds credibility to the assumption that temporary shocks in the

earning equations are orthogonal.

The second specification controls for fi by first differencing the model, and allows

for the following form of heteroskedasticity:

∆vit = (1 + γtθi)∆uit.

In this setting, the post-programme equation becomes:

wi3 − wi2 = (λ3 − λ2)θi + (1 + γ3θi)(ui3 − ui2).

The additional measurements employed forW1 andW2 are as in the first specification.

Note that in this instance imposing the restriction of conditional indepedendence

between the two potential outcomes amounts to say that the transitory shock hitting

a specific individual in case she were treated is independent of the transitory shock



28

Group Model 1 Model 2 Model 3

λ γ λ γ λ γ

Policy off 0.723 0.162 0.749 0.156 -0.277 0.162

(0.039) (0.019) (0.036) (0.004) (0.040) (0.019)

Policy on 0.775 0.150 0.779 0.149 -0.225 0.150

(0.034) (0.002) (0.033) (0.001) (0.033) (0.002)

Table 7.2. Instrumental variable results for the effect of the Income

Support Program in Italy. Standard errors are in parentheses.

Group Quantile

0.1 0.25 0.50 0.75 0.90

Model 1: Dependent variable Y

Policy off 0.497 0.605 0.758 0.817 0.864

(0.067) (0.064) (0.055) (0.050) (0.063)

Policy on 0.639 0.669 0.788 0.869 0.924

(0.047) (0.041) (0.041) (0.037) (0.048)

Model 3: Dependent variable Y −W

Policy off -0.502 -0.401 -0.236 -0.183 -0.136

(0.066) (0.065) (0.054) (0.050) (0.062)

Policy on -0.367 -0.328 -0.216 -0.131 -0.069

(0.056) (0.039) (0.041) (0.037) (0.056)

Table 7.3. Instrumental variable quantile regression results for the

effect of the Income Support Program in Italy. Standard errors are in

parentheses.

hitting the same individual in case she were not treated. Something that might be

hard to find a theoretical motivation for. As an alternative, one might consider the

restriction (??) according to which the treatment adds a random component to the

transitory shock hitting the individual no matter for her treatment status.

Table 7.2 shows results from three different models. In model 1, the values of λ1
and β1 are estimated from a 2SLS regression of Y on W1 for the group aged 41 or

above (D = 1), using W2 as instrument. Individuals in the younger group are used

to estimate λ0 and β0. In model 2, we use additional instruments W3, W4, W5 and
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W6. Model 3 is the model for earnings in difference. In all the models, the coefficient

a is positive as implied by the theory.

Table 7.3 and Figure 7.1 show results obtained from using Chernozhukov and

Hansen (2006, 2008).

The 2SLS procedure yields estimates of γ and the possibility of implementing the

approach suggested in Section 5.2. We therefore obtain estimates of λ, γ and QU(τ).

To compare the results of this approach with the results shown in Figure 7.1, we

offer a comparison of the estimates produced using Chernozhukov and Hansen (2006,

2008) and our approach. Results are shown in Figure 7.2.

The main results are apparent. First, the standard factor model is rejected since

both γ0 and γ1 are by far statistically different from zero. Second, all the parameters

in the model appear to be independent of the treatment status D, i.e. γ0 = γ1

and λ0 = λ1, QU1 [τ ] = QU0 [τ ]. That is one cannot reject the hypothesis that the

distribution of Y1 is equal to the distribution of Y0. Unless one is willing to take

into consideration the rather implausible hypothesis that the program had an impact

just by permuting the outcomes across individuals, this is enough to conclude that

the sharp null hypothesis of non causal effect to anyone is not rejected by the data.

This is consistent with previous findings on average effects (Paggiaro et al., 2009).

Note that for this conclusion to hold it is irrelevant whether it is U1 or U1 −U0 to be

independent of U0.

8. Conclusion
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Figure 7.1. Instrumental variable quantile regression results for the

effect of the policy.
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Appendix A. Proofs

In this Appendix, we use notation that is standard: ; denotes weak convergence,

→ denotes convergence in probability, o and O denote the usual order of magnitudes,

CLT denotes ordinary Central Limit Theorem, ỹ = Y − λ′W1 and Φ = γ ′W1.

Proof of Theorem 1. Use (4.1) to write:

EY (Y |d,w(2)) = EYd(Yd|d,w(2)) = λ′
dEW(1)

(W(1)|d,w(2)).

Consider:

(Yd − λ′
dW(1))

2 = (−λ′
dV(1) + (1 + γ ′

dW(1) − γ ′
dV(1))Ud)

2,

= (λ′
dV(1))

2 + (1 + γ ′
dW(1) − γ ′

dV(1))
2U2

d

− 2λ′
dV(1)(1 + γ ′

dW(1) − γ ′
dV(1))Ud,

where there is:

(1 + γ ′
dW(1) − γ ′

dV(1))
2 = 1 + γ ′

dW(1)W
′
(1)γd + γ ′

dV(1)V
′
(1)γd

+ 2γ ′
dW(1) − 2γ ′

dV(1) − 2γ ′
dW(1)V

′
(1)γd.

The conditioning on W(2) yields the following terms:

EẎ (Ẏ |d,w(2)) = λ′
dΩV(1)

λd + σ2
Ud
E[(1 + γ ′

dW(1) − γ ′
dV(1))

2|d,w(2)],

= λ′
dΩV(1)

λd + σ2
Ud
(1 + γ ′

dΩV(1)
γd)

+ σ2
Ud
γ ′
dE(W(1)W

′
(1)|d,w(2))γd

+ 2σ2
Ud
γ ′
dE(W(1)|d,w(2))− 2σ2

Ud
γ ′
dE(W(1)V

′
(1)|d,w(2))γd,

where ΩA is the covariance matrix of A. Use (2.8) to write:

E(W(1)V
′
(1)|d,w(2)) = ΩV(1)

,

so that there is:

EẎ (Ẏ |d,w(2)) = λ′
dΩV(1)

λd + σ2
Ud
(1− γ ′

dΩV(1)
γd)

+ σ2
Ud
γ ′
dE(W(1)W

′
(1)|d,w(2))γd

+ 2σ2
Ud
γ ′
dE(W(1)|d,w(2)).

By re-arranging terms, it follows that the coefficients on W 2
l identify al = σ2

Ud
γ2dl,

the coefficients on Wl identify bl = 2σ2
Ud
γdl, and the coefficients on WlWs identify

cls = 2σ2
Ud
γdlγds for l = 1, . . . , r and s = 1, . . . , r. �
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Proof of Theorem 2. We show the result for the conditional quantile of Y = DY1 +

(1−D)Y0 for d = {0, 1}. Consider:

P (Y ≤ qd(θ, τd)|θ)
1
= P (qd(θ, Ud) ≤ qd(θ, τd)|θ)

2
= P (Ud ≤ QUd|θ(τd)|θ)

3
= P (Ud ≤ QUd|W(1),V(1)

(τd)|W(2),V(2))

4
= P (Ud ≤ QUd|W(1)

(τd)|W(2),V(2))

5
=

∫
. . .

∫
P (Ud ≤ QUd|W(1)

(τd)|W(2),V(2))dP (V(2)|W(2))

6
= P (Ud ≤ QUd|W(1)

(τd)|W(2))

7
= FUd|W(2)

(
QUd|W(1)

(τd)
)
= τd.

The first two equalities follow by definition and Assumption 4. The third equality

follows by definition and by the fact that θ is a function of (W(1),V(1)) as well as

(W(2),V(2)). The fourth equality follows from independence between Ud and V(1)

stated in Assumption 1.ii. Moreover this independence assumption between Ud and

V(2) is used to obtain P (Ud ≤ QUd|W(1)
(τd)|W(2)). The last equality holds by definition

of conditional quantiles and Ud|W(2) and Ud|W(1) equals in distribution. By definition,

we also have P (Ud ≤ QUd|W(1)
(τd)|W(2)) = P (Y ≤ qd(W(1), τd)|W(2)) and the result

follows. �

Proof of Corollary 1. Let Ỹ := Y − qd(W(1),λd,γd, τd), where qd(W(1),λd,γd, τd) =

λ′
dW(1) + (1 + γ ′

dW(1))QUd
(τd). By Theorem 2, P (Y ≤ qd(W(1),λd,γd, τd)|W(2)) =

τd which implies that P (Ỹd ≤ 0|W(2)) = τd as 0 = QỸd
(τd|W(2)) for all τd ∈

(0, 1). Letting S(λd,γd, τd,η) = Eρτd(Ỹ − W ′
(2)η), we have that η(λd,γd, τd) =

argminη{S(λd,γd, τd,η)} and therefore QUd
(τd) is the solution of:

min{η(λd,γd, τd)′Aη(λd,γd, τd)}

for a given positive definite matrix A. The continuity of derivatives implied by the

factor model and monotonicity conditions of the quantile model give the second result.

The second result follows immediately from Theorem 1 and Theorem 2. By Theo-

rem 1, λd and γd are identified for d = {0, 1}. By Theorem 2 and the first part of the

proof, the quantiles of the uniqueness are identified. Then λd(τd) = λd + γdQUd
(τd)

gives identification of the quantile specific loadings. �

Proof of Corollary 2. Since U1 = U0 + (U1 −U0), orthogonality between U0 and U1 is

replaced by orthogonality between U0 and U1 −U0 Then the following representation
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for the quantile function of the treatment effect follows:

QDG[τ1;θ, QU0(τ0)] = [λ1 − λ0]
′θ + [γ1 − γ0]

′θQU0(τ0)

+(1 + γ ′
1θ)QU1−U0(τ1)

QU1−U0(τ) can be written as a functional of QU0(τ) and QU1(τ) through deconvolution

so that it is identified at the condition given in the next section for the identification

of QU0(τ) and QU1(τ). As in (3.1) if γ1 and γ0 are zero Θ enters the quantile function

only as a location shifter, otherwise it affects the whole shape of the distribution of

the causal effect. �

Proof of Theorem 3. The proof is completed in two steps. We first show the consis-

tency of the quantile regression estimator and then asymptotic normality. The proof

of consistency and asymptotic normality for the 2SLS estimators are standard under

Assumptions 1, 3, and 6 and it is not discussed here (see, e.g., White 2000).

Under regularity conditions, consistency results follow immediately from Corollary

3.1 in Newey (1991), Corollary 3.2.3 in van der Vaart and Wellner (1996) and Propo-

sition 2 in Chernozhuknov and Hansen (2008). Using standard arguments under

conditions 1, 3, and 6, it is straightforward to show that λ̂d → λd and γ̂d → γd.

Moreover, consider qn(λd) = n−1
d

∑nd

i=1W
′
1i)λd and q̄n(λd) = n−1

d

∑nd

i=1E(W
′
1iλd).

We note that Assumption 1 and 2 of Newey (1991) are trivially satisfied since Λ is

a compact set and there is point-wise convergence qn(λd) − q̄n(λd) for each λ ∈ Λ.

Moreover, Assumption 3A is also satisfied since for any λ̃d and λd in Λ,

(A.1) | 1
n

n∑
i=1

W ′
ij(1)(λ̃j − λj)| ≤ | 1

n

n∑
i=1

W ′
ij(1)||λ̃j − λj|,

and, consequently, q̄n(λj) is equicontinuous and supλ∈Λ |qn(λj)− q̄n(λj)| = op(1). By

proposition 2 in Chernozhukov and Hansen (2008), we have that supα∈A ∥ϑ̂(α, ·) −
ϑ(α, ·)∥ → 0 for ϑ = (β′,η′)′. This implies that supα∈A ∥η̂(α, ·) − η(α, ·)∥ → 0,

and that ∥α̂(·) − α(·)∥ → 0. Consider a small ball αn of radius rn centered at

α(τ). Then for any αn → α(τ), we have that β̂(αn, ·) → β(α(τ), ·) = β(τ), and

η̂(αn, ·) → η(α(τ), ·) = η(τ) = 0. Hence ϑ̂(αn, ·) → ϑ(α(τ), ·) for any αn → α(τ).

Asymptotic normality follows by Andrews (1994, pp. 2263-65) and Theorem 3 in

Chernozhuknov and Hansen (2008). Note that the asymptotic distribution of our

quantile estimator depends on qn(λd) evaluated at λd = λ̂d and qn(γd) evaluated

at γd = γ̂d. Because the conditions of Corollary 3.1 in Newey (1991) are met, the

asymptotic behavior of the estimator depends on λd and γd and then standard CLT
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results can be applied. The argument is similar to the one offered in Chernozhuknov

and Hansen (2008) who obtain the asymptotic distribution of a quantile estimator

using weights and transformation of instruments obtained in a first stage.

For any αn, Cid = ρτd(ỹid − ξid(τd)−Φ′
idδ̂α/

√
n−X ′

idδ̂β/
√
n−W ′

2i)δ̂η/
√
n), where

ξid(τd) = αd(τd)Φid+X ′
iβ(τd)+w′

2iη(τd), δ̂α(αn, τd) =
√
n(α̂(αn, τd)−α(τd)), δ̂β(αn, τd) =√

n(β̂(αn, τd)− β(τd)), δ̂η(αn, τd) =
√
nη̂(αn, τd). It follows that,

(A.2) sup ||v(δα, δϑ)− v(0,0)− E(v(δα, δϑ)− v(0,0)|| = op(1)

where || · || denotes the standard Euclidean norm of a vector, ψτd(u) = τd − I(u < 0)

and,

v(δα, δϑ) =
−1√
n

n∑
i=1

Hiψτj
(
ỹij − ξij(τj)− δα/

√
nΦij −H ′

ijδϑ/
√
n
)

with Hi = (X ′
i,W

′
2i)

′. Expanding we obtain,

E(v(δα, δϑ)− v(0,0) =

= − 1√
n

n∑
i=1

EHi

(
ψτd
(
ỹid − ξid(τd)− δα/

√
nΦi −H ′

iδη/
√
n)
)
− ψτd(ỹid − ξid(τd))

)

= − 1√
n

n∑
i=1

Hi

(
Fid
(
ξid(τd) + δα/

√
nΦid +H ′

idδϑ/
√
n
)
− τ
)

= − 1√
n

n∑
i=1

Hifid(ξid(τd))
(
Φidδα/

√
n+H ′

iδϑ/
√
n
)
+ op(1)

Note that v(δ̂α, δ̂ϑ) → 0, and thus E(v(δα, δη)− v(0,0)) = v(0,0) + op(1). Letting

δϑ = (δ′
β, δ

′
γ)

′, we write the last expression as,

− 1√
n

n∑
i=1

Hifid(ξid(τd))
(
Φiδα/

√
n+H ′

iδϑ/
√
n
)
=

1√
n

n∑
i=1

Hiψτd (ỹid − ξid(τd))+op(1)

Alternatively, using more convenient notation, we write the last expression as,

Jαδα + Jϑδϑ = Jψ + op(1)

where Jα = limn→∞ H ′ΨΦ, Jϑ = limn→∞ H ′ΨH , Ψ = diag(fid(·)) and Jψ is a

mean zero random variable with covariance τd(1 − τd)H
′H . Letting [J̄ ′

β, J̄
′
η]

′ be a

conformable partition of J−1
ϑ , we have that δ̂η = J̄ ′

η(Jψ − Jαδα) and δ̂β = J̄ ′
β(Jψ −

Jαδα). Letting Z = J̄ ′
ηAJ̄η as in Chernozhukov and Hansen (2006), we have that

δ̂α = (J ′
αZJα)

−1J ′
αZJψ.
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Replacing it in the previous expression,

δ̂η = J̄ ′
η(Jψ − Jαδα) = J̄ ′

η(I − Jα(J
′
αZJα)

−1(J ′
αZ))Jψ = J̄ ′

η(I −L)Jψ = J̄ ′
ηMJψ

where L = Jα[J
′
αZJα]

−1J ′
αZ and M = I − L. Due to invertibility of J̄η, δ̂η =

0×Op(1)+ op(1). Similarly, substituting back δα, we obtain that δ̂β = J̄ ′
β(I −L)Jψ.

By the regularity conditions, we have that,(
δα(αn, τd)

δ̂β(αn, τd)

)
=

( √
n(α̂(αn, ·)− α(τd))√
n(β̂(αn, ·)− β(τd))

)
; N

(
0,J(τd)

−1S(τd)J(τd)
−1
)
.

�


