

DATA CENTER SUSTAINABILITY Best practices and future scenarios

LCA of the VSIX data center

Analysis of the environmental impacts of a data center over its life cycle

Padova, 16 December 2022

Life Cycle Assessment (LCA)

CLIMATE CHANGE

RESOURCE DEPLETION

EUTROPHICATION

HUMAN TOXICITY ECOTOXICITY

ACIDIFICATION

Literature review

	Shah et al. (2011)	Shah et al. (2012)	Lettieri (2012)	Whitehead, Shah et al. (2015)
CASE STUDY	<u>Hypothetical</u> data center	Real data center	<u>Hypothetical</u> data center	Real data center
LCA APPROACH	<u>Hybrid</u> : streamlined process LCA + EIO-LCA	<u>Streamlined</u>	<u>Hybrid</u> : process-based + EIO-LCA (Screening LCA)	<u>Hybrid</u> : process- + EIO- LCA (Screening LCA)
ENVIRONMENTAL IMPACTS	Energy, GWP, Total toxic releases, PM-10	13 impact categories	GWP	11 impact categories
DATA COLLECTION & MODELING	 Data from <u>existing</u> process LCA models (servers) Cost data (other equipment, electricity) <u>EIO</u> models 	Representation through 28 <u>parameters</u> , with impact factors from the industry	Data from <u>existing</u> <u>studies</u>	 Primary data: quantities and/or costs Secondary data: from process-based LCA studies Energy model EIO_model
SYSTEM BOUNDARIES & GRANULARITY	4 systems: IT, Cooling, Power Supply and Building + main components	Similar to the 2011 study	6 pieces of equipment: Building shell, Servers, Room level PDU, UPS, CRAC unit, Chiller	7 systems: IT, Structural, Mechanical, Electrical, Fire, Public health, and External + sub-systems, components and materials
LIFE CYCLE STAGES	Embedded (incl. End of Life?) and Operational impacts	Similar to the 2011 study	Resource extraction and manufacturing, Operation, Transportation, and End-of-Life	Manufacturing, Transport to site, Operation, and End of Life (only transport)

The aims of the research

- **Identify hotspots**: trace the impacts of processes, going into the <u>detail of components</u>, <u>sub-components</u>, <u>materials</u>, <u>energy</u>, ...
- **Provide data centers with a viable LCA methodology** to «simplify the complexity» of their facility

CASE STUDY of a real data center:

VSIX – University of Padua

- → Internet Exchange Point (IXP)
- \rightarrow Data center (colocation service)

LCA Goal and Scope:

1-year operation of the VSIX Tier II facility, 84 kW IT

LCA FUNCTIONAL UNIT

Hp. 100% virgin materials

Hp. 100% virgin materials

System	Equipment categories
	Network equipment (incl. 10 sub-cat.)
	Optic drawers
	Server & storage
	Cable management panels
	Patch panels
ІТ	Front rack cover panels
	Rack trays
	Consoles
	Computers
	Rack Enclosures
	Network cables - copper
	Network cables - optical fiber
	PDUs
	Power supply - misc. (incl. 5 sub-cat.)
	Power distribution - misc.
	Batteries
Power Supply	Power system with rectifiers and batteries
	UPS - incl. batteries
	Switchboards
	Backup generator
	Power cables
	Outdoor units
Cooling	Indoor units
coomig	Piping
	Refrigerant - incl. refill
Building	-

System	Equipment categories	
	Network equipment (incl. 10 sub-cat.)	
	Optic drawers	IT rack equipment: (PRIMARY DATA)
	Server & storage	
	Cable management panels	Number of Rack Units (U):
	Patch panels	
іт	Front rack cover panels	
11	Rack trays	PDUS Other: Power supply &
	Consoles	Other: Patch panels, 107 Power distribution
	Computers	Front rack cover
	Rack Enclosures	paneis, Rack trays,
	Network cables - copper	Cable
	Network cables - optical fiber	management
	PDUs	panels 657
	Power supply - misc. (incl. 5 sub-cat.)	
	Power distribution - misc.	
	Batteries	
Power Supply	Power system with rectifiers and batteries	Optic
	UPS - incl. batteries	drawers
	Switchboards	245 Server & storage
-	Backup generator	232
	Power cables	N and avg size
Cooling	Outdoor units	
	Indoor units	OF HHUS & SSUS
COOIIIIg	Piping	
	Refrigerant - incl. refill	
Building	-	

System	Equipment categories				
	Network equipment (incl. 10 sub-cat.)				
	Optic drawers				
	Server & storage				
	Cable management panels				
	Patch panels				
ІТ	Front rack cover panels				
	Rack trays				
	Consoles				
	Computers				
	Rack Enclosures				
	Network cables - copper				
	Network cables - optical fiber				
	PDUs				
	Power supply - misc. (incl. 5 sub-cat.)				
	Power distribution - misc.				
	Batteries				
Power Supply	Power system with rectifiers and batteries				
	UPS - incl. batteries				
	Switchboards				
	Backup generator				
	Power cables				
	Outdoor units				
Cooling	Indoor units				
Cooling	Piping				
	Refrigerant - incl. refill				
Building	-				

Facility equipment: (PRIMARY DATA)

- Number
- Mass
- Dimensions (lenght, volume, surface, ...)
- Technical data
- ...

System	Equipment categories				
	Network equipment (incl. 10 sub-cat.)				
	Optic drawers				
	Server & storage				
	Cable management panels				
	Patch panels				
ІТ	Front rack cover panels				
	Rack trays				
	Consoles				
	Computers				
	Rack Enclosures				
	Network cables - copper				
	Network cables - optical fiber				
	PDUs				
	Power supply - misc. (incl. 5 sub-cat.)				
	Power distribution - misc.				
	Batteries				
Power Supply	Power system with rectifiers and batteries				
	UPS - incl. batteries				
	Switchboards				
	Backup generator				
	Power cables				
	Outdoor units				
Cooling	Indoor units				
Cooling	Piping				
	Refrigerant - incl. refill				
Building	-				

ASSUMPTIONS, FOR EACH PIECE OF EQUIPMENT:

- <u>Transport to site</u>: distances & modes of transportation
- Lifetimes
 - VSIX data center: 30 years
 - Building: 60 years
 - Server, storage and networking equipment: 5 years
 - Batteries: 7 years
 - Other: 10-30 years

OPERATION OF THE DATA CENTER: (PRIMARY DATA)

- Energy:
 - Electricity consumption + generation mix
 - Diesel consumption (backup genset)
- <u>Refrigerant leakage</u>

Modeling of components

Our steps:

- Standards and guidelines (LCA of ICT goods and services): ETSI, ITU, Carbon Trust & GeSi, The Green Grid
- Request of data to manufacturers → no success (sensitive information)
- → Data from existing LCA studies to create our own model for each type of equipment

Modeling of components

Database: Ecoinvent

Software: SimaPro PhD

ENVIRONMENTAL DATASETS

ᡗᠵ

Example – Modeling the server mainboard

Components	Sub-components/materials/processes	N. units	Caracteristics	m.u.	Materials / Processes / Assemblies
WB - Mainboard, incl. CPU Mainboard PWB		1	1 1 2620		Dataset modeled from Ecoinvent data
area [cm2]	Mainboard connectors	1	1,5050	ĸg	
1924,7	Coin cell	1	0,0016	kg	Battery cell, Li-ion {GLO} market for APOS, S
weight [kg]	CPU with housing	2	1,2840	kg	
2,6486					
	Heatsink**	2	0,6600	kg	Aluminium, primary, ingot {RoW} market for APOS, S
	Plastic mount	2	0,0156	kg	Plastic injection moulded part
	Thermal paste	2	0,0014	kg	Solder, paste, Sn95.5Ag3.9Cu0.6, for electronics industry {GLO} market for APOS, S (a)
	CPU socket on mainboard				
	stainless steel	2	0,3896	kg	Steel sheet (ECCS)/GLO
	plastic	2	0,0026	kg	Plastic injection moulded part
			1,0692	kg	
	1				
	CPU:	2	0,2144	kg	_
	Substrate for active components (2-laye	r rigid)	0,0286	kg	Epoxy resin insulator, SiO2 {GLO} market for APOS, S (b)
	Solder paste SnAg3.5		0,0018	kg	Solder, paste, Sn95.5Ag3.9Cu0.6, for electronics industry {GLO} market for APOS, S
	Gold, primary (in Electronics)		1,9895E-08	kg	Gold {GLO} market for APOS, S
	Wafer manufacturing for bare dice		0,0014	m2	Wafer, fabricated, for integrated circuit {GLO} market for APOS, S
	Housing IC		0	kg	
	Lead frame		0	kg	
	Mixer, global average electricity back-er	nd	0,2060	MJ	Electricity, low voltage {CN} market group for APOS, S (c)
	Copper sheet		0,1072	kg	Copper-rich materials {GLO} market for copper-rich materials APOS, S
	Capacitor ceramic MLCC 0603 (6mg)		150	pcs	Capacitor, film type, for through-hole mounting {GLO} market for APOS, S (d)
	Silicone rubber (RTV-2, condensation)		0,0014	kg	Synthetic rubber {GLO} market for APOS, S

(a) dato specifico per "thermal paste" non disponibile in SimaPro (b) hp uno dei materiali più comuni cioè epoxy resin (c) hp mix energetico della Cina, dove è prodotta la mainboard (d) hp uno dei tipi di capacitori disponibili in SimaPro/Ecoinvent

CPU heatsink

CPU with socket & plastic mount

Results – Impact categories

Impact assessment methodology: CML-IA baseline / EU25

Impact category	Value	Unit		
Abiotic depletion*	1,55E+01	kg Sb eq		
Abiotic depletion* (fossil fuels)	1,31E+06	MJ		
Global warming (GWP100a)	1,20E+05	kg CO2 eq]→	120 tCO ₂ eq / year
Ozone layer depletion (ODP)	1,27E-02	kg CFC-11 eq		Global warming
Human toxicity	3,01E+05	kg 1,4-DB eq		impact of the VSIX
Fresh water aquatic ecotoxicity	3,03E+05	kg 1,4-DB eq		data center over
Marine aquatic ecotoxicity	4,66E+08	kg 1,4-DB eq		its life cycle
Terrestrial ecotoxicity	4,67E+02	kg 1,4-DB eq		· · · · · · · · · · · · · · · · · · ·
Photochemical oxidation	4,24E+01	kg C2H4 eq		
Acidification	7,36E+02	kg SO2 eq		
Eutrophication	3,02E+02	kg PO4 eq		

*Abiotic depletion = depletion of nonliving (abiotic) resources

Results - GWP

LCA OF VSIX – Total CO2eq emissions per year

Results - GWP

Server & Storage (2U)	kg CO2 eq			
Mixed boards	755			
Disks (avg. data), of which:	292			
SSD 2TB (N. 0,5)	143			
HDD 6TB 3.5'' (N. 5,1)	123			
HDD 2TB 2.5'' (N. 4,4)	26			
Mainboard - S&S	128			
PSU - S&S	101			
Chassis - S&S	39			
Fan - S&S	23			
TOTAL	1339			

~98% due to wafer manufacturing for the production of integrated circuits (for the NAND Flash of the SSD)

lifetime* ■ Manufacturing (incl. Transport)

*Electricity consumption (5 year lifetime): SSD: 118 kWh (data SSD Seagate Koho Model 1,92TB – from LCA 2016); HDD: 269 kWh (data HDD Seagate Barracuda Model 2TB; hp 50% operating mode (6,8 W), 50% idle mode (5,5 W))

Results - GWP

LCA OF VSIX – Total CO2eq emissions per year

- VSIX's Global Warming Impact over its life cycle: 120 tCO₂eq/year
 - ~ A/R Venice-Naples by car, every day of the year
- Impact of manufacturing: 68% over the whole life cycle (vs <20% previous studies, with fossils)
- **Operational** impact: limited to **31%**, thanks to **100% renewable electricity**
 - In case of electricity from the average Italian mix: overall LCA emissions would increase 4fold.
 - Analysis of the generation mix (hydro-pumped)
 - Impact will decrease with the decarbonization of the Italian energy system
- Impacts need to be traced within all the processes involved in the supply chain of data centers: components, materials, energy, and processes (e.g. SSDs vs HDDs)
 - \rightarrow Is it viable to find other materials or processes that will fulfil the same function...?

- Improve detail (especially manufacturing and transport)
- Model specific components
 - → Need of data from the supply chain & extensive (free) environmental databases
- End of Life, % of recycled materials
- Periodical updates of the LCA

Thank you for the attention!

Linda Cerana

References

- 1) Shah, Amip, Cullen Bash, Ratnesh Sharma, Tom Christian, Brian J. Watson, and Chandrakant Patel. "Evaluating Life-Cycle Environmental Impact of Data Centers." Journal of Electronic Packaging, Transactions of the ASME (American Society of Mechanical Engineers), 2011
- 2) Shah, Amip J., Yuan Chen, and Cullen E. Bash. "Sources of Variability in Data Center Lifecycle Assessment." IEEE International Symposium on Sustainable Systems and Technology (Institute of Electrical and Electronics Engineers), 2012
- 3) Whitehead, B., Andrews, D., & Shah, A. "The life cycle assessment of a UK data centre." International Journal of Life Cycle Assessment, 2015
- 4) Lettieri, D. "Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method" UC Berkeley Electronic Theses and Dissertations, 2012
- 5) "Methodology for environmental Life Cycle Assessment (LCA) of Information and Communication Technology (ICT) goods, networks and services", 2015 – Standard ETSI (European Standards Organization)
- 6) "Methodology for the assessment of the environmental impact of information and communication technology goods, networks and services", 2014 ITU (International Telecommunication Union)
- 7) *"ICT Sector Guidance built on the GHG Protocol Product Life Cycle Accounting and Reporting Standard",* 2017 Carbon Trust & GeSI
- 8) "Data center life cycle assessment guidelines", 2012 The Green Grid
- 9) "LCA of Dell PowerEdge R740" DELLTechnologies & thinkstep, 2019
- 10) "Barracuda LP HDD Product Life Cycle Analysis" Seagate, 2011